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EMPIRICAL EXERCISES FOR THE STUDY
OF MULTIPLE REGRESSION

J. T. Boiding

Theory takes on real value when it can be demonstrated to the student

with known results, The following is a descriptive list of several exercises

which demonstrate theory and raise questions.

Exercise 1: Use a table of random numbers or a random number generator

to assign ten predictor scores to each individual in a generated sample,

say N = 100. Let the ten scores be designated by X1, X10. Use as variable

Y the sum of the ten random numbers, Y = X1+ , ,+X10, Construct a regression

model using the ten predictbr scores for each individual to predict their sum

Y. The raw weight coefficients should all be equal to LOO and R2 should be

1.00. Deviations from the expected results are due to the procedure (or computer

program) used to obtain them.

Exercise 2: Generate samples as in exercise 1, but construct models using

a restricted set of the ten predictors. If all ten times N of the predictor scores

are randomly selected from the same population, then the ten predictor variables

are pair wise independent and should account for 10 percent of the variance of the

criterion. Using only four predictors in a model where the criterion is the sum

of all tefl, one would expect all raw weight coefficients to be equal to l~00 but R2

should only be 0,40, Using eight predictors R2 should be O~80. Deviations from

the expected results are a result of sampling error when a good procedure is used,

To improve the results one may increase the sample size,

Exercise 3: Observe the effects of including in a model a predictor which was

not used to construct the criterion, Such a variable should not contribute to R2

and should have a regression coefficient of zero. This is indeed the case when R2

is 1.00 before including the extra predictor~ As an exercise, generate eleven

predictor scores for each individual in the sample. Let the criterion score be the

sum of the first tens but use all eleven as predictors.
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Exercise 4: As in exercise 3 generate eleven predictor scores and let the

criterion score be the sum of the first ten. Construct the model which has ten

predictors, one of which did not contribute to the criterion and nine which did

contribute. The expected value of R2 is 0,90.

Exercise 5: Generate samples as in exercise 1, but include as predictors

only five of the contributing scores. Also include power terms and interaction

terms for those five.

Exercise 6: First generate five random variables, X1, ,,,, X5, for each

individual in the sample. Then determine generated variables according to the

rules: W = X1 * X2

U—v *Y
— I\3 /\3

V = X4 + X5

Construct the criterion Y = W + U + V + 7, Finally use regression techniques to

determine the contribution of each W.~ to Y.
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A NOTE ON MULTIPLE COMPARISONS

William Connett
University of Northern Colorado

Multipl~e regression is often used to compare a multiplicity of models based

on a single set of data, Checks for interaction, main effects, simple effects,

curvilinearity, etc. are made, while the effect of these comparisons on the

overall alpha level is ignored. It is safe to say that regression analysis as

commonly used lends itself very well to the commission of a sort of Type I error

due to the modification of the overall alpha level through multiple comparisons

on the same set of data. This need not be the case if the researcher is aware

of the problem and controls the overall alpha level through some adjustment

technique,

Two general methods are available for controlling the overall alpha level.

One method is to adjust the F value required for significance. This method in

relation to multiple regression was recently discussed in ~ (Williams, 1970).

The second way to maintain an overall alpha level is by proper choice of the alpha

levels for the individual comparisons. The purpose of this note is to review a

method for determining the individual alpha levels necessary to maintain some

selected overall alpha level.

Kimball (1951) has shown that the overall alpha a0 of any numbe,r of

comparisons within the same set of data can be determined by:

I. ~ <l-(l-a1)(l-a2) . (l~aN)

If the same alpha level is chosen for each comparison the equation may be

simplified to:

2, ~ <1*(1as)N

It is then possible to solve equation 2 for which is the alpha necessary for

the specific contrasts if some overall alpha a0 is to he maintained,

3. as ~1
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From formula 3 it follows, for example, if an overall alpha of .05 is required,

and five comparisons are to be made, the alpha level for each comparison would be

set at .0032.

Table 1 indicates some specific. alpha levels necessary to maintain overall

alpha levels for a selected number of comparisons.

TABLE 1

Specific alpha levels required to maintain overall
alpha levels for selected numbers of comparisons

Number of Comparisons
2 4 6 8 10

.10 .0513 .0131 .0033 .0008 .0002
Overall .05 .0253 .0064 .0016 .0004 .0001
a Level .02 .0101 .0025 .0006 .00016 .00004

.01 .0050 .0013 .0003 .00008 .00002

The inequalities indicate that this method will result in a conservative overall

alpha level. It; is indeed a ~quick and dirty~ method which should prove of some

value to the applied researcher, While the first method of controlling overall

alpha level is perhaps preferred, certainly, the, method presented here is in most

cases preferable to simply ignoring the multiple comparison problem,
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SETWISE REGRESSIONANALYSIS-A NEW DATA-ANALYTIC TOOL

John D. Williams and Al C. Lindem

The University of North Dakota

Most researchers have a familiarity with a common technique known

as stepwise regression analysis~ The stepwise technique has proven to

be a useful data analytic method which allows a computing procedure for

selecting variables to be dropped from a predictive system (in the back-

ward stepwise regression procedure), or to be added to a system (in the

forward stepwise procedure); in either case, the technique proceeds one

variable at a time, Also, both quantitative and binary coded (i~e~, a

1 if a trait is present, 0 if the trait is absent) variables can be

included in the usual stepwise regression analysis.

It is precisely with the binary coded variables that the usual step-

wise regression analysis begins to become less useful if there are more

than two categories involved in the binary coding, then the usual stepwise

regression procedure becomes almost meaningless.

Consider the following situation. A researcher is interested in

finding the relationships of several variables to alienation in undergraduate

students, The variables selected as predictor variables are the following:

1. socioeconomic status of parents

2. religion: 1 if Catholic, 0 otherwise;

3. religion: 1 if Protestant, 0 otherwise;

4. religion: 1 if Jewish, 0 otherwise;

5. sex: 1 if male, 0 otherwise;

6. class: 1 if freshman, 0 otherwise;

7. class: 1 if sophomore, 0 otherwise;

8. class: 1 if junior, 0 otherwise;

9. grade point average overall;

10. grade point average in major field;
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11. a measure of interpersonal aggression;

12. a measure of anomie;

13. a measure of need for people; and

14. a measure of need to help people,

Two variables that seem to be missing are a religion variable and a

class variable, Actually, the remaining categories are simply zero-coded.

Thus the possibility of other’ or “none” for religion is zero-coded, as

is being a senior. It is not important that these two particular variables

were zero-coded. For example, the sophomore group could be zero-coded, with

the other three classes being binary coded. The results would be unchanged.

With the previous 14 variables, the researcher might have defined

seven sets as follows:

Set Variables

1 1 socioeconomic status

2 2,3,4 religion

3 5 sex

4 6,7,8 class

5 9,10 grade point average

6 11,12 interpersonal aggression and anomie

7 13,14 need for people and need to help people

The setwise procedure drops one set at a time in a stepwise fashion,

There will be as many steps as there are sets; for the illustrative example,

seven steps would be presentS Statistically, the steps are accomplished by

an iterative procedure that allows the R2 (multiple correlation coefficient

squared) term to be maximized at each stage in a backward stepwise procedure.

Once a set is discarded, the set is no longer considered at later stages.
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As an example of the procedure, the computer internally computes t~e ~2 vaiue

for the seven sets, Then the R2 values are found for all possible combinations

of 6 sets of variables, Only the highest R2 value is retained, This process

automatically eliminates one set, The procedure is then continued but with

only the remaining six sets until only one set remains,

Difficulties Involved with Setwise Regression

While the difficulty regarding the use of binary coded predictors has

been at least partially solved, other difficulties in regard to the stepwise

procedure are also involved in the setwise procedure; additionally, the setwise

procedure has a new problem unique to itself,

It has been pointed out several times that probability levels in the

stepwise procedure are usually violated. Further, when k of the N variables

have been dropped, the N - k remaining variables are not necessarily the set

of N - k variables that would yield the highest R2 value, These criticisms

would also be valid in regard to the setwise procedure. Additionally, the

differences in the number of variables in a set will have some effect upon

when that set of variables would be dropped, Other things being equal, a

set with 6 variables will be retained longer than a set with 3 variables,

Notwithstanding these difficulties, if the setwise procedure is judiciously

employed by researchers, then addition data analysis power can be obtained,

The program and sample printout are available on request.


