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Seemingly Unrelated Regression (SUR) Models as a  
Solution to Path Analytic Models with Correlated Errors 

T. Mark Beasley 
University of Alabama at Birmingham 

 Multivariate regression requires the design matrix for each of p dependent variables to be the same in 
form. Zellner (1962) formulated Seemingly Unrelated Regression (SUR) models as p correlated 
regression equations. SUR models allow each of the p dependent variables to have a different design 
matrix with some of the predictor variables being the same. Of particular relevance to path analysis, SUR 
models allow for a variable to be both in the Y and X matrices. SUR models are a flexible analytic 
strategy and are underutilized in educational research. 

tandard multivariate regression requires that each of p dependent variables has exactly the same 
design matrix such that:  
         Y(Nxp) = X(Nxk) Β(kxp) + ε(Nxp) ,             (1) 

 

where Y is a matrix of p dependent variables, X is a k-dimensional design matrix, and ε is an error matrix, 
which is assumed to be distributed as N(Nxp)(0,Σ⊗IN). Multivariate regression theory using ordinary least 
squares (OLS) assumes that all of the Β coefficients in the model are unknown and to be estimated from 
the data as:  
           -1ˆ ( ) ( )′ ′= X X X YΒ .            (2) 
 

Multivariate Regression and Multiple Univariate Regression 
  Multivariate regression is not used often in behavioral research. One reason is that the matrix algebra 
underlying parameter estimation (2) is a column solution. Thus, whether one uses multivariate regression 
or p separate univariate regression, the regression coefficients will be the same. The differences between 
univariate and multivariate regression are the types of hypotheses that can be tested and the standard 
errors for these secondary parameters. Suppose one were to regress p = 3 dependent variables (y) on to k 
= 2 predictor variables (x). The omnibus null hypothesis would be that the regression coefficients for both 
x1 and x2 on all three y variables equals zero, a multivariate test with 6 degrees-of-freedom (df). Another 
hypothesis of potential interest would that x2 has no unique relationship to any of the three y variables 
after controlling for x1, a multivariate test with df = 3. It is important to note that if one were to construct a 
“multivariate” test that reduced down to only one of the y variables, then the results will be the same as 
the univariate regression, which is another reason multivariate regression is not popular.  
 Zellner (1962) formulated the Seemingly Unrelated Regression (SUR) model as p correlated 
regression equations. The p regression equations are “seemingly unrelated” because taken separately the 
error terms would follow standard linear OLS model form. Calculating p separate standard OLS solutions 
ignores any correlation among the errors across equations; however, because the dependent variables are 
correlated and the design matrices may contain some of the same variables there may be 
“contemporaneous” correlation among the errors across the p equations. Thus, SUR models are often 
applied when there may be several equations, which appear to be unrelated; however, they may be related 
by the fact that: 1) some coefficients are assumed to be the same or zero; 2) the disturbances are 
correlated across equations; and/or 3) a subset of right hand side variables are the same. This third 
condition is of particular interest because it allows each of the p dependent variables to have a different 
design matrix with some of the predictor variables being the same. SUR models allow for a variable to be 
both in the Y and X matrices, which has particular relevance to path analysis. SUR models are an 
underused multivariate technique. Using SUR models to solve path analytic models will be explicated.  
 

SUR Model 
 The SUR model is a generalization of multivariate regression using a vectorized parameter model. 
The Y matrix is vectorized by vertical concatenation, yv. The design matrix, D, is formed as a block 
diagonal with the jth design matrix, Xj, on the jth diagonal block of the matrix. The model is then 
expressed as:  
 

       E[Y(Nxp)]= {X1(Nxm
1
) β1 (m

1
x1) , X2(Nxm

2
) β2 (m

2
x1) , Xj(Nxm

j
) βj(m

j
x1) , Xp(Nxm

p
) βp(m

p
x1) } ;   (3) 

where mj is the number of parameters estimated (columns) by the jth design matrix, Xj.  

S 
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To illustrate in matrix notation, the SUR model is laid out as:  
 

   E(yv)       D       Β   
   ŷ 1  (Nx1)   X1 0 . . . 0 . . . 0    β1(m1x1)   
   ŷ 2  (Nx1)   (Nxm1) X2 . . . 0 . . . 0    β2(m2x1)      (4) 
E(yv) =  . . .   =   (Nxm2) . . . 0 . . . 0       
(Npx1)   ŷ j  (Nx1)      Xj . . . 0    βj(mjx1)    ; 
   . . .      (sym)  (Nxmj)  Xp       
   ŷ p  (Nx1)        (Nxmp)    βp(mpx1)   
   (Npx1)      (NpxM)        (Mx1)   

where M is the total number of parameters estimated over the p models, M=
1

p

j
j

m
=

∑ . 

 

Estimators for the SUR Model 
One approach to solving the parameter estimates is:  
 
   Β̂  = [ ′D  Q-1 D]-1 [ ′D Q-1 yv]                     (5) 
     (MxNp) (NpxNp) (NpxM) (MxNp) (NpxNp) (Npx1)   

Q is weight matrix based on the residual covariance matrix of the Y variables and is formed as:   
            

( x )( x )

ˆ
Np pNp Np

= ⊗Q IΣ .              (6) 

  To elucidate, the residual covariance matrix could be computed by regressing each of the p 
dependent variables on to its design matrix and obtaining the residuals. The jth diagonal element of Σ̂  
is computed by calculating the Sum of Squares for the jth residual. The ijth off-diagonal element is 
computed by taking the cross-product of the ith and jth residuals. These values are then divided by an 
estimate for the degrees-of-freedom for each element. Using matrix notation, the ijth element of Σ̂ is 
calculated as:   

         
1ˆ

( *)ij N df
σ =

−
y′i [IN − Hi ][ IN − Hj ] yj ;           (7) 

where Hj = Xj(X′j Xj)
-1X′j is the hat matrix for the jth design matrix. Although there are several 

approaches for defining the degrees of freedom, the most common approach is to define df* as the 
average of the numerator degrees-of-freedom (df) for the ith and jth models. Thus, this SUR estimator, 
sometimes referred to as Zellner’s two-stage Aitken estimator, is an application of generalized least 
squares (GLS). In fact, because the residual covariance matrix is unknown and must be estimated from 
the data, this application is often called feasible generalized least squares (FGLS; see Timm, 2002). It 
should be noted that if Q-1 is removed from equation (5), or is defined as an identity matrix (Q-1 ≡ I), then 
the results will be the same as p separate univariate regression models. To develop robust standard errors 
or more precise estimates of B, Zellner (1962) also proposed iterating the FGLS solution (IFGLS), which 
has the same asymptotic properties as the FGLS (Kmenta & Gilbert, 1968). To obtain maximum 
likelihood (ML) estimators of Β and Σ, Kmenta and Gilbert (1968) employed an iterative procedure to 
solve the likelihood equation:  
         / 2 / 2 tr[(( , | ) (2 ) | |Np NL eπ ⊗− − ′= I)(y-D )(y-D ) ]y

−1ΣΣ Σ Β ΒΒ     (8) 
 
Park (1993) showed that the ML and IFGLS estimators are mathematically equivalent. Kmenta and 
Gilbert (1968) found that the ML (IFGLS) and FGLS estimators gave similar results; however, FGLS is 
favored in small samples. Because the FGLS estimator is always unbiased and requires the least 
computation burden, it is recommended in most applications of the SUR model with small samples. 
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SUR Model Approach to Path Analysis 
  To demonstrate how a SUR model can be 
used to solve a path analysis problem, 
suppose the path model in Figure 1. The 
“terminal” endogenous variable is y1, which 
is directly influenced by y2, y3, and x2. One 
exogenous variable, x2 also has indirect 
effects on y1 through y2 and y3. The 
exogenous variable, x1, has an indirect effect 
on y1 though y2. The exogenous variable, x3, 
has an indirect effect on y1 though y3. The 
path diagram also models correlation among 
the errors of the endogenous variables. 
Assuming standardized variables so that all 
intercepts will be zero, the correctly specified 
regression models would be:  
 

 ŷ1 = β1(y2) y2 +  β1(y3) y3 + 0 X1  + β1(X2) X2 + 0 X3   
 ŷ2 =   β2(X1) X1  + β2(X2) X2 + 0 X3  (9)
 ŷ3 =   0 X1  + β3(X2) X2 + β3(X3) X3   

The first subscript refers to the dependent variable (y) and the second subscript in parentheses refers to the 
predictor variable. For example, β1(y3) refers to the regression coefficient (path) of y3 to y1. Because the 
dependent variables and their error terms are correlated and the design matrices contain some of the same 
variables there is “contemporaneous” correlation among the errors across the p equations. However, the 
standard OLS solutions will ignore any correlation among the errors across these three equations.    
  Appendix B shows SAS/IML code for generating data for the path model in Figure 1. The sample 
size was set at N = 5000 so that asymptotical properties could be observed. The correlations among the 
exogenous X variables were set at rx12 = 0.30, rx13 = 0.25., and rx23 = 0.15. Table 1 displays the other 
preset coefficients.  
 

Solving Parameter Estimates for SUR Models 
  The correctly specified SUR model for this path analytic problem would be laid out as such: 
 

   E(yv)       D        Β   
   ŷ11    y21 y21 x21 0 0 0  0   β1(y2)   
   ŷ12    y22 y22 x22 0 0 0  0   β1(y3)   
    . . .   . . . . . . . . .        β1(X2)   
   ŷ1N    y2N y21 x21 0 0 0  0      
   ŷ21    (Nx3)  x11 x21 0  0   β2(X1)  (10)
 E(yv) =  ŷ22   =     x12 x22 0  0      
    . . .      . . . . . .      β2(X2)   

 (3Nx1)  ŷ2N      x1N x2N 0  0      
   ŷ31    (sym) (Nx2)  x21  x31      
   ŷ32         x22  x32   β3(X2)   
    . . .         . . .  . . .      
   ŷ3N        (Nx2) x2N  x3N   β3(X3)   
   (3Nx1)      (3Nx7)        (7x1)   

 

Setting this path analysis model up as a SUR model allows for the simultaneous solution of the 
coefficients in closed form and will produce estimates of the standard errors that take the 
contemporaneous correlations into account.  
 Appendix C shows code for the SYSLIN, CALIS, and MIXED modules of SAS. In the PROC 
SYSLIN code the FIML option produces the Full Information Maximum Likelihood estimates. Other 
estimation methods include the SUR option, which produces the FGLS estimates, and the ITSUR 
(ITterative SUR) option, which produces the IFGLS estimates. 
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  Figure 1. Hypothetical Path Model 
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Table 1. Parameter Estimates from SAS PROC SYSLIN, CALIS, and MIXED. 
Coefficients for: y1  y2  y3  Correlat ions for Errors 
Parameter β1(y2) β1(y3) β1(X2) β2(X1) β2(X2) β3(X2) β3(X3) re12 re13 re23 
Values 0.25 0.35 0.20 0.35 0.20 0.40 0.25 0.10 0.20 0.10 
  SYSLIN 
    (FIML) 

0.2542 
(0.0299) 

0.3338 
(0.0421) 

0.2106 
(0.0215)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4041 
(0.0123)

0.2503 
(0.0123) 

NA NA NA 

  CALIS  
    (ML) 

0.2542 
(0.0299) 

0.3338 
(0.0421) 

0.2106 
(0.0215)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4041 
(0.0123)

0.2503 
(0.0123) 

0.0989 0.2135 0.1048

  MIXED 
    (ML) 

0.2542 
(0.0106) 

0.3338 
(0.0112) 

0.2106 
(0.0116)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4041 
(0.0123)

0.2503 
(0.0121) 

0.0989 0.2135 0.1048

  SYSLIN 
    (SUR) 

0.2980 
(0.0106) 

0.4803 
(0.0112) 

0.1324 
(0.0114)

0.3604 
(0.0131)

0.1971 
(0.0132)

0.4040 
(0.0123)

0.2511 
(0.0123) 

0.0146 0.0176 0.1047

  SYSLIN 
    (ITSUR) 

0.2521 
(0.0106) 

0.3495 
(0.0112) 

0.2043 
(0.0116)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4040 
(0.0123)

0.2511 
(0.0121) 

0.0998 0.1943 0.1048

Note: Standard Errors are in parentheses under the parameter estimates. 
 

 Another approach to solving the parameter estimates is to set the equations up as a multivariate (or 
SUR in this case) linear mixed model (LMM) and use SAS PROC MIXED. However, multivariate LMMs 
have received scant treatment in the literature. Reinsel (1984) derived closed-form estimates with 
completely observed data and balanced designs. More recently, Shah, Laird, and Schoenfeld (1997) 
extended the EM-type algorithm of Laird and Ware (1982) to a bivariate (p = 2) setting. In econometric 
terminology, their model is analogous to SUR. Schafer and Yucel (2002) note that the added generality of 
the SUR model comes at a high cost, making the resulting algorithms impractical for more than a few 
response variables. Thus, it may be possible to recast the multivariate model as a univariate one by 
stacking the columns of yj and applying SAS PROC MIXED with a user-specified covariance structure 
(see Appendix B for the code to stack the data). In most applications, however, this approach quickly 
becomes impractical. Examples for only p = 2 response variables with complete data (Shah et al., 1997) 
and incomplete data (Verbeke & Molenberghs, 2000) require complicated SAS macros. As the number of 
variables and number of individuals per cluster grows, the dimension of the response vector increases 
rapidly, and usage of SAS PROC MIXED can become practically impossible.  
  Fortunately, Park (1993) showed that the ML and IFGLS estimators are mathematically equivalent. 
As can be seen in Table 1 the estimates from PROC MIXED with an ML estimator and PROC CALIS 
with an ML estimator produce identical parameter estimates but slightly different standard errors. The 
results from PROC SYSLIN with the ITSUR option (IFGLS estimator) are virtually identical to those 
from PROC MIXED. PROC CALIS with an ML estimator and PROC SYSLIN with the FIML option 
produce identical parameter estimates and standard errors, but PROC SYSLIN does not report the 
correlation among the regression equations (error terms for the y variables). The SUR (FGLS) option 
gives similar results but the solution has not been iterated as in the ITSUR (IFGLS) option. A full-scale 
simulation study would be necessary to determine which approach would provide the most accurate and 
valid results. A researcher interested in conducting a simulation study could compare the bias in the 
coefficients and standard errors of the correctly specified regression (9) and SUR (10) models and the 
results from structural equation modeling software (e.g. SAS PROC CALIS). One could also assess 
power and Type I error of correctly specified and misspecified models. For example, on could analyze a 
model that incorrectly assumes a direct path from x1 to y1 and then investigate the Type I error rates 
produced by the different analytic approaches. Furthermore, one could compare the statistical properties 
of different estimation procedures under any of these circumstances.It would seem, however, that SAS 
PROC MIXED, although viable, may be inefficient due to computational demands. 
 

Applications  
 There many situations in educational and behavioral research in which multiple dependent variables 
are of interest. Oftentimes these variables may take the pattern of path analytic model, but there are many 
other cases where they do not. However, it is commonplace for educational researchers to conduct 
separate analyses for multiple dependent variables even though they are likely to be correlated and have 
similar although not identical design matrices. For example, researchers in counseling often have multiple 
outcomes (measure of symptoms, coping, etc.) that are assumed to have some of the same predictors but 
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to also have predictors that are unique to each measure. This is a situation that calls for a SUR model; 
however, a search of ERIC and PSYCHINFO located 11 applications of SUR models despite the 
enormous number of articles that analyze multiple dependent variables (see Appendix A). SUR models 
are underutilized and should be give more consideration as an analytic technique. The issue begins with 
education, and thus, we as statistics educators should devote more time to covering SUR models as a 
flexible analytic method in our multivariate analyses courses.  
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Appendix B 
(SAS/IML Code to Generate Data for Figure 1) 

proc iml; 
N=5000;** sample Size **; 
r_e12=0.10;r_e13=0.20;r_e23=0.10;** Correlation among Error terms **; 
Rey=(1||r_e12||r_e13)//(r_e12||1||r_e23)//(r_e13||r_e23||1); 
r_x12=0.30;r_x13=0.25;r_x23=0.15;** Correlation among Exogeneous Variables **; 
Rxx=(1||r_x12||r_x13)//(r_x12||1||r_x23)//(r_x13||r_x23||1); 
b1_y2=0.25;b1_y3=.35;********** Path Coefficients for Y1 **; 
b1_x2=0.20;******************** Path Coefficients for Y1 **; 
b2_x1=0.35;b2_x2=0.20;b2_x3=0;* Path Coefficients for Y2 **; 
b3_x1=0;b3_x2=0.40;b3_x3=0.25;* Path Coefficients for Y3 **; 
R2_y3=(b3_x1||b3_x2||b3_x3)*Rxx*((b3_x1||b3_x2||b3_x3)`); 
R2_y2=(b2_x1||b2_x2||b2_x3)*Rxx*((b2_x1||b2_x2||b2_x3)`); 
Rxxe=(Rxx||(j((nrow(Rxx)),1,0)))//(((j(1,(nrow(Rxx)),0)))||1); 
vecre23=(0||0||0||r_e23);Rxxe=Rxxe//vecre23;Rxxe=Rxxe||((vecre23`)//1); 
R_y23=(b2_x1||b2_x2||b2_x3||((1-R2_y2)##.5)||0) 
*Rxxe*((b3_x1||b3_x2||b3_x3||0||((1-R2_y3)##.5))`); 
R_y2x2=(b2_x1||b2_x2||b2_x3)*Rxx[,2]; 
R_y3x2=(b3_x1||b3_x2||b3_x3)*Rxx[,2]; 
Rxy1=(1||R_y23||R_y2x2)//(R_y23||1||R_y3x2)//(R_y2x2||R_y3x2||1); 
print 'Rxx Correlation matrix for Y1' ;print Rxy1; 
R2_y1=(b1_y2||b1_y3||b1_x2)*Rxy1*((b1_y2||b1_y3||b1_x2)`); 
Rxy1e1=1||(((1-R2_y2)##.5)#r_e12)||(((1-R2_y3)##.5)#r_e13); 
Rxy1e1=Rxy1e1//( (((1-R2_y2)##.5)#r_e12)||1||0); 
Rxy1e1=Rxy1e1//( (((1-R2_y3)##.5)#r_e13)||0||1); 
print 'Correlation Matirx for Y2-Y3-X2';print Rxy1e1; 
R_y1e1=(b1_y2||b1_y3||b1_x2)*Rxy1*((b1_y2||b1_y3||b1_x2)`); 
ry1e1=((((1-R2_y2)##.5)#r_e12)||(((1-R2_y3)##.5)#r_e13)||0) 
*((b1_y2||b1_y3||b1_x2)`);ry1e1=ry1e1/(R2_y1##.5); 
print 'Correlation of Y1-e1' ry1e1; 
print 'R-squares';print R2_y1 R2_y2 R2_y3 R_y23 R_y2x2 R_y3x2; 
seed=13;** Setting Seed gives the same Result everytime ; 
*** For Errors of Y *******************; 
lame=eigval(rey);*** LATENT ROOTS OF rey  *******************; 
lsqrte=diag(lame##0.5);** DIAGONAL MATRIX WITH THE SQUARE ROOT OF EIGENVALUES; 
eve=eigvec(rey);** EIGENVECTORS OF rey  *************************; 
fre=eve*lsqrte;** CREATE FACTOR SCORE MATRIX (fre)      ******; 
Ze= rannor(j(N,3,seed));Ze=fre*Ze`;Ze=Ze`; 
*** For X variables *******************; 
lamx=eigval(rxx);***  LATENT ROOTS OF Rxx  *******************; 
lsqrtx=diag(lamx##0.5);** DIAGONAL MATRIX WITH THE SQUARE ROOT OF EIGENVALUES; 
evx=eigvec(rxx);** EIGENVECTORS OF Rxx  *************************; 
frx=evx*lsqrtx;** CREATE FACTOR SCORE MATRIX (frx)   ******; 
Zx= rannor(j(N,3,0));Zx=frx*Zx`;Zx=Zx`; 
**********************************; 
e1=Ze[,1];e2=Ze[,2];e3=Ze[,3]; 
x1=Zx[,1];x2=Zx[,2];x3=Zx[,3]; 
y3=(b3_x1#x1)+(b3_x2#x2)+(b3_x3#x3)+(((1-R2_y3)##.5)#e3); 
y2=(b2_x1#x1)+(b2_x2#x2)+(b2_x3#x3)+(((1-R2_y2)##.5)#e2); 
qb=-2#(R2_y1##.5)#ry1e1;** Define the qb coefficient for Quadratic Equation *; 
m=(qb+(((qb##2)-(4#(R2_y1-1)))##.5))/2;* Solve positive root of Quad Eq. ****; 
print 'Coefficient for e1' m; 
y1=(b1_y2#y2)+(b1_y3#y3)+(b1_x2#x2)+(m#e1); 
dats=y1||y1a||y2||y3||x1||x2||x3||e1||e2||e3; 
varname={'y1'  'y2' 'y3' 'x1' 'x2' 'x3' 'e1' 'e2' 'e3'};  
create outs from dats [colname=varname];  
   append from dats; 
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Appendix C 
(SAS Code to Perform SUR Model and Path Analyses of Data from Figure 1) 

 
data outs;set outs;id=_n_;run; 
proc corr data=outs;run; 
proc standard data = outs out=surpath mean=0 std=1;var y1 y2 y3 x1 x2 x3;run; 
proc syslin data=surpath FIML; ** OTHER OPTIONS include SUR and ITSUR ***; 
endogenous  y1 y2 y3;          **             INSTEAD of FIML         ***; 
instruments x1 x2 x3; 
      y1: model y1 = y2 y3    x2    / noint stb; 
      y2: model y2 =       x1 x2    / noint stb; 
      y3: model y3 =          x2 x3 / noint stb;run; 
proc calis data=surpath method=ML; 
LINEQS   
      y3 = b3_x2 X2 + b3_x3 X3 + e_3, 
      y2 = b2_x1 X1 + b2_x2 X2 + e_2, 
      y1 = b1_y2 Y2 + b1_y3 Y3 + b1_x2 X2 + e_1; 
STD X1=v_x1, X2=v_x2, X3=v_x3, e_3=v_e3, e_2=v_e2, e_1=v_e1; 
COV e_1 e_2 = c_e12, e_1 e_3 = c_e13, e_2 e_3 = c_e23; run; 
data stack;set surpath; ** STACKING THE DATA for PROC MIXED   ******; 
do mod = 1 to 3; 
  if mod = 1 then do; 
   y=y1;b1_0=1;b1_y2=y2;b1_y3=y3;b1_x2=x2; 
        b2_0=0;b2_x1= 0;b2_x2= 0; 
        b3_0=0;b3_x2= 0;b3_x3= 0; 
   output; 
  end; 
  if mod = 2 then do; 
   y=y2;b1_0=0;b1_y2= 0;b1_y3= 0;b1_x2= 0; 
        b2_0=1;b2_x1=x1;b2_x2=x2; 
        b3_0=0;b3_x2= 0;b3_x3= 0; 
   output; 
  end; 
  if mod = 3 then do; 
   y=y3;b1_0=0;b1_y2= 0;b1_y3= 0;b1_x2= 0; 
        b2_0=0;b2_x1= 0;b2_x2= 0; 
        b3_0=1;b3_x2=x2;b3_x3=x3; 
   output; 
  end; 
end; 
run; 
proc mixed data=stack method=ML   ;class mod id; 
    model y =  b1_y2 b1_y3 b1_x2  
               b2_x1 b2_x2  
               b3_x2 b3_x3  /noint solution DDFM=KENWARDROGER   ; 
    repeated mod / type=un subject=id r rcorr;run; 
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Mallow’s Cp for Selecting Best  
Performing Logistic Regression Subsets 

Mary G. Lieberman         John D. Morris 
    Florida Atlantic University 

Mallow’s Cp is used herein to select maximally accurate subsets of predictor variables in a logistic 
regression.  Across a wide variety of data sets, an examination of the cross-validated prediction accuracy, 
posited as the ultimate criterion for model performance, contrasts the leave-one-out performance of 
Mallow’s Cp selections with the accuracy afforded by optimal subsets. Losses in accuracies ranged from 
no loss in several data sets up to a maximum of 10%. The performance of Cp selected subsets can be 
viewed as promising. It is posited that one should also consider parsimony and the richness of multiple 
optimal models. 

his study investigates the proposition by Hosmer and Lemeshow (2000) that Mallow’s Cp be used 
to select subsets of maximally accurate predictor variables in a logistic regression. As accurate 
cross-validated prediction accuracy is considered the ultimate criterion for prediction model 
performance, an examination, across a wide variety of data sets, of the leave-one-out performance 

of Mallow’s Cp selected subsets (in respect to the accuracy of the optimal subset) is examined. 
Multiple regression is so thoroughly entrenched in statistical methods that it hardly needs an introduction 
herein, and is, thus, an obvious modeling technique used to examine the predictive accuracy of subsets of 
variables. Among the techniques used for solving classification problems, logistic regression (LR) and 
predictive discriminant analysis (PDA) are two of the most popular (Yarnold, Hart & Soltysik, 1994). 
Unlike PDA, LR captures the probabilistic distribution embedded in a categorical outcome variable, 
avoids violations to the assumption of homogeneity of variance, and does not require strict multivariate 
normality. Therefore, when PDA assumptions are violated, we might expect greater cross-validated 
classification accuracy with LR than PDA. 
  Although several studies have compared the classification accuracy of LR and PDA, the results have 
been inconsistent. For example, some studies (Baron, 1991; Bayne, Beauchamp, Kane, & McCabe, 1983; 
Crawley, 1979) suggest that LR is more accurate than PDA for nonnormal data. However, several 
researchers (e.g., Cleary & Angel, 1984; Knoke, 1982; Krzanowski, 1975; Lieberman & Morris, 2003; 
Meshbane & Morris, 1996; Press & Wilson, 1978) found little or no difference in the accuracy of the two 
techniques with PDA often performing better than LR. Part of the reason these results are in dispute is 
that one may consider accuracy for all groups or separate-groups. As well, one may consider a cross-
validated index of accuracy or the accuracy of reclassifying the calibration sample; these studies are not 
consistent in respect to the criterion of accuracy used. Specifically, examination of cross-validation 
accuracy in LR studies is uncommon, and when done is usually of the most basic (and unstable) sort 
(hold-out sample). No commercial computer packages support more appropriate resampling cross-
validation methods (variously called PRESS, Lachenbruch U, leave-one-out, jackknife and the bootstrap). 
  Whichever method (LR or PDA) is selected, one may consider subsets of all possible variables for 
purposes or parsimony, or to increase cross-validation accuracy of the model (Morris & Meshbane, 
1995). The most usual method is to consider accuracy in classification of the sample upon which the 
model is created (internal) with the objective of parsimony. That is, realizing that some accuracy will be 
lost in reducing the number of predictor variables in classifying the calibration sample, but compromising 
that loss with the gain in parsimony by the reduction in size of the prediction model. However, as in 
multiple regression, an increase in cross-validated prediction accuracy (the most appropriate criterion) is 
almost always available using a model composed of fewer than all available variables. Thus one may gain 
both parsimony and some degree of explanatory power for the model. In addition, although traditional 
methods considering the piecemeal change in performance of models in respect to prediction within the 
calibration sample have often been used (forward, backward, stepwise, or variants thereof), they are 
neither optimal, nor unique, and are now generally in disfavor. 
  In the case of PDA an examination of the cross-validation accuracy of all 2p-1 (where p is the number 
of predictor variables) subsets of variables has been recommended and utilized (Huberty, 1994; Huberty 
& Olejnik, 2006; Morris & Meshbane, 1995). In this case the method of cross-validation is the leave-one-
out method. In the leave-one-out procedure (Huberty, 1994, p. 88; Lachenbruch & Mickey, 1968; 
Mosteller & Tukey, 1968) a subject is classified by applying the rule derived from all subjects except the 

T 
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one being classified. This process is repeated round-robin for each subject, with a count of the overall 
classification accuracy used to estimate the cross-validated accuracy. Clearly the same round-robin 
procedure can be used to estimate either relative or absolute accuracy in the use of multiple regression 
and has appeared in that context, with perhaps the earliest reference due to Gollob (1967). In a system 
intended to select optimal multiple regression predictor variable subsets, Allen (1971) coined the 
procedure PRESS, and he appears to be the source most often cited in the multiple regression literature. 
  In the case of PDA (and regression) a matrix identity due to Bartlett (1951) allows the task of N-1 
discriminant analyses to be accomplished with far less computational labor that would otherwise be 
necessary. However, this mathematical tool is irrelevant to the iterative method of LR optimization, thus 
N-1 LR optimizations must be completed for each of 2p-1 subsets of predictor variables. 
Unlike most LR studies that consider calibration sample statistics as the criterion for model fit (e.g., the 
Cox & Snell, or Nagelkerke R2), the criterion for model accuracy is construed in this study, as is typically 
done in PDA, as classification accuracy - that is, the proportion of correct leave-one-out cross-validated 
classifications (hit-rate) for the total sample and each separate group. Thus for a two-group problem, we 
order the accuracy of our 2p-1 candidate LR equations according to three different (total sample and each 
group) cross-validated classification accuracy criteria. 
  An alternative logistic regression variable selection strategy has been proposed by Hosmer and 
Lemeshow (2000) using a technique due to C. L. Mallows (1973). Although Mallows’ technique was 
intended for OLS regression variable subset selection, with attendant consideration of its merit in that 
context (e.g., Schumacker, 1994), the direct suggestion of Hosmer and Lemeshow of its use in variable 
subset selection in logistic regression is directly examined herein. 
 

Methods 
 Analyses from 19 two-group classification problems from Morris and Huberty (1987) were used in 
this comparison. Although not purported to represent all potential data structures, these data sets have 
been used in several classification studies as representing a wide variety of number of predictor variables, 
group separation, and covariance structures.  
  For a variety of data sets the leave-one-out cross-validated classification accuracies for the Mallows 
Cp selected variable subset was compared to that derived from the subset manifesting maximum 
classification accuracy. The difference between the maximum hit-rate and number of predictors for the 
best subset and that selected by Mallows Cp was compared. The criterion of model accuracy in this study 
is the proportion of correct leave-one-out cross validated classifications (hit rate) for the total sample and 
each separate group. 
 

Results & Discussion 
 Table 1 shows the data source, number of predictors for the full model, hit-rate for the full model, 
number of predictors in the best subset (s), and maximum hit-rate in the first five columns from left to 
right. For Mallows Cp, the final three columns show the number of predictors in the Cp selected subset, 
the hit-rate for that subset, and the percentage loss in hit-rate from the best subset chosen from the 
maximum hit-rate. 
 In all cases selection of the best performing subset (of the 2p-1 possibilities) offers a reduction in the 
number of predictor variables, often by more than half, thus parsimony is well served. In the first five data 
sets there is no loss in hit-rate accuracy and equal parsimony using Mallows Cp as with respect to all 
possible subsets. In data sets numbered seven and fifteen there is no loss in hit-rate accuracy, although the 
most parsimonious subset is not selected by Cp. In the remaining data sets, losses in accuracy incurred by 
use of the Cp strategy ranged from .97% – 10.60%.  
 In several cases one can have enhanced parsimony, hit-rate accuracy close to maximum, and reduced 
computational intensity using Mallows Cp as the predictor variable selection procedure. The performance 
of Mallows Cp could be viewed as promising.  
 Another use of the consideration of the accuracy of all possible subsets involves the treatment of 
missing data.  Table 2 demonstrates the potential use of several alternative “best” models.  These data 
represent the top twenty best subsets of variables in an 8th grade dropout profiling study including  
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Table 1. Data set, # variables (p), Hit rate for all, Maximum, and Cp selected and % Loss. 
   Hit-rate for p # Predictors in Maximum Cp Cp %  

# Data Set Source p Predictors Best Subset(s) Hit-rate # Predictors Hit-Rate Loss 
1 Rulon Grps 1 & 2 4 0.803 3 .815 3 .815 0.00a 
2 Rulon Grps 1 & 3 4 0.914 3 .934 3 .934 0.00 
3 Rulon Gps 2 & 3 4 0.824 3 .830 3 .830 0.00 
4 Block - Grps 1 & 2 4 0.692 1,2 .718 1 .718 0.00 
5 Block - Grps 1 & 3 4 0.620 3,4 .620 3 .620 0.00 
6 Block - Grps 1 & 4 4 0.577 1,2 .628 2 .615 0.02 
7 Block - Grps 2 & 3 4 0.566 1,2 .605 2 .605 0.00 
8 Block - Grps 2 & 4 4 0.587 2 .627 1 .587 6.37 
9 Block - Grps 3 & 4 4 0.684 3 .697 1 .632 9.32 

10 Demographics 8 0.591 4 .620 3 .609 1.77 
11 Dropout from 4th 10 0.660 4 .787 4 .681 10.60
12 Dropout from 8th 11 0.725 3 .782 4 .746 4.60 
13 Fitness 10 0.591 4 .620 4 .588 5.16 
14 Warncke-Grps 1 & 3 10 0.600 4 .667 3 .619 7.19 
15 Bisbey 1& 2 13 0.879 6,7,8,9,10 .914 9 .914 0.00 
16 Bisbey 2& 3 13 0.856 5,6,7 .924 3 .915 .97 
17 Talent - Grps 1 & 3 14 0.621 5 .733 2 .707 3.54 
18 Talent - Grps 3 & 5 14 0.787 6,7,8,9 .858 7 .811 5.47 
19 Talent - Grps 1 & 5 14 0.740 5 .797 7 .751 5.77 

a Bold denotes equal performance and parsimony. 
 

Table 2. Ranked 20 best (of 255) performing subsets, and total model. 
HIT-
RATE SCHOOLS8 REPEATS8 READING8 MATH8 LANG8 SCIENCE8 SOCST8 DSFS8 

0.753 √   √  √  √ 
0.747 √   √    √ 
0.747 √       √ 
0.747 √    √ √ √ √ 
0.747 √   √ √ √ √ √ 
0.741 √  √  √  √ √ 
0.741 √   √  √ √ √ 
0.735 √  √  √ √  √ 
0.735 √   √   √ √ 
0.735 √ √ √    √  
0.735 √   √ √  √ √ 
0.735 √     √ √ √ 
0.735 √  √ √ √   √ 
0.735 √ √      √ 
0.735 √ √ √      
0.728 √ √    √ √  
0.728 √     √  √ 
0.728 √ √    √  √ 
0.728 √ √ √   √  √ 
0.728 √ √    √   

Total Model        
0.679 √ √ √ √ √ √ √ √ 
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number of schools attended by the 8th grade, standardized test scores, and the number of D’s and F’s 
obtained during the 8th grade year. Depending on which variables are missing for a subject, with 
knowledge of the best performing subsets, it may be possible to select a superior subset appropriate for 
data that a subject has available.  An advantage to looking at all possible subsets is the allowance for the 
elimination of variables for which numbers of subjects are missing data.  
 The table shows a check mark if a variable appears in each of the top twenty models (out of two 
hundred and fifty five). Considering column-wise entries, a frequent notion of variable importance seems 
appropriate. When parsimony and accuracy are considerations for model fit, it is clear from these data 
that, for example, schools attended by 8th grade is a ‘don’t leave home without it’ variable, as it appears 
in all of the top twenty models. Similarly, Number of D’s and F’s obtained by eighth grade appears in 
most models as does number of science courses taken by eighth grade. The other variables, although 
desirable, may demonstrate little adequacy, in an additive sense, for inclusion in a prediction model. 
Therefore, this view of variable importance is such that since some variables appear in all or most models, 
one might suggest this as a defensible measure of variable importance. 
 In this particular case, since current emphases on standardized testing, and other indices of 
achievement, tend to focus on predicting success and profiling students at risk, while lessening the drain 
on time consumption and fiscal resources, such a measure of variable importance may be considered a 
vital aspect of any prediction formula. 
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Regression Discontinuity Models  
and the Variance Inflation Factor 

Randall E. Schumacker 
University of Alabama 

The regression-discontinuity design (RD) is a powerful methodological alternative to the quasi-
experimental design when conducting evaluations. The RD design involves testing post-test differences 
between the experimental and comparison group regression lines at the cutoff point for statistical 
significance.  Regression discontinuity models can involve linear, curvilinear, and interaction terms in the 
model specification, which are not orthogonally specified.  Consequently, a variance inflation problem 
may exist when using regression discontinuity models in evaluation designs.  This study investigated the 
impact of variance inflation on parameters specified in full and restricted regression discontinuity models.  
It is recommended that VIF be considered when including interaction effects in RD designs. 

he basic RD Design is a two-group pretest-posttest model and is depicted as follows: 
 

             C O X O 
          C  O  O 

 

 The RD design looks similar to the Non-Equivalent Group design, which uses analysis of covariance, 
but assumptions and advantages are much different.  The RD design does not have subject selection bias 
(pre-defined group membership) rather uses a pre-test measure to assign treatment or non-treatment 
status.  The basic RD model would have an intercept term, pre-test measure, and dummy-coded group 
assignment variable regressed on a post-test measure.  The pre-test measure does not have to be the same 
as the post-test measure.   
  There are five central assumptions when performing an RD analysis. These are: 
 

   1. The cutoff value must be absolute without exception. A subject selection bias is introduced 
and the treatment effect is biased if incorrect assignment to groups based on the cutoff value occurred 
(unless it is known to be random). 
   2. The pre-post distribution is a polynomial function. If the pre-post relationship is logarithmic, 
exponential or some other function, the model is misspecified and the treatment effect is biased. The data 
can be transformed to create a polynomial distribution prior to analysis to yield appropriate model 
specification. 
   3. There must be a sufficient number of pretest values in the comparison group to estimate the 
pre-post regression line.  
   4. The experimental and comparison groups must be formed from a single continuous pretest 
distribution with the division between groups determined by the cutoff value.  
   5. The treatment or program intervention must be delivered to all subjects, i.e., all receive the 
same reading program, amount of training, etc.  
 

Regression Discontinuity Model Specification 
 The major concern when analyzing data from the RD design is whether the model or regression 
equation is correctly specified.   If the regression equation or model does not reflect the data distribution, 
then biased estimates of the treatment effect will occur. For example, if the true pre-post relationship is 
curvilinear, but the regression equation only modeled linear regression effects, the treatment effects 
would be biased. Consequently, it is a good idea to visually inspect the pre-post scatter plot to see what 
type of relationship exists.   
 Three types of model specifications are possible: exactly specified, over specified, and under 
specified RD models.   An exactly specified model has an equation that fits the “true” data.   So if the 
“true” data is linear then a simple straight-line pre-post relationship with a treatment effect would yield 
unbiased treatment effects.   The RD equation would include a term for the posttest Y, the pretest X, and 
the dummy-coded treatment variable Z with no unnecessary terms. When we exactly specify the true 
model, we get unbiased and efficient estimates of the treatment effect.  If the RD equation is over 
specified it includes additional parameter estimates that are not required, i.e. interaction or curvilinear 
coefficients, and treatment effect would be inefficient.  If the RD equation is under specified it leaves out 
important parameter estimates and the treatment effect would be biased. 

T 
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RD Modeling Steps 
 The basic steps to conducting RD analyses would as follows: 
 

   1. Subtract the cut-off score from the pretest score (Xpre – Xcut). 
   2. Visually examine the pre-post scatter plot for type of data relationship.  
    3. Determine if any higher-order polynomial terms or interactions are present. 
   4. Estimate the “full” RD regression equation. 
   5. Modify the RD equation by dropping individual non-significant terms. 
 

 The “full” RD regression equation with subsequent “modified” or “restricted” regression models 
permit one to statistically determine the best fitting model for estimating treatment effects.   A “full” 
regression discontinuity model could be as outlined below. 
 

        2 2
0 1 2 3 4 5i i i i i i i i iy Z X X Z X X Z eβ β β β β β= + + + + + +  

 

The RD regression equation terms are defined as: 
 

     yi = post test score outcome for ith subject 
  β0 = regression coefficient for intercept 
  β1 = linear pre test regression coefficient 
  β2 = mean post test different for treatment group  
  β3 = linear interaction regression coefficient between pre and group  
  β4 = quadratic regression coefficient for pretest 
  β5 = quadratic interaction regression coefficient for pre test and group  
  Xi = transformed pre test score for ith subject 
  Zi =  group assignment based on cut off score (0 = comparison, 1 = treatment) 
  ei  = residual score for ith subject. 
 

 
Variance Inflation Factor 
 When a full RD regression model is specified, multicollinearity amongst the terms is possible. 
Multicollinearity can inflate the variance amongst the variables in the model. These inflated variances are 
problematic in regression because some variables add very little or even no new and independent 
information to the model (Belsley, Kuh & Welsch, 1980).  Although Schroeder, Sjoquist and Stephen 
(1986) assert that there is no statistical test that can determine whether or not multicollinearity is a 
problem, there are ways for detecting multicollinearity (Berry and Feldman, 1985).   
 A recommended approach is to use the Variance Inflation Factor (VIF). VIF measures the impact of 
multicollinearity among the X's in a regression model on the precision of estimation.  It expresses the 
degree to which multicollinearity amongst the predictors degrades the precision of an estimate. VIF is a 
statistic used to measured possible multicollinearity amongst the predictor or explanatory variables. VIF 
is computed as 1/(1-R2) for each of the k–1 independent variable equations. For example, given 4 
independent predictor variables, the independent regression equations are formed by using each k-1 
independent variable as the dependent variable:  
  

X1 = β0 + β1X2 + β2X3 + β3X4 + e1 
X2 = β0 + β1X1 + β2X3 + β3X4 + e2 
X3 = β0 + β1X1 + β2X2 + β3X3 + e3 
 
Each independent variable model will return an R2 value and VIF value.  The term to exclude in the 
model is then based on the value of VIF. If Xj is highly correlated with the remaining predictors, its 
variance inflation factor will be very large. A general rule is that the VIF should not exceed 10 (Belsley, 
Kuh, & Welsch, 1980). When Xj is orthogonal to the remaining predictors, its variance inflation factor 
will be 1. 
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Methods 

Data Simulation 
 The appendix contains an S-PLUS program that generated the simulated data for the study.  The 
rnorm function in S-PLUS generated 100 random normal data points and output nine variables listed in 
the data command [data <-c(y,x,z,gain,ypost,xc,xz,xsq,xsqz)]. The post test scores (Y) and pre test scores 
(X) were created by adding residual error (ey or ex) to this random normal variable (true). Group 
assignment (Z) was determined based on subtracting a cut score of 20 from the pre test score (1–
treatment, 0–comparison). This 10 point treatment gain was added to the post test score (Y). Optional 
print and write statements are included to either view or save the data in a file. 
 
Regression Discontinuity Models 
 The least squares regression function, lm, was used to run the RD analyses. The S-Plus program 
includes separate lm regression functions for several regression equations.  The summary command 
produced the regression output.  The regression discontinuity models begin with a full model followed by 
a sequence of restricted models.  The full regression model and the sequence of restricted models are 
listed below: 
 

   1.  Full model:        2 2
0 1 2 3 4 5i i i i i i i i iy Z X X Z X X Z eβ β β β β β= + + + + + +  

   2.  No Quadratic Interaction:   2
0 1 2 3 4i i i i i i iy Z X X Z X eβ β β β β= + + + + +  

   3.  No Quadratic Terms:   0 1 2 3i i i i i iy Z X X Z eβ β β β= + + + +  
   4.  Linear Model:    0 1 2i i i iy Z X eβ β β= + + +  
   5.  No Pre-Test Model:        0 1i i iy Z eβ β= + +  
 

Variance Inflation Factor 
 The variance inflation factor is computed in several popular statistics packages (S-PLUS, SPSS, and 
SAS).  In this study, the data simulation, regression function, and variance inflation function were all 
written in S-PLUS.  The simulated data generated using the S-PLUS program in the appendix was created 
and used by the S-PLUS regression and variance inflation functions.  A variance inflation function, vif, 
was created and used with the summary function following the lm regression function for each of the 
regression equations.  The S-PLUS variables were labeled as follows in the full regression equation:  
ypost = xc + z + xz + xsq + xsqz. 
 

Results 
 The descriptive statistics for the RD variables are in Table 1. The intercorrelations amongst the terms 
in the full RD regression  model equation are in Table 2. The RD regression discontinuity results with the 
VIF values for the full model are in Table 3 for the dependent variable ypost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Descriptive Statistics (N=100) 
  Mean Std. Deviation
ypost 25.5852 5.45566
xc .0899 1.35059
z .55 .500
xz 11.5740 10.53759
xsq 405.4103 53.68331
xsqz 243.8876 223.08339

 

Table 2. Pearson Correlation Matrix of Full RD Regression Model 
  ypost xc z xz Xsq xsqz 
ypost 1.000 .821 .971 .971 .821 .969
xc .821 1.000 .785 .807 .999 .827
z .971 .785 1.000 .999 .787 .994
xz .971 .807 .999 1.000 .811 .998
xsq .821 .999 .787 .811 1.000 .833
xsqz .969 .827 .994 .998 .833 1.000
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Table 3. Full Regression Model and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) -9.772 57.928 -.168 .866    
  xc -1.909 5.298 -.360 .719 .000 3467.21
  z -87.861 108.980 -.806 .422 .001 201043.10
 xz 9.978 10.576 .943 .347  841002.30
  xsq .076 .145 .526 .600 .000 4131.94
  xsqz -.257 .258 -.993 .323 .001 225640.50

 
Table 4.  Restricted Regression Model (no xsqz) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 22.580 47.898 .471 .638    
  xc 1.048 4.382 .239 .812 .000 2372.36
  z 19.149 16.345 1.172 .244 .000 4523.18
 xz -.493 .821 -.601 .549 .000 5067.20
  xsq -.005 .120 -.039 .969 .000 2825.33

 
Table 5.  Restricted Regression Model (no xsq) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 20.703 .279 74.128 .000    
  xc .876 .199 4.401 .000 .202 4.95
  z 19.748 5.807 3.401 .001 .002 576.84
  xz -.523 .289 -1.810 .073 .002 635.16

 
Table 6.  Restricted Regression Model (no xz) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 20.436 .240 85.160 .000    
  xc .628 .146 4.300 .000 .384 2.60
  z 9.259 .395 23.471 .000 .384 2.60

 
Table 7.  Restricted Regression Model (no z) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 25.287 .314 80.643 .000    
  xc 3.317 .233 14.249 .000 1.000 1.00

 
Summary & Conclusion 

 The requirement of a correctly specified RD regression model is linked to multicollinearity of the 
independent variables in the equation. Table 2 suggests that multicollinearity is present amongst the 
independent predictors in the RD regression equation, i.e. β1 = linear pre test regression coefficient (xc); 
β2 = mean post test different for treatment group (z); β3 = linear interaction regression coefficient between 
pre and group (xz); β4 = quadratic regression coefficient for pretest (xsq); and β5 = quadratic interaction 
regression coefficient for pre test and group (xsqz).  Table 3 indicates that VIF is well beyond the 
acceptable level of 10 for each of the independent predictor variables in the model.  Similar results were 
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found for the set of independent predictor variables in Table 4, especially note the non-significant 
treatment effect (z) with an extreme VIF factor. Table 5 indicated that the linear pre test regression 
coefficient (xc) was acceptable, however, the other independent predictors VIF were too high, i.e., the 
treatment effect is now significant, but has an extreme VIF factor.  In Table 6, a two predictor model with 
linear pre test and treatment group had both a significant t-test value (t = 23.471, p = .0001) and an 
acceptable VIF factor; thus an acceptable RD model.  Table 7, indicated a baseline RD model with linear 
pre test scores and an expected corresponding VIF = 1.0. 
 The regression discontinuity approach to analyzing evaluation data is more robust to violations than 
the corresponding quasi-experimental design that is commonly used in state and federal grant data 
analysis.  However, model misspecification can result in erroneous conclusions regarding program gains.  
Correspondingly, if the variance inflation factor is not considered along with model specification, then 
multicollinearity amongst the predictor variables can inflate the variance leading to misinterpretation of 
the R-squared values and treatment gain.  A visual presentation of overlap by the independent variables is 
also possible (Stine, 1995).  It is therefore recommended that model specification along with the variance 
inflation factor be checked when using regression discontinuity. 
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APPENDIX 

S-PLUS Program 
# 
# Data for Normal Distribution  
# Pretest X cutoff score is 20 (mean X) 
# Program Gain is 10 
# Mean Posttest Y is 30 
# XC is Pre test minus cut score to center at 0 point 
# ex and ey add residual error to true score 
# 
 
seed <-1357 
set.seed(seed)              # same seed value so results can be reproduced 
 
true <- rnorm(100,20,1) 
ex   <- rnorm(100,0,1) 
ey   <- rnorm(100,0,1) 
 
x <- true + ex              # create y and x scores with residual error 
y <- true + ey 
 
z <- ifelse(x >= 20, 1, 0)  # assign treatment group using pretest cutoff score 
 
gain <- (10 * z)            # add 10 point to treatment group (z = 1) 
 
ypost <- y + gain           # add 10 points to post test score 
 
xc<- (x-20)                 # subtract cut score from pre test 
 
xz<-x*z                     # linear interaction pre test and group   
 
xsq<-x*x                    # quadratic interaction 
 
xsqz<-xsq*z                 # quadratic interaction pre test and group  
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data<-c(y,x,z,gain,ypost,xc,xz,xsq,xsqz) 
 
RD.data<-matrix(data,nrow=100,byrow=F) 
dimnames(RD.data) 
dim(RD.data)  #100 rows 9 columns 
variables<-c("y","x","z","gain","ypost","xc","xz","xsq","xsqz") 
dimnames(RD.data)<-list(NULL,variables) 
 
#print(RD.data)  
#save generated data in ASCII file 
write.table(RD.data, file = "RD.txt", sep=",", append=F) 
 
# 
#Variance Inflation Factor Function  
# 
 
vif <- function(object, ...) 
UseMethod("vif") 
 
vif.default <- function(object, ...) 
stop("No default method for vif.  Sorry.") 
 
vif.lm <- function(object, ...)  
 
{        
  V <- summary(object)$cov.unscaled 
  Vi <- crossprod(model.matrix(object)) 
        nam <- names(coef(object)) 
  if(k <- match("(Intercept)", nam, nomatch = F)) { 
                v1 <- diag(V)[-k] 
                v2 <- (diag(Vi)[-k] - Vi[k, -k]^2/Vi[k,k]) 
                nam <- nam[-k] 
        } else { 
                v1 <- diag(V) 
                v2 <- diag(Vi) 
                warning("No intercept term detected.  Results may surprise.") 
        } 
        structure(v1*v2, names = nam) 
} 
 
# 
#RD Regression models with Variance Inflation Factor 
# 
#Sequence of RD equations 
# 
 
fit <- lm (ypost~xc + z + xz + xsq + xsqz) 
summary(fit) 
vif(fit) 
 
fit <- lm (ypost~xc + z + xz + xsq) 
summary(fit) 
vif(fit)        
 
fit <- lm (ypost~xc + z + xz) 
summary(fit) 
vif(fit) 
 
fit <- lm (ypost~xc + z) 
summary(fit) 
vif(fit) 
 
fit <- lm (ypost~xc) 
summary(fit) 
vif(fit) 
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Evaluation of the Use of Standardized Weights for  
Interpreting Results from a Descriptive Discriminant Analysis 

W. Holmes Finch        Teresa Laking 
Ball State University 

When conducting descriptive discriminant analysis, many researchers make use of structure coefficients, 
the correlation between individual predictor variables and a discriminant function.  However, previous 
research has demonstrated that these statistics may lead to an over-identification of variables important 
for group separation. An alternative to structure coefficients is the standardized discriminant function 
weights for the individual variables, which can be used to order variables in importance. Relatively little 
empirical research has been done examining how well they work in this regard. This study examined the 
utility of standardized weights for interpreting a discriminant function. Results suggest that the 
standardized weights may be a useful tool for ordering predictor variables and characterizing significant 
discriminant functions when the assumptions of normality and homogeneity of covariance matrices are 
met. When these assumptions are violated, the ability of the standardized weights to correctly order 
predictor variables was somewhat degraded. 

iscriminant Analysis (DA) is a commonly used statistical procedure that allows for both a 
multivariate description of group differences and the prediction of group membership for 
individual observations based upon a set of predictor variables. In the first context, typically 
referred to as Descriptive Discriminant Analysis (DDA), the focus of research is on 

characterizing differences between two or more groups by identifying which variables among a set of 
predictors most distinguishes among the groups. In contrast, the goal of Predictive Discriminant Analysis 
(PDA) is to use the predictors as a set for identifying which of the groups an individual is most likely to 
belong to. While there may be some interest in assessing the relative contribution of the variables to 
group separation when conducting a PDA, typically the researcher focuses on the accuracy of group 
prediction and its potential utility for classifying individuals in the future. It should be noted that while 
the goals of these two types of DA are different, the underlying mathematical model upon which they are 
built is the same. This model, which is discussed below, is based on the estimation of linear combinations 
of the predictors that provide maximal group separation for the sample at hand. The specific focus of the 
current study is on the utility of the standardized weights in DDA for correctly ordering a set of predictor 
variables in terms of their relative contribution to group separation in the form of statistically significant 
linear combinations. The organization of the manuscript is as follows:  First is a brief description of DDA 
and the standardized weights used to create the linear combinations. Following this is a discussion of how 
these standardized weights can be used for ordering variables in terms of their importance in 
discriminating between groups. Finally, the details of the current simulation study are discussed, followed 
by the results and discussion of their implications. 
  As mentioned above, regardless of whether the application involves description or prediction, DA 
identifies one or more linear combination of the predictor variables that provide maximum group 
separation. The number of these linear discriminant functions is equal to the smaller of the number of 
predictor variables or the number of groups – 1. The relative ability of these functions to distinguish 
between the groups declines from the first through the second and so on. In addition, it should be noted 
that although it is mathematically possible to have multiple discriminant functions, in practice not all of 
them need be statistically significant. In other words, some of these functions may not differentiate the 
groups in a meaningful way. Thus, the first step in interpretation of a DDA analysis is the examination of 
test statistics (e.g., Wilks’ Lambda) indicating which of the functions are statistically significant. Those 
that are found to be significant can then be interpreted using tools described below. For a more thorough 
discussion of the various test statistics available for use in such situations, the reader is encouraged to 
refer to multivariate texts such as Tabachnick and Fidell (2001).  
  The actual form of the discriminant function appears in equation (1). 
 
                          1 1 2 2 ...i i i ij jD d z d z d z= + + +   ;           (1) 
where Di = the standardized score for an individual on discriminant function i, dij = the standardized 
discriminant function coefficient for function i and variable j, and zj = the value of the standardized 
predictor variable j. 

D 
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  The discriminant weights, dij, are determined so as to provide the maximum separation possible on the 
function value, Di among the groups in question(Tabachnick & Fidell, 2001). Weights are estimated for 
each of the idiscriminant functions separately, and a value of Di is obtained for each function and each 
individual in the sample. The means of these Di are known as group centroids, and their relative proximity 
can be taken as an indication of the multivariate separation among the groups in question (Huberty & 
Olejnik, 2006). 
 The standardized discrimination coefficients take the form: 

                    
*2

ijijj dds =             (2) 

where 
*
ij d = the unstandardized discriminant coefficient and 

2
j s = the variance for variable j.        

  In turn the unstandardizeddiscriminant function coefficients are estimated by solving equation (3) 
below for d

*
.  

                                   (E
-1

H – λ1I)d
*
 = 0          (3)  

where E = the Error Sums of Squares and Cross Products matrix, H = the Hypothesis Sums of Squares 
and Cross Products Matrix, λ1 = the maximum eigenvalue for the product of E

-1
H, I = an Identity matrix 

and d
*
 = a vector of unstandardized discriminant coefficients.  

These fundamental equations for DA rely upon three assumptions regarding the data in the population:  1) 
The predictor variables are normally distributed; 2) The covariance matrices for the groups are 
homogeneous; and 3) The residuals for individual subjects are independent of one another (Tabachnick & 
Fidell, 2001). There has been some research published regarding the impact on PDA of violating these 
assumptions (Finch & Schneider, 2005; Hess, Olejnik & Huberty, 2001; Meshbane & Morris, 1996: 
McLachlan, 1992). Taken together, results of these prior studies suggest that the accuracy of PDA in 
terms of correctly placing individuals in the appropriate group was negatively impacted by violations of 
the assumptions of normality and homogeneity of covariance matrices. Furthermore, the most negative 
impact was evident when both assumptions were violated simultaneously (Finch & Schneider, 2005). 
While these studies focused on the performance of PDA, the fact that the underlying model is essentially 
the same for DDA makes them relevant to the current work. Therefore, one goal of this study is to 
ascertain the extent to which violations of the normality and homogeneity of covariance matrices 
assumptions impact the standardized discriminant weights. 
  Those discriminant functions that have been identified as statistically significant, can be viewed as 
effectively differentiating the groups in question. Given such a significant outcome, a researcher would 
very likely want to gain an understanding as to the nature of such differences; i.e. what do each of the 
predictor variables contribute to the overall discriminant function that has been shown to differentiate the 
groups (Rencher, 1995)?  There are multiple approaches that have been suggested for use in 
characterizing the functions based upon the contribution of the individual predictor variables, with the 
two most common being interpretation of the standardized discriminant coefficients and interpretation of 
structure coefficients (SC’s) (Huberty&Olejnik, 2006).  
  SC’s can be interpreted as the correlation between a discriminant function and the individual 
predictor variables upon which it is based (Huberty & Olejnik, 2006). Researchers have argued that the 
SC’s are appropriate for interpreting DDA because they provide direct information regarding the 
relationship between a discriminant function that significantly differentiates among the groups and the 
individual predictors (Stevens, 2000). Thus, if a variable has a high SC, it can be concluded that it is 
highly associated with group separation. It should be noted that SC’s in DDA are similar in concept to 
factor loadings, which are used routinely in characterizing the nature of latent factors (Huberty&Olejnik, 
2006). Therefore, it may be reasonable to use them for characterizing discriminant functions in much the 
same fashion. 
 Because they are similar (though not identical) to factor loadings, some authors have suggested 
applying arbitrary cut-off values for identifying “important” variables, as is commonly done in 
exploratory factor analysis. For example, Tabachnick and Fidell (2001) have recommended that SC’s 
larger than 0.32 be considered “important” in terms of understanding the nature of the discriminant 
function. They selected this value because 0.322 is roughly 0.1, indicating that 10% of the variance in the 
predictor variable is accounted for by the discriminant function. Pedhazur (1997) recommended using a 
cut value of 0.3, while other authors (e.g., Huberty & Olejnik, 2006; Stevens, 2000) suggest that 
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researchers not use a single value, but rather focus on the relative magnitude of the SC’s, placing greater 
emphasis on interpreting those variables with larger values. Dalgleish (1994) introduced a bootstrap 
confidence interval for use with SC’s in DDA. He hoped that this approach would obviate the need for 
applying arbitrary cut off values by providing information regarding whether, in the population, a given 
SC differs from 0. If this were the case, Dalgleish argued that a practitioner could then know, with some 
level of confidence, that a given predictor variable was associated with a significant discriminant 
function.  
 Researchers have studied the effectiveness of SC’s for interpreting significant discriminant functions 
in DDA. For example, Dalgleish (1994) found that the bootstrap confidence intervals that he developed 
for SC’s had somewhat conservative Type I error rates, but generally did a better job at maintaining Type 
I error near the nominal 0.05 level than did arbitrary cut values, including 0.3, 0.4 and 0.5. Finch (2007) 
conducted a simulation study examining both the Type I error rates (incorrectly identifying a predictor 
variable as “important” in group separation) and power (correctly identifying a predictor variable as 
“important” in group separation) of various methods for interpreting SC’s, including cut values (0.3, 0.4 
and 0.5), relative ordering of importance and the bootstrap confidence interval. Results of this study 
indicated that in general, the use of SC’s led to an over identification of variables associated with group 
separation. In other words, a researcher using any of these approaches for interpreting SC’s could expect 
to conclude that one or more variables are related to the significant discriminant function when in fact 
they are not. In addition, the Finch study reported that when the assumptions of normally distributed 
predictors with equal covariance matrices across groups were violated, the Type I error inflation was 
particularly severe.  
 Some researchers have long advocated against using SC’s for interpreting significant discirminant 
functions, and in favor of the standardized weights described above (e.g., Rencher, 1992). The argument 
in favor of this approach, set forth by Rencher (1995), is that the standardized weight for a particular 
variable reflects its contribution to the discriminant function in the presence of the other predictors. On 
the other hand, Rencher argued that the SC relating this variable to the discriminant function demonstrates 
only the univariate contribution of the individual predictor in question, totally ignoring the presence of 
the others. For this reason, he asserted that “…these correlations are useless in gauging the importance of 
a given variable in the context of others because they provide no information about how the variables 
contribute jointly to separation of the groups. Consequently, they become misleading if used for 
interpretation of discriminant functions” (Rencher, 1995, p. 317). Instead, he argued on behalf of referring 
to the discriminant weights when interpreting DDA, because they do account for all of the variables in the 
model and are therefore more appropriate when one is interested in characterizing significant discriminant 
function results.  
This opinion that standardized weights are more appropriate than SC’sfor use in interpreting discriminant 
functions is not universally shared. Huberty and Wisenbaker (1992) objected to using the weights 
because, they stated, simply ordering variables in importance does not communicate anything regarding 
the different degrees of variable importance, only that one is more important than another. Huberty and 
Olejnik (2006) go on to argue against the notion of ordering variables in terms of relative importance as a 
generally useful exercise, and instead focus on characterizing the discriminant function by ascertaining 
which of the predictor variables were most highly correlated with it, based on the SC’s. 
Clearly, given the discussion above, the disagreement between methodologists regarding the appropriate 
approach for interpreting significant discriminant functions has not been resolved to date. In addition to 
the studies described above that focused on SC’s, Huberty (1975) also conducted a simulation study in 
which he compared the ability to identify predictor variables relevant to group separation of standardized 
weights and SC’s. The outcome variable in this study was the consistency of variable ranking in terms of 
relative contribution to a significant discriminant function. The data were generated from a normal 
distribution with equal covariance matrices across 3 and 5 groups for 10 predictor variables. Sample sizes 
were set at 90, 150, 300 and 450. Huberty concluded that in the 5 groups case, the SC’s were slightly 
more effective at ordering the predictors, while in the 3 groups case the standardized weights performed 
slightly better in this regard. As he stated, these results are limited to the case where groups are of equal 
size and the assumptions of equality of covariances and normality are met. 
In contrast to the Huberty study, Rencher (1992) described analytically why there may be problems with 
using the SC’s to interpret discriminant functions, and in turn why the standardized weights might be 
preferable. As noted above, he showed that in the 2-groups case, the SC’sare mathematically proportional 
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to the univariate t-test comparing the means on the predictor variable between the two groups. Thus, he 
argued, a researcher making use of the SC’s has simply taken what is inherently a multivariate problem 
and reduced it to a series of univariate ones (Rencher, 1992). Rencher concluded his paper by stating that 
standardized weights, rather than SC’s, are most appropriate for interpreting significant discriminant 
functions because they allow for a direct ordering of individual predictors in terms of importance while 
accounting for the presence of all of the other predictors. 
  Based upon prior research examining the performance of SC’s (Finch, 2007, Dalgleish, 1994) there 
remain some doubts regarding their effectiveness in helping researchers interpret significant discriminant 
functions. Specifically, regardless of the rule used, SC’s appear to over-identify the importance of 
individual variables in terms of their contribution to group separation. In addition, based upon Rencher’s 
(1992) arguments, these SC values may not be addressing the appropriate multivariate question, namely 
which variables contribute the most to group separation, in the presence of the other variables in the 
analysis?  Given these potential problems with SC’s described by Rencher and highlighted in prior 
simulation studies, and the relative lack of Monte Carlo research examining the performance of 
standardized weights in characterizing group differences in DDA, the primary goal of the current study 
was to use simulations to ascertain how well the standardized weights could order variables in terms of 
relative importance in group separation under a variety of conditions, which are outlined below. It is 
hoped that this effort will add to the literature regarding interpretation of DDA and provide some 
additional guidance to researchers in the field. The performance of the standardized weights was 
measured in terms of how well they ordered predictors with varying degrees of between group difference, 
and what aspects of the data might impact this ordering. 
 

Methods 
 This Monte Carlo simulation study involved the manipulation of a number of data conditions in order 
to identify factors influencing the utility of standardized weights for correctly ordering variables based on 
their relative importance in defining the discriminant function. All analyses were conducted with 2 groups 
and 6 predictor variables using the SAS software system, version 9.1 (SAS, 2005) PROC DISCRIM. 
Initially, standardized weights based on both the total and within groups covariance matrices were 
estimated and retained for further investigation. However, subsequent analysis of the results demonstrated 
that across all conditions manipulated in this study, the performance of the two types in terms of variable 
ordering was virtually identical. For this reason, outcomes are reported only for the weights based on the 
total sample covariance matrices. The manipulated conditions described below were completely crossed 
with another. 
 
Distribution of the Predictor Variables 
 The predictor variables were simulated to be normal or non-normal with skewness of 1.75 and 
kurtosis of 3.75. In order to maintain the desired levels of correlation (described below) among these 
predictors, the approach for simulating data described by Headrick and Sawilowsky (1999) were 
employed. These values of skewness and kurtosis were selected because they have been shown to impact 
the performance of discriminant analysis (Hess, Olejnik, & Huberty, 2001).  
Homogeneity of groups’ covariance matrices 
 In addition to the normality of the predictors, a second major assumption underlying DA is the 
homogeneity of group covariance matrices. Therefore, in order to evaluate the performance of the 
standardized weights under a range of conditions, the covariance matrices were manipulated to be either 
equal or unequal. In this study, inequality of covariance matrices was simulated with one group having 
variances for the predictors that were 5 times larger than that of the other group.  
 
Sample Size 
 Total sample sizes took four different values across the simulations:  30, 60, 100 and 150.  These 
values correspond to values seen in the applied DA literature (e.g., Glaser, Calhoun, & Petrocelli, 2002;  
Russell & Cox, 2000; Matters & Burnett, 2003).  They represent conditions from small to moderately 
large samples. 
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Sample Size Ratio 
 Three conditions for relative group size were used. In the first condition, the two groups were 
simulatedwith equal numbers of subjects. In conditions two and three, sample sizes were different such 
that the larger group had twice the number of subjects as the smaller. In condition two, group 1 had the 
larger sample size, while in condition three group 2 was the larger. Sample size ratio was completely 
crossed with covariance matrix equality/inequality. Therefore, in one set of conditions, the larger group 
had the larger variance while in another the smaller group had the larger variance. In the third 
combination, the covariances were equal, even as group size ratios were unequal. It was believed that 
examining the combination of sample size ratio and covariance matrix equality was important to examine 
because of previous evidence that the interaction of unequal sample sizes and unequal group covariance 
matrices has an impact on the performance of PDA (Finch & Schneider, 2005). 
 
Group Separation 
 Separation between the two groups was simulated using Cohen’s d, univariate effect size (Cohen, 
1988). Table 1 contains the pattern of mean differences for the various combinations of effect sizes. The 
data were simulated so that group 2 had a mean of 0 and standard deviation of 1 for all of the predictors, 
while the predictor values for group 1 were generated using the means displayed in Table 1, for each 
condition respectively. For example, in the 8/0 condition, group 1 had a mean of 0.8 on the first predictor, 
and means of 0 on the other five, while data for group 2 were generated with means of 0 on all six 
predictors.  
 

Table 1. Differences (in Cohen’s d) in Predictor Means between Group 1 and Group 2. 
Predictor Variable 

X1 X2 X3 X4 X5 X6 

 

Condition Label 

0.5 0 0 0 0 0 5/0 
0.8 0 0 0 0 0 8/0 
0 0.5 0.5 0.5 0.5 0.5 0/5 
0 0.8 0.8 0.8 0.8 0.8 08 

3.0 2.5 2.0 1.5 1.0 0.5 5/5 
4.8 4.0 3.2 2.4 1.6 0.8 8/8 
0.8 0.5 0.5 0.5 0.5 0.5 8/5 
0.5 0.8 0.8 0.8 0.8 0.8 5/8 

 
Correlation Between the Predictor Variables 
 The correlations among the predictors were manipulated at three levels:  0.3, 0.5 and 0.8. In order to 
maintain these correlations even as the skewed distribution was simulated, the methodology outlined by 
Headrick and Sawilowsky (1999) was used. 
 The outcome of interest in this study was the degree to which standardized weights provided correct 
information regarding the order of importance of predictor variables in terms of group separation. It 
would be expected that the absolute value of these weights should be larger for those variables associated 
with greater group separation (Rencher, 1995). Thus, in the context of this study, the weights associated 
with larger values of Cohen’s d should themselves be larger than those weights associated with smaller 
effect sizes. The specific outcome in this study then, is the proportion of cases across simulation 
replications in which, for adjacent pairs of variables, the predictor associated with the larger effect size 
(greater group separation) had the larger standardized weight. In the cases where predictor effect sizes 
were the same, we anticipate the standardized weights for one of the variables in a pair will be higher than 
the other roughly half of the time. The appendix contains an S-PLUS program that generated the 
simulated data for the study. The rnorm function in S-PLUS generated 100 random normal data points 
and output nine variables listed in the data command [data <-c(y,x,z,gain,ypost,xc,xz,xsq,xsqz)]. The post 
test scores (Y) and pre test scores (X) were created by adding residual error (ey or ex) to this random 
normal variable (true). Group assignment (Z) was determined based on subtracting a cut score of 20 from 
the pre test score (1–treatment, 0–comparison). This 10 point treatment gain was added to the post test 
score (Y). Optional print and write statements are included to either view or save the data in a file. 
 

Results 
  As mentioned above, results for the total and within groups weights were essentially identical across 
conditions, therefore the discussion henceforth will focus only on the performance of the total values. In 
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addition, an examination of results revealed virtually identical outcomes regardless of the sample size 
ratios simulated. Therefore, in order to limit the length of the manuscript unnecessarily, this variable will 
also not be included in the following discussion of results. The results are organized by the assumptions 
of normality and homogeneity of covariance matrices. As stated above, the outcome of interest in this 
case was the proportion of cases in which the standardized weights correctly reflected the variables’ order 
of importance in terms of group separation. For example, referring to Table 1, in the 5/0 condition, the 
weight for the first variable should be larger than the weights for the other variables, while the weights for 
variables 2-6 should be equal (within sampling error) so that no one of these should consistently be larger 
than the others. 
 
Normal Distribution, Homogeneous Covariance Matrices 
 Table 2 reflects the results for the case when both assumptions of normality and homogeneous 
covariance matrices were met, by effect size and correlation among the predictors. Across correlations, 
when variable 1 had the null effect size and variable 2 did not (05, 08 conditions), the proportion of cases 
in which variable 2 correctly had the larger standardized weight was greater than 0.90, and increased 
concomitantly with the correlation value. In contrast, when only the first variable was associated with 
group separation (80, 50 conditions), the first weight was correctly larger than that of variable 2 at much 
lower rates. Indeed, for correlations of 0.5 and 0.8, the first weight was correctly larger in less than 30% 
of the simulation replications.  
  The proportion of cases in which the standardized weight of the first variable was correctly larger 
than that of the second in the 88 and 55 conditions, where all of the variables were involved in group 
separation though to a different degree, was much higher than when only variable 1 differed between 
groups. Furthermore, as with the 05 and 08 cases, the proportion of replications where the first 
standardized weight was larger than the second increased along with the correlation among predictors, 
with the exception of the 55 case for a correlation of 0.8. Finally, when considering the 85 and 58 
conditions, the standardized weights were better able to order the variables in the latter case versus the 
former. In other words, the proportion of cases displaying correct ordering was greater when the second 
variable had the larger effect size, as opposed to when the first variable had the larger effect size.Note that 
this outcome follows a very similar pattern to the 05/08 versus 50/80, where variable ordering was correct 
more frequently in the former than the latter. The proportion of correct ordering outcomes increased with 
increasing correlation, except for the 85 condition with r = 0.8. 
 When considering the comparisons of the standardized weights for the adjacent pairs in variables 2 
through 6, it is important to remember that these variables were all simulated with the same effect size 
values separating the groups, except for the 88 and 55 conditions. Thus, we would expect them to have 
very similar standardized weight values across simulation replications. In fact, results for the 80, 50, 08, 
05, 85, and 58 conditions revealed that the proportion of times the weights for one of these variables was 
larger than that of the adjacent one was very close to 0.5 in all cases, indicating that they were comparable 
in size across replications. Given the similarity of these results in the expected way, the data presented in 
the tables for variables 2 through 6 only includes rates for the 88 and 55 conditions, where effect size 
values were not uniform. It is hoped that the tables will more clearly display relevant outcomes that are 
not obscured by a large number of redundant results. 
  In general, for both the 88 and 55 conditions it appears that the proportion of cases exhibiting a 
correct ordering of standardized weights declined somewhat for variable pairs further down the list (e.g., 
X3 vs. X4, X4 vs. X5, etc.).For example, in the 88 condition the weight for variable 2 was correctly larger 
than that of variable 3 at rates comparable to those for the variable 1 versus 2 comparison. In contrast, for 
the final adjacent pair in the set, variable 5 correctly had a larger standardized weight than variable 6 at 
lower rates, generally differing by between 0.06 and 0.10 for different values of r. The rate of correct 
ordering by the standardized weights was higher for larger correlation values, with the exception of the 55 
condition with r = 0.8. 
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Table 2. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
correlation among predictors: Normal distribution and homogeneous covariance matrices. 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.912     

 08 0.966     
 50 0.578     
 80 0.650     
 58 0.789     
 85 0.809     
 88 0.853 0.860 0.844 0.797 0.761 
 55 0.824 0.829 0.797 0.784 0.769 

0.5 05 0.945     
 08 0.984     
 50 0.293     
 80 0.227     
 58 0.849     
 85 0.831     
 88 0.885 0.894 0.862 0.827 0.777 
 55 0.863 0.866 0.839 0.814 0.803 

0.8 05 0.985     
 08 0.999     
 50 0.053     
 80 0.021     
 58 0.940     
 85 0.626     
 88 0.895 0.914 0.883 0.838 0.801 
 55 0.603 0.611 0.609 0.588 0.582 

 

 Table 3 displays the proportion of correctly ordered variables by effect size and sample size when the 
assumptions of normality and homogeneity of covariances were met. In general, the pattern of results 
across effect sizes was very similar to those described above. The proportion of cases correctly ordered 
for the first 2 variables increased concomitantly with sample size, except for the 50 and 80 conditions. In 
other words, when only the first variable was simulated to be different between the groups, the proportion 
of times that the standardized weight for variable 1 was larger than that of variable 2 declined as sample 
size increased. With respect to the comparisons among the adjacent pairs for variables 2 through 6, the 
proportion of correctly ordered pairs declined for variables further down the list. In addition, the rate of 
correct ordering improved with larger sample sizes. Indeed, for a total sample size of 150, the 
standardized weights were ordered correctly in more than 80% of cases for all adjacent pairs. Even for a 
sample size of 100, the lowest proportion of accurately ordered pairs was 0.774 for variables 5 and 6 in 
the 55 condition. 
 

Normal Distribution, Heterogeneous Covariance Matrices 
  Results for the case where the predictors were simulated to be normally distributed and the covariance 
matrices between the groups were heterogeneous appear in Tables 4 and 5. Across correlation conditions 
(Table 4), the proportion of correctly ordered weights was lower than when both assumptions were met 
(Table 2). The lone exception to this result was for correlations of 0.5 and 0.8 in conjunction with the 50 
and 80 effect size conditions, where the proportion correctly ordered was somewhat higher when the 
covariance matrices were heterogeneous. It should be noted, however, that in general, for the 50 and 80 
cases the proportion of correctly ordered weights remained low. The most dramatic reduction in the 
proportion of correct ordering for the normally distributed heterogeneous covariance case occurred in 
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Table 3. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
sample size:  Normal Distribution and Homogeneous Covariance Matrices. 

N Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
30 05 0.860     
 08 0.946     
 50 0.365     
 80 0.332     
 58 0.753     
 85 0.636     
 88 0.758 0.779 0.750 0.704 0.682 
 55 0.688 0.702 0.681 0.655 0.652 
60 05 0.951     
 08 0.990     
 50 0.314     
 80 0.288     
 58 0.837     
 85 0.754     
 88 0.869 0.879 0.842 0.801 0.756 
 55 0.772 0.781 0.748 0.731 0.717 
100 05 0.981     
 08 0.998     
 50 0.279     
 80 0.263     
 58 0.900     
 85 0.833     
 88 0.927 0.931 0.912 0.872 0.813 
 55 0.829 0.826 0.808 0.783 0.774 
150 05 0.994     
 08 0.999     
 50 0.258     
 80 0.241     
 58 0.936     
 85 0.874     
 88 0.965 0.971 0.947 0.913 0.864 
 55 0.863 0.863 0.847 0.830 0.813 

 

the 88 and 55 effect size conditions with r = 0.8. When the data were normally distributed with 
heterogeneous covariance matrices, the proportion of correctly ordered cases dropped by approximately 
0.35 to 0.45 for all adjacent pairs of variables, as compared to the normal homogeneous case.  
 With respect to the impact of sample size for the normal distribution and heterogeneous covariance 
condition, results in Table 5 suggest that larger samples did ameliorate the negative impact of 
heterogeneous covariance matrices for some effect size combinations, but not others. For example, when 
groups differed on all but the first variable (05, 08), the proportions of correctly ordered standardized 
weights in Table 5 become very similar to those in Table 3 for samples of 100 and particularly 150. On 
the other hand, when group separation was isolated in the first variable only (50, 80), the proportion of 
correctly ordered ldf weights declined with increasing sample size, a pattern also apparent in Table 3. In 
the other effect size conditions simulated in this study, a larger sample size was associated with improved 
accuracy in ordering the variables, though the rates did not match those found when both assumptions of 
normality and homogeneity of variance were satisfied.  
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Table 4. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size  
and correlation among predictors:  Normal Distribution and Heterogeneous Covariance Matrices. 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.798     
 08 0.904     
 50 0.522     
 80 0.574     
 58 0.706     
 85 0.708     
 88 0.804 0.803 0.773 0.752 0.736 
 55 0.762 0.749 0.741 0.722 0.720 
0.5 05 0.843     
 08 0.940     
 50 0.353     
 80 0.304     
 58 0.758     
 85 0.688     
 88 0.838 0.838 0.816 0.785 0.779 
 55 0.778 0.772 0.759 0.746 0.741 
0.8 05 0.934     
 08 0.979     
 50 0.131     
 80 0.055     
 58 0.854     
 85 0.519     
 88 0.429 0.443 0.453 0.434 0.430 
 55 0.203 0.225 0.229 0.236 0.244 

 

Non-Normal Distribution, Homogeneous Covariance Matrices 
  The third combination of conditions to be examined in this study was the non-normal, homogeneous 
covariance case. One pattern of results apparent across values of the correlation was that the proportion of 
correctly ordered weights in the X1 versus X2 comparison was higher in the non-normal homogeneous 
covariance condition than for the normal heterogeneous covariance condition when the first variable was 
associated with a larger group difference (50, 80, 88, 55). The lone exception to this pattern was the 85 
condition, in which the first variable was associated with a large effect while the other variables were 
associated with a medium effect. Conversely, when the first variable was associated with a null effect size 
(05, 08) as well as in the 58, 85 cases, the proportion of correct ordering was lower in the non-normal, 
homogeneous covariance situation. In general, the proportion of correctly ordered standardized weights 
was lower than when both assumptions were met.  
  With respect to the adjacent variable comparisons other than X1 versus X2, the proportion of correctly 
ordered weights was somewhat higher earlier in the sequence for the non-normal homogeneous case as 
compared to the normal heterogeneous data, and somewhat lower for X4 versus X5 and X5 versus X6. In 
addition, the sharp decline in accuracy that occurred in the normal heterogeneous case for r = 0.8 was not 
in evidence in the non-normal, homogeneous case. With the exception of the 50 and 80 conditions, the 
proportion of correctly ordered standardized weights increased with increasing sample sizes in Table 7. In 
addition, for the 88 and 55 effect size cases, the proportion of correctly ordered weights was comparable 
or slightly higher in this condition than when both assumptions were met. 
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Table 5. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
sample size:  Normal Distribution and Heterogeneous Covariance Matrices 

N Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
30 05 0.719     
 08 0.844     
 50 0.390     
 80 0.375     
 58 0.670     
 85 0.545     
 88 0.650 0.665 0.648 0.621 0.618 
 55 0.570 0.570 0.576 0.568 0.567 
60 05 0.837     
 08 0.945     
 50 0.363     
 80 0.317     
 58 0.744     
 85 0.611     
 88 0.710 0.718 0.703 0.675 0.665 
 55 0.772 0.621 0.607 0.598 0.595 
100 05 0.912     
 08 0.980     
 50 0.312     
 80 0.281     
 58 0.790     
 85 0.688     
 88 0.762 0.757 0.742 0.716 0.709 
 55 0.656 0.651 0.635 0.630 0.628 
150 05 0.951     
 08 0.994     
 50 0.294     
 80 0.264     
 58 0.862     
 85 0.751     
 88 0.788 0.782 0.764 0.743 0.732 
 55 0.680 0.676 0.669 0.655 0.655 

 

Non-normal Distribution, Heterogeneous Covariance Matrices 
  This combination of conditions represents the situation where neither of the foundational assumptions 
underlying DA were met. Table 8 reveals that across nearly all conditions the ordering of the standardized 
weights was correct at markedly lower rates than when both assumptions were met (Table 2). The only 
exceptions to this pattern were for the 50 and 80 cases, when all group difference was isolated in the first 
variable only. The pattern of declining accuracy for variables entered later in the equation that was 
evident in the other distribution and covariance conditions was also apparent when neither assumption 
was met. In fact, the relative decline in accuracy rates for adjacent pairs further down the sequence was 
greater in this condition than when both assumptions were met. Larger correlations among the predictors 
were associated with greater accuracy rates for the 88 and 55 conditions particularly, for the X1 versus X2, 
X2 versus X3 and X3 versus X4 adjacent pairs. However, for the X4 versus X5 and X5 versus X6 variable 
pairs, the proportion of correctly ordered standardized weights actually declined with increasing 
correlation values. 
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Table 6:  Proportion of cases in which variable ordering is correct based on ldf weights, by effect size 
and correlation among predictors:  Non-Normal Distribution and Homogeneous Covariance Matrices 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.579     
 08 0.734     
 50 0.527     
 80 0.617     
 58 0.682     
 85 0.683     
 88 0.869 0.836 0.800 0.754 0.637 
 55 0.852 0.817 0.775 0.726 0.611 
0.5 05 0.571     
 08 0.703     
 50 0.506     
 80 0.575     
 58 0.697     
 85 0.629     
 88 0.907 0.871 0.830 0.733 0.490 
 55 0.897 0.853 0.809 0.707 0.472 
0.8 05 0.577     
 08 0.693     
 50 0.470     
 80 0.472     
 58 0.763     
 85 0.490     
 88 0.905 0.881 0.812 0.616 0.220 
 55 0.665 0.658 0.609 0.514 0.366 

 
 
  The total sample size appears to have been associated with standardized weight ordering accuracy for 
only some of the effect size combinations when the data were not normally distributed and covariance 
matrices were not equal between groups. Specifically, from Table 9 when the first variable accounted for 
more of the group separation (50, 80, 85, 88 and 55 effect size combinations) the proportion of correctly 
ordered weights for the X1 versus X2 comparison increased concomitantly with sample size. This increase 
in accuracy was most notable in the 88 and 55 cases. For adjacent pairs other than X1 and X2, there was a 
clear positive relationship between sample size and weight ordering accuracy for the X2 versus X3 and X3 
versus X4 comparisons. On the other hand, for the last two pairs in the sequence, there appears not to have 
been this positive relationship between sample size and the accuracy rate. 
The goal of this Monte Carlo study was to examine the potential utility of standardized weights for 
ordering predictor variables in terms of their relative importance in defining a significant discriminant 
function. Prior simulation research has found that other methods for characterizing group separation in 
DDA, such as the use of SC’s, may be less than optimal in many situations. Thus, the current research 
was designed to ascertain how effective an alternative the standardized weights might be for this purpose. 
The study conditions were selected so as to replicate those in earlier studies that focused on SC’s, and the 
outcome of interest was the proportion of cases in which the weights correctly ordered the variables in 
terms of their relative importance in separating two groups.  
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Table 7:  Proportion of cases in which variable ordering is correct based on ldf weights, by effect size 
combination and sample size:  Non-Normal Distribution and Homogeneous Covariance Matrices 

N Effect size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
30 05 0.511     

 08 0.570     
 50 0.502     
 80 0.534     
 58 0.609     
 85 0.532     
 88 0.780 0.744 0.694 0.617 0.468 
 55 0.711 0.681 0.644 0.588 0.488 

60 05 0.555     
 08 0.673     
 50 0.501     
 80 0.538     
 58 0.687     
 85 0.578     
 88 0.879 0.836 0.782 0.681 0.447 
 55 0.792 0.758 0.707 0.635 0.483 

100 05 0.599     
 08 0.772     
 50 0.502     
 80 0.572     
 58 0.762     
 85 0.620     
 88 0.943 0.916 0.855 0.736 0.440 
 55 0.840 0.814 0.763 0.672 0.483 

150 05 0.638     
 08 0.825     
 50 0.500     
 80 0.576     
 58 0.798     
 85 0.671     
 88 0.974 0.954 0.915 0.772 0.441 
 55 0.876 0.851 0.810 0.699 0.484 

 

Discussion 
  The results described above indicated that under some conditions, the standardized weights did 
indeed provide an accurate ordering of the predictor variables, particularly when both the assumptions of 
normality and homogeneity of covariance matrices were met. These accuracy rates were frequently over 
90% for samples of 100 and 150 subjects. Furthermore, the ordering accuracy rates for all adjacent pairs 
improved when the correlations among the predictors increased in several of the conditions simulated 
here.  The major exception to these positive results when both assumptions were met occurred when 
group separation was only present for the first predictor variable. In this case, the accuracy rates were 
much lower than for the other conditions, and they declined with increasing correlations among the 
variables. In other words, when the group difference was truly univariate in nature and centered in the 
first variable, the standardized weight for the second variable was frequently (incorrectly) larger than that 
of the first. Finally, the accuracy of the standardized weight ordering approach was somewhat higher for 
variable pairs earlier in the sequence, even though the relative difference in group separation later in the  
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Table 8. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
correlation among predictors: Non-Normal distribution and heterogeneous covariance matrices 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.503     

 08 0.484     
 50 0.547     
 80 0.587     
 58 0.510     
 85 0.518     
 88 0.759 0.714 0.648 0.565 0.439 
 55 0.648 0.596 0.557 0.525 0.444 

0.5 05 0.487     
 08 0.445     
 50 0.569     
 80 0.634     
 58 0.509     
 85 0.527     
 88 0.821 0.757 0.679 0.527 0.303 
 55 0.708 0.640 0.576 0.473 0.371 

0.8 05 0.488     
 08 0.440     
 50 0.597     
 80 0.695     
 58 0.479     
 85 0.569     
 88 0.888 0.830 0.698 0.430 0.167 
 55 0.793 0.726 0.596 0.433 0.253 

 
sequence was identical. For example, Table 1 shows that the difference between group means for variable 
2 was simulated to be 4.0 in the 88 effect size case, while the difference for variable 3 was simulated to be 
3.2.  Thus the difference in conditions was 0.8 (4.0-3.2). The difference between group means for variable 
4 was simulated to be 2.4, which was 0.8 units different from the group separation for variable 3. 
However, the proportion of correctly ordered weights for variable 2 versus variable 3 was greater than 
that for variable 3 versus variable 4 across correlation conditions. A similar pattern was evident for the 
other adjacent variable pairs further down the sequence. 
  In general, the results of this study demonstrated that when the assumptions of normality and/or 
homogeneity of covariance matrices were not met, the standardized weights were less accurate in ordering 
predictor variables based on their relative importance in group separation.  The performance of these 
weights was generally most degraded when neither assumption was met.  The lone exception to this last 
pattern occurred when the predictors were normally distributed but the covariance matrices were unequal 
and the correlation among the predictors was 0.8.  In this case, the ordering accuracy rates were well 
below 50% for both the 88 and 55 effect size conditions.  Under most conditions where one or both of 
these assumptions were unmet, larger sample sizes served to mitigate problems with ordering accuracy to 
some extent, though rarely did accuracy match that when both assumptions were met.  The positive 
impact of increased sample sizes was particularly evident when the data were non-normal.  Indeed, in the 
88 and 55 effect size conditions, the accuracy rates were comparable (or nearly so) to the normal, 
homogeneous covariance case for both of the non-normal situations when the sample size was 150.  It 
should also be noted that when the first variable was not associated with group separation (08, 05) the 
accuracy rates in the normal distribution, heterogeneous covariance condition were higher than when the 
data were not normally distributed, and for samples of 100 and 150 were above 0.9.   
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Implications for Practice 
  Some authors (e.g., Rencher, 1995) have recommended that researchers using DDA to differentiate 
two or more groups in the multivariate case consider relying on these standardized weights to characterize 
the nature of the significant discriminant functions. Rencher (1992) argued that they are superior to other 
tools, such as SC’s, because they incorporate information about all of the variables in the analysis, rather 
than simply reproducing univariate analyses. The results of this study appear to support the potential 
utility of these standardized weights for characterizing multivariate group differences in some situations, 
but not others. Following are some potential implications for practice based on results discussed above. It 
should be noted that guidelines for what would be acceptable performance are not available. Ideally, of 
course, the rates of correct variable ordering would be 100%, though such a perfect outcome would be 
unlikely for any statistical procedure. Rather than select an arbitrary cut off for what is acceptable 
performance, we have elected in this manuscript to discuss the rates in relative terms and allow readers to 
make their own judgments regarding the acceptability (or not) of the standardized weights’ performance.  
  First of all, it does appear that when the assumptions of normality and group homogeneity of 
covariance matrices are both satisfied, variables are accurately ordered in terms of relative contribution to 
group separation at rates above 80% when the sample size is 100 or greater and the group differences are 
multivariate in nature (all effect size conditions except for 80 and 50). Indeed, when the sample size was 
as least 60 and all the variables were associated with group separation, the standardized weights would 
accurately order variables 1 and 2 in importance more than 80% of the time, except when the second 
variable was associated with a moderate effect and the first was associated with a moderate or large effect 
(85, 55 conditions).  
  While performance of the weights in variable ordering was often relatively goodwhen the groups 
were separated on multiple predictors (and the foundational assumptions were met), in cases where the 
groups only differed on one variable (the first in the sequence in this study), theydid not accurately reflect 
this fact very well, regardless of sample size. This problem was more acute when the predictor variables 
were more highly correlated. Therefore, researchers using DDA should carefully consider the variables 
that they have selected as predictors so that any significant group differences not beunivariate in nature. 
Furthermore, if results of the analysis appear to indicate that the groups differ on only one variable, the 
researcher should be very careful when interpreting variable ordering with these standardized weights. 
  When the predictor variables do not conform to the assumptions of normality and homogeneity of 
covariance matrices, researchers should also exercise caution when using standardized weights to 
interpret discriminant functions. Results of this study suggest that when the predictor variables are not 
normally distributed and/or the group covariance matrices are not equal, the weights may frequently order 
the variables incorrectly in terms of their relative importance, particularly when both assumptions are 
violated simultaneously. Therefore, researchers considering the use of these weights for characterizing the 
nature of significant group separation should be very careful to check these assumptions. If they do not 
hold, the weights may not be appropriate for ordering the variables. It is important to note that larger 
overall sample sizes do not fully ameliorate this problem. 
  A fourth implication of these results is that the correlations among the predictor variables have an 
impact on the performance of standardized weights when the assumptions of normality and homogeneity 
of covariances are met. In general, higher correlations among the predictors were typically associated 
with more accurate ordering based on the standardized weights. The lone exception to this outcome 
occurred when only the first variable was associated with group difference, in which case higher 
correlations resulted in the weight of the second variable (not different between groups) being larger 
(incorrectly) than that of the first, at very high rates. Researchers considering the use of standardized 
weights for interpreting DDA thus need to be cognizant of these correlations. If they select a number of 
variables that have relatively low correlations, they may have more difficulty in correctly identifying 
which of these is most associated with the significant discriminant function, and the associated group 
differences. It is also interesting to consider this result in light of Rencher’s (1992) argument in favor of 
using standardized weights:  namely that they account for the presence of the other predictors in the 
model. The fact that performance generally improved with higher correlations appears to validate this 
earlier observation. 
  Finally, when compared with results of earlier simulation research examining the SC’s as a tool for 
interpreting discriminant functions, the standardized weights appear to perform favorably. Finch (2007) 
reported very high rates (often in excess of 0.5) of incorrect identification of “important” variables using 
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these SC’s. In addition, under several data conditions similar to those included in this study, rates of 
correct identification of such “important” variables were not higher than those reported here for the 
standardized weights. Therefore, given the high Type I error rates for the SC’s, along with the comparable 
power, it would appear that the standardized weights may prove to be a worthwhile alternative for 
interpreting significant discriminant functions. 
 
Limitations and Directions for Future Research 
  Future studies should be designed to improve on the current research. For example, results described 
in this manuscript are limited to the two groups case. Thus, one logical next step in this area is to examine 
the utility of standardized weights for differentiating among more than two groups. By including multiple 
groups, interpretation of more than one significant discriminant function would also be possible. 
A second area for future research is the examination of the performance of standardized weights for a 
different set of effect size combinations. In the current study, most of the differences among the predictors 
with respect to group separation were between variable 1 and the others. With the exception of the 88 and 
55 conditions, variables 2 through 6 were associated with the same effect size difference between the 
groups. Future studies should use a different variety of such group differences in order to provide a more 
complete understanding of the effectiveness of the weights for ordering the predictor variables. 
  Future studies in this area should also examine a different set of non-normal distributions for the 
predictors. While this is the first study in this area to use non-normal data, generalizations of the results 
herein are limited to those non-normal cases where the predictors have skewness of 1.75 and kurtosis of 
3.75. For example, some research has shown that a related statistical analysis, Multivariate Analysis of 
Variance (MANOVA), is impacted by variables with truncated tails (e.g., Finch, 2005). Thus, it seems 
reasonable that DDA, which is based upon the same multivariate linear model, might also experience 
problems with such a distribution. 
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Impact of Rater Disagreement on  
Chance-Corrected Inter-Rater Agreement  

Indices with Equal and Unequal Marginal Proportions 
David A. Walker 

Northern Illinois University 
This study examined the effect that equal free row and column marginal proportions, unequal free row 
and column marginal proportions, and the magnitude of rater disagreement had on eight agreement 
indices. In condition 1, when there were equal free row and column marginal proportions with no rater 
disagreement present, seven of the eight indices of agreement yielded very comparable results. In 
condition 2, when there were unequal free row and column marginal proportions and rater disagreement 
was ≤ .10, five of the eight indices of agreement tended to produce similar results. In conditions 3 and 4, 
when the marginals were not homogeneous and the amount of rater disagreement was > .10, there were 
three instances each of over-estimation and under-estimation. Thus, as cells B and C became less 
homogeneous, all of the inter-rater agreement indices studied, except for Cohen and Dice, were 
influenced via under- or over-estimation once rater disagreement was > .10. If rater disagreement was ≤ 
.10, 5 out of the 8 indices studied were not influenced by some degree of marginal heterogeneity. 

n social science research, inter-rater agreement indices of categorical data for two raters have been 
studied extensively, and their strengths and weaknesses in various methodological situations 
reviewed in contexts such as classroom observations, political polling, psychological analysis, and 
content analysis (Bennett, Alpert, & Goldstein, 1954; Krippendorff, 2004; Riffe & Freitag, 1997; 

Zwick, 1988). Inter-rater agreement is conducted to verify that rater agreement exceeds, or does not, 
chance levels of agreement. The range of rater agreement is from -1.00 to +1.00, with +1.00 as total 
agreement, 0 as not better than chance that the raters would agree, and negative results indicate agreement 
worse than expected by chance due to random or systematic differences between raters such as rater bias 
or coding errors (Kassarjian, 1977; Linn & Gronlund, 2000; Sim & Wright, 2005). 
  In the literature pertaining to inter-rater 
agreement, various indices used with two raters and 
binary data emerge. All of these indices use a 2 x 2 
agreement matrix, where the main diagonal (i.e., 
cells A and D) indicates the agreement level 
between the raters as either 00 or 11 and the off 
diagonal (i.e., cells B and C) indicates the level of 
disagreement between the raters as either 10 or 01.  
  There are numerous indices for inter-rater agreement corrected for chance that can be applied to 2 x 2 
tables with categorical data. However, in the scholarly literature (Fleiss, 1975; Hertzberg, Xu, & Haber, 
2006; Krippendorff, 2004; Rae, 1988; Sirotnik, 1981; Übersax, 1987; Zwick, 1988), the following eight 
measures of agreement have been noted as common indices used and can be defined as “… proposed for 
categorical response data where such response is the assignment of the subject to one of κ mutually 
exclusive and exhaustive categories. [and] as a measure of agreement between multiple observations of a 
single subject” (Kraemer, 1979, p. 461).  
  The first chance corrected index for inter-rater agreement using a 2 x 2 table was proposed by Bennett 
et al. (1954) as Bennett’s Ѕ coefficient, which requires the assumption of uniform marginals, where: 
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where, Po = observed agreement, where Po = A + D; A = count from cell A, D = count from cell 
D; and k = number of response categories. Scott (1955) proposed Scott’s pi coefficient or π, 
which requires the assumption of homogeneous marginals for the raters, where: 
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Figure 1. A 2 x 2 Matrix Configuration. 
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Note: Fleiss’ intraclass correlation coefficient (1975) in a 2 x 2 situation is the same formula as Scott’s π, 
with the assumption of equally distributed marginals where,  

Pe = 
2

. .

1

( )
2

k
i i

i

n n
=

+∑ , is expected percentage of agreement based on chance, k = number of response 

categories. ni. = observed row marginals for response i for rater 1, and n.i = observed column marginals 
for response i for rater 2. 
  Cohen (1960) proposed Cohen’s kappa coefficient or κ (1960), but did not have an assumption 
related to equally-distributed marginals, yet did assume that “… N objects categorized are independent; 
the assigners operate independently; and the categories are independent, mutually exclusive, and 
exhaustive” (Brennan & Prediger, 1981, p. 688). 
 

             o
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           (3) 

 

where, A = count from cell A, B = count from cell B, C = count from cell c, D = count from cell D,  
Po = (A + D)/N is the observed agreement, N = number of observations, and 
Pe = [(A + B)*(A + C)+(C + D)*(B + D)]/N2 is the expected percentage of agreement based on chance. 
     
  Armitage, Blendis, and Smyllie (1966) proposed the standard deviation index, which is very similar 
to κ with no distributional assumption, but with the same assumptions of independence. Equations 5 to 7 
do not have a distributional assumption, but also have the same independence assumptions as κ. 
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where p1 = (A+B), p2 = (A+C), q1 = (C+D), and q2 = (B+D).  
  Maxwell and Pilliner (1968) proposed rMP: 
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  The phi coefficient (as cited in Fleiss, 1975) was proposed as an inter-rater index: 
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  The Dice index (as cited in Fleiss, 1975) was proposed as a measure of inter-rater agreement: 
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Methods 

 The data for the subsequent situations tested on each of the inter-rater agreement indices were derived 
from an SPSS (Statistical Package for the Social Sciences v. 15.0) program written by the author. Each of 
the 2 x 2 situations used binary data; there were no missing data; each situation had free, homogeneous or 
heterogeneous marginals (i.e., “… a margin is ‘free’ whenever the marginal proportions are not known to 
the assigner beforehand” (Brennan & Prediger, 1981, p. 690); and each situation had either no rater 
disagreement, rater disagreement ≤.10, rater disagreement >.10 but ≤.20, or rater disagreement >.20. Rater 
disagreement was determined from the following formula presented in Sim and Wright (2005): 
 

       Rater Disagreement = │B - C│ / N                                (8) 
 

 An SPSS bootstrap program created by the author was used. The bootstrap is a resampling method 
where the sampling properties of a statistic, in this instance the inter-rater agreement indices, are derived 
by recomputing their value for artificial samples. Thus, the sample data from this study served as pseudo-
populations and 20,000 random samples with replacement were drawn from these full samples. Twenty 
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thousand iterations were used as an established threshold where all of the four cases in this study had 
convergence. Once the bootstrap method was repeated 20,000 times on each of the four cases, a 
distribution of bootstrapped estimates for the kappa-related indices emerged, where the mean value (i.e., 
κBoot) of each bootstrapped distribution was the estimate for each of the four case’s population κ value. 
Further, the bootstrap was employed as a method for estimating generalization error, which, in turn, was 
used to form 95% confidence intervals around the κBoot. 
  Using Monte Carlo generated data, the purpose of this research was to examine the possible effect 
that equal free row and column marginal proportions (EM), unequal free row and column marginal 
proportions (UM), and the magnitude of rater disagreement had on the agreement indices under study. As 
James (1983, p. 651) noted 25 years ago, “Much less attention seems to have been paid to the analysis of 
nonagreements…” 
 

Results 
 Table 1 shows the kappa-related statistics in each of the four conditions by sample sizes of 10, 20, 50, 
and 75 typically found in educational research (Claudy, 1972; Huberty & Mourad, 1980). The bootstrap 
results from Table 1 denote which of the eight indices were outside of the confidence intervals established 
as thresholds for each case pertaining to under-estimation or over-estimation of inter-rater agreement 
given the circumstances of homogeneous or heterogeneous marginals and no rater disagreement to some 
level of disagreement. 
  The results found in Table 1 indicated that in the first case, when the marginals were homogeneous 
(i.e., verified via a McNemar’s Test based on difference in the marginal probability distribution between 
observations in a 2 x 2 matrix, where Ho: р1. = p.1 and H1: р1. ≠ p.1) and there was no rater 
disagreement present, seven of the eight indices showed no under- or over-estimation of inter-rater 
agreement, which was an expected assumption in this situation with all of the kappa-like formulas (note: 
the lone exception of over-estimation was found with the Bennett index). 
  In the second case, when the marginals were not homogeneous and the amount of rater disagreement 
was ≤ .10, there was one instance of over-estimation with the Bennett index and two occurrences of 
under-estimation found with the Fleiss and Scott indices. In the third case, when the marginals were not 
homogeneous and the amount of rater disagreement was > .10 but ≤ .20, there were three instance of 
over-estimation with the Phi, Maxwell-Pilliner, and Armitage et al. indices, and three occurrences of 
under-estimation found with the Bennett, Fleiss, and Scott indices. Finally, in the fourth case, when the 
marginals were not homogeneous and the amount of rater disagreement was > .20, all of the same indices 
from case 3 that had over- or under-estimation problems repeated in case 4. That is, there was noticeable 
over-estimation associated with Phi, Maxwell-Pilliner, and Armitage et al., and evident occurrences of 
under-estimation found with Bennett, Fleiss, and Scott. 
 

Discussion 
  Thus, given the similar assumptions affiliated with kappa-like indices of agreement, when there were 
equal free row and column marginal proportions with no rater disagreement present, seven of the eight 
indices of agreement yielded the same results. This outcome was expected based on the assumption of 
marginal homogeneity for many of the kappa-like measures. When there were unequal free row and 
column marginal proportions and rater disagreement is ≤ .10, five of the eight indices of agreement 
tended to produce similar results, with two of the three deviant indices very close to the established 
confidence interval (e.g., Scott and Fleiss within .001).  
  When the marginals were not homogeneous and the magnitude of rater disagreement was > .10, cases 
3 and 4 showed a trend in indices that succumbed to over- and under-estimation. That is, when rater 
disagreement was evident (i.e., > .10), there should be some caution used when applying the Phi, 
Maxwell-Pilliner, and Armitage et al. indices in a 2 x 2 situation due to their tendency to over-estimate 
chance-corrected agreement, and some prudence employed when using the Bennett, Fleiss, and Scott 
indices due to their propensity to under-estimate chance-corrected agreement when compared to other 
commonly-used indices of agreement.  
 

Implications and Conclusions 
  Overall, the data trends indicated that the Bennett index either over- or under-estimated chance-
corrected agreement in a 2 x 2 situation in all four cases studied regardless of the presence, or lack 
thereof, of rater disagreement. The Fleiss and Scott indices under-estimated in three of the four cases (i.e., 
contingent upon some level of rater disagreement). 
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Table 1. Measures of Agreement Bootstrap Results 
Sample N = 10 N = 20 N = 50 N = 75 

Cell Counts 
A = 2, B = 2,  
C = 2, D = 4 

A = 8, B = 3,  
C = 4, D = 5 

A = 19, B = 4,  
C = 12, D = 15 

A = 30, B = 3,  
C = 21, D = 21 

Rater Disagreement 0 ≤ .10 > .10 ≤ .20 > .20 
Agreement Index     
Cohen .167 .286 .372 .387 
Maxwell-Pilliner .167 .287   .392*   .435* 
Scott .167   .284*   .356*   .351* 
Fleiss .167   .284*   .356*   .351* 
Armitage et al. .167 .287   .392*   .436* 
Dice .167 .286 .372 .387 
Phi .167 .287   .392*   .435* 
Bennett   .200*   .300*   .360*   .360* 
Bootstrap     
Mean: κ Boot .171 .288 .374 .393 
Standard Deviation .004 .002 .005 .013 
95% Confidence Interval (.167, .179) (.285, .292) (.364, .385) (.368, .419) 

* = Outside of confidence interval range 
 
 

  As seen in Table 2, the Bennett, 
Scott, and Fleiss indices, which all 
adhered to the assumption of 
homogeneous marginals, preformed the 
poorest when any level of rater 
disagreement was present and, thus, 
their use in situations of disagreement 
is not recommended. 
  The Phi, Maxwell-Pilliner, and 
Armitage et al. indices over-estimated 
in two of the four cases, particularly 
when rater disagreement > .10, 
Therefore, the recommendation found 
in Table 2 is to employ these indices 
when rater disagreement is ≤ .10. 
Cohen and Dice were the only indices 
that did not manifest any penchant to 
over- or under-estimate chance-
corrected agreement when confronted 
with rater disagreement and are 
recommended as reliable measures in 
all conditions tested. 
  An implication affiliated with the current study may be seen in the area of contributing to the base in 
the scholarly literature, where this is one of very few studies (cf. Whitehurst, 1984) that has looked at the 
magnitude that rater disagreement has on various inter-rater agreement indices. As Zwick (1988) noted 
about the degree that marginal homogeneity may play in inter-rater agreement indices, “Rather than 
ignoring marginal disagreement or attempting to correct for it, researchers should be studying it to 
determine whether it reflects important rater differences or merely random error” (p. 377). A second 
implication is that this research provides guidelines concerning which of the frequently used measures of 
agreement would be plausible options to employ when a level of rater disagreement is present. 

Table 2. Recommendations for the Use of Agreement Indices  
                per Level of Rater Disagreement 
Rater Disagreement 0 ≤ .10 > .10 ≤ .20 > .20 
Agreement Index     
Cohen * * ** ** 
Maxwell-Pilliner * * NR NR 
Scott * NR NR NR 
Fleiss * NR NR NR 
Armitage et al. * * NR NR 
Dice * * ** ** 
Phi * * NR NR 
Bennett NR NR NR NR 
NR = Not Recommend for use 
* = Use in conditions of rater disagreement ≤ .10 
** = Use in conditions of rater disagreement > .10 
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