Multiple Linear Regression Viewpoints

A Publication sponsored by the American Educational Research Association's Special Interest Group on Multiple Linear Regression: The General Linear Model

Volume 34 • Number 2 • Spring 2008

MLRV

1

Table of Contents

Testing Interactions in Classification ProblemsBernadine BeardFlorida Atlantic UniversityValerie BryanFlorida Atlantic UniversityJohn D. MorrisFlorida Atlantic UniversityMary G. LiebermanFlorida Atlantic University

A Method for Choosing V	Veights to Predict	
College Grades for Admi	ssion Decisions and	
to Assess their Fairness b	y Race/Ethnicity	4
Steven Andrew Culpepper	University of Colorado Denver	
Ernest C. Davenport	University of Colorado Denver	
Mark L. Davison	University of Minnesota	

A Monte Carlo Progr	am for Multiple Linear Regression	15
Gordon P. Brooks	Ohio University	

Multiple Linear Regression Viewpoints

Editorial Board

Randall E. Schumacker, Editor University of Alabama

T. Mark Beasley, Associate Editor University of Alabama at Birmingham

Isadore Newman, Editor Emeritus Florida International University

Gordon P. Brooks (2008-2010) Ohio University Daniel J. Mundfrom (2008-2010) Northern Colorado University Bruce G. Rogers (2008-2010) University of Northern Iowa Thomas Smith (2008-2010) Northern Illinois University Susan Tracz (2008-2010) California State University, Fresno David Walker (2008-2010) Northern Illinois University

Multiple Linear Regression Viewpoints (ISSN 0195-7171) is published by the AERA Special Interest Group on Multiple Linear Regression: General Linear Model through the **University of Alabama at Birmingham**.

Subscription and SIG membership information can be obtained from: Cynthia Campbell, MLR:GLM/SIG Executive Secretary Department of Educational Technology, Research & Assessment Northern Illinois University DeKalb, IL 60115-2854. ccampbell@niu.edu

MLRV abstracts appear in CIJE, the ERIC system, and microform copies are available from University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106. *MLRV* is listed in the *EBSCO Librarians Handbook*.

Testing Interactions in Classification Problems

Bernadine Beard John D. Morris

Valerie Bryan Mary G. Lieberman

Florida Atlantic University

The purpose is to demonstrate a procedure for testing the increment to classification accuracy afforded by an interaction term using predictive discriminant analysis (PDA) and logistic regression (LR). The PSAT (Math) and ethnicity were employed to predict students at risk of passing or failing the Florida Comprehensive Assessment Test (FCAT) Math. Results favored PDA over LR for the failure group. For PDA, at an a priori alpha of .05, the moderation of ethnicity was not significant for the failure group, but was for both passing and the total sample, as were hit-rates for total sample and separate groups by Ethnicity.

Researchers employing multiple linear regression frequently use the well-known technique of hypothesis testing through contrasting the predictive variance attributable to full versus restricted models. This method's power, generality, and applicability to a very wide range of questions in science form a theoretical umbrella under which most univariate inferential statistical tests can be viewed.

In multivariate statistics, a test of the so-called additional information hypothesis (AIH) was suggested by C. R. Rao over 50 years ago (see Hand, 1981, p. 149). The context of this hypothesis is that of one-factor multivariate analysis of variance. The research question associated with this hypothesis pertains to an assessment of the difference between the intergroup distance when all response variables are analyzed and the intergroup distance for a subset of response variables. The hypothesis, then, is that the omitted set of variables adds no information (in the sense of intergroup distance) to that yielded by the subset included. The research question considered in this situation is different from that which occurs in a predictive context because the same criteria are not appropriate. For Rao's AIH, the criterion is intergroup difference, whereas, for the prediction problem, the criterion is classification accuracy (see Huberty & Wisenbaker, 1992) – total, or that obtained within each of the separate groups.

The same type of model contrast explanatory increment question can be asked, and seems to be of at least as much potential interest, in classification questions. Specifically, the question arises in studies using predictive discriminant analysis (i.e., classification), logistic regression, as well as other methods of classification. In this case, the criterion for model accuracy is some form of classification accuracy. The test concerns the difference in proportion of correct classifications (hit-rate) between full and restricted models, just as is done using the R2 in multiple regression. The appropriate test statistic is McNemar's (1947) contrast between correlated proportions, and was introduced by Morris and Huberty (1991; 1995) for the purpose of full versus restricted model testing in predictive discriminant analysis for specific planned contrasts using the total group hit-rate as the criterion.

One of the difficulties with the application of the McNemar statistic to full versus restricted model classification questions is that it requires tallying the number of subjects classified correctly and incorrectly and summarizing the results in a fourfold table corresponding to the full and restricted models. To obtain the entries for that table, one needs more than a knowledge of hit-rates for each model; one must count the number of subjects who were correctly and incorrectly classified in both the full and restricted models in turn. Thus, the total and separate-group hit-rates that are available from standard discriminant analysis and logistic regression package programs are not sufficient information to complete the comparison between full and restricted models. For each individual case, one must tally whether the subject was classified correctly or incorrectly jointly for the full and reduced models. Moreover, if one considers cross-validated classification to be the appropriate metric of model accuracy, then these classifications/misclassifications that are to be tallied must be cross-validation estimates. A computer program to accomplish this otherwise difficult task has been made available in the case of discriminant analysis (Morris & Huberty, 1991; 1995) and logistic regression (Lieberman, Morris & Huberty, 2000).

One typical use of a full vs. restricted model test in multiple regression is in the consideration of an interaction, tested in multiple regression by considering the contribution of a standard multiplicative term (often with variables centered to avoid collinearity problems). Our purpose in this paper is to extend this procedure and illustrate an example thereof in a classification model. Note that these variable importance tests are based on the increment to classification accuracy and are quite different than tests of an

Beard et al.

interaction term β available in standard computer packages. Those tests are appropriate when considering partial influence on group separation, but not on hit-rate – the criterion of importance in a classification analysis. As this is simply an extension of the full vs. restricted model testing paradigm to the interaction question, the same aforementioned FORTRAN computer program is applicable.

One may argue, however, that because of the positive bias of estimation of hit-rate classification of the calibration sample, a cross-validated estimate of accuracy should be used. A nonparametric approach to estimating cross-validated hit-rate, which has a wide following in the discriminant analysis literature, is the leave-one-out procedure (Huberty & Olejnik, 2006; Huberty & Mourad, 1980; Lachenbruch & Mickey, 1968; Mosteller & Tukey, 1968). In this method, a subject is classified by applying the rule derived from all subjects except the one being classified. This process is repeated round-robin for each subject, with a count of the overall classification accuracy used to estimate the cross-validated accuracy. We show how interaction tests using full versus restricted model testing, parallel to that used in multiple regression, can be extended to classification studies. We illustrate the interaction test for total as well as separate-group Leave-One-Out classification accuracies for both predictive discriminant analysis (PDA) and Logistic Regression (LR).

Method

An example provided herein regards predicting a high-stakes state mandated, "pass or fail," test from a prior low-stakes test hoped to be diagnostic thus aiding in remediation. Specifically the Florida "FCAT" is predicted from the PSAT. Specifically, the question examined is whether the accuracy with which the PSAT Math can classify subjects correctly in regard to passing or failing the FCAT Math is moderated by ethnicity. In this case both the PDA and LR model were created using PSAT (centered on its mean), Ethnicity, and their product predicting FCAT success. The contrast of interest was that between the hitrate for all three variables and that afforded by excluding the cross-product term, thus testing the increment to classification accuracy afforded by the moderator variable.

Results and Discussion

Table 1 illustrates the cross-validated (leave-one-out) hit-rates from a linear discriminant function with equal priors for the total sample (N=533), as well as by ethnicity. First, for both ethnicities prediction is most accurate for those who fail, which, if there is to be a separate group accuracy difference is in the desirable direction. Also, hit-rate is more accurate for the total sample as well as for separate groups for Ethnicity 1 than Ethnicity 2. The question of interest is whether hit-rate is significantly moderated by ethnicity.

Table 1 shows the results. Although not of primary interest in this study, the difference in cross-validated hit-rate for LR than PDA is of interest. Because of the poor predictive performance of the LR model (using both ethnicities) for the "Failed" group, a better choice would be the PDA model. As primary interest was in correct classification of the subjects who fail the high stakes FCAT, only the interaction tests for the PDA model will be discussed herein.

For the PDA results, if the researcher posited an alpha of .05, the aforementioned moderation tests would lead the researcher to conclude that the moderation of ethnicity on hit-rate was not significant for the FCAT failure group (p > .05), but was for both the Passing group (McNemar z = 3.32, p < .01) and Total sample (McNemar z = 2.89, p < .05). Thus one could assert that the model was significantly more accurate at predicting group membership for subjects who passed, and for the combination of subjects passing and failing, for the Majority ethnicity than for the corresponding Minority. As well, as the hit-rates are simple ratio statistics, their simple difference (e.g. 82.4% - .66.7% = 15.7%, and 83.3%-69.9 = 13.4%) or a proportional increment [e.g. (82.4%/66.7% - 1) = 23.5%, and (83.3%/69.9% - 1) = 19.2%], depending on notions of purpose and whether group size is a good estimate of the corresponding parameter, might serve as effect size estimators.

Of course, as in multiple regression, the procedure is not limited to categorical moderators. The relevant computer program is available from the authors.

Table 1. PDA and (LR) hit-rate predicting FCAT from PSAT for all Subjects and by two Ethnicities Hit-Rate for:

	Failed	FCAT	Passe	d FCAT	Total	(of row)
All Subjects	88.9%	(44.4%)	79.4%	(97.1%)	80.9%	(89.1%)
Majority	91.9%	(56.8%)	82.4%	(97.5%)	83.3%	(93.3%)
Minority	79.5%	(47.7%)	66.7%	(93.0%)	69.9%	(81.5%)

References

- Allen, D. A. (1971). *The prediction sum of squares as a criterion for selecting predictor variables* (Tech. Rep. No. 23). Lexington: University of Kentucky, Department of Statistics.
- Hand, D. J. (1981). Discrimination and classification. New York: Wiley.
- Huberty, C. J & Mourad, S. A. (1980). Estimation in multiple correlation/prediction. *Educational and Psychological Measurement*, 40, 101-112.
- Huberty, C. J and Olejnik, S. (2006). Applied MANOVA and discriminant analysis. New York: Wiley.
- Huberty, C. J & Wisenbaker, J. M. (1992). Discriminant analysis: Potential improvements in typical practice. In B. Thompson (Ed.), *Advances in social science methodology* (Vol. 2, pp. 169-208). Greenwich, CT: JAI Press.
- Lachenbruch, P. A., & Mickey, M. R. (1968). Estimation of error rates in discriminant analysis. *Technometrics*, 10, 1-11.
- Lieberman, M. G., Morris, J. D., & Huberty, C. J (2000, April). *Full vs. restricted model testing in logistic regression*. Paper presented at the meeting of the American Educational Research Association, New Orleans.
- Looney, S. W. (1988). A statistical technique for comparing the accuracies of several classifiers. *Pattern Recognition Letters*, 8, 5-9.
- Morris, J. D., & Huberty, C. J (1991, April). *Full vs. restricted model testing in discriminant analysis.* Paper presented at the meeting of the American Educational Research Association, Chicago.
- Morris, J. D., & Huberty, C. J (1995). Full versus restricted model testing in predictive discriminant analysis. *Journal of Experimental Education*, 63, 161-165.
- McNemar, Q. (1947). Note on the sampling error of the differences between correlated proportions or percentages. *Psychometrika*, 12, 153-157.
- Mosteller, F. & Tukey, J. W. (1968). Data analysis, including statistics. In G. Lindzey & E. Aronson (Eds.). *Handbook of social psychology* (Vol. 2, pp. 80-203). Reading, MA: Addison-Wesley.

Send correspondence to:	Mary G. Lieberman
	Florida Atlantic University
	Email: <u>mlieberm@fau.edu</u>

A Method for Choosing Weights to Predict College Grades for Admission Decisions and to Assess their Fairness by Race/Ethnicity

Steven Andrew Culpepper	Ernest C. Davenport	Mark L. Davison
University of Colorado Denver	University of Minnesota	University of Minnesota

Previous research suggests that equal weights tend to outperform statistically optimal weights in crossvalidation studies. This paper argues that the findings from the equal weights literature are relevant for researchers that predict college grades and/or assess differential prediction of college grades by student characteristics. An application of the criterion profile methodology (CPM) is presented to demonstrate how to examine individual criterion profiles. This study showed how to use the CPM to determine the extent to which equal and statistically optimal coefficients differentially predicted college grades for minority and majority students. The results support previous findings, in that, 92.5% of the explained variance in college grades was attributed to equal weights, where standardized test scores and high school rank were weighted equally, and 7.5% of the explained variance was accounted for by statistically optimal coefficients that weighted ACT Math scores less than ACT English and high school rank. Additionally, equally weighting admission information was more accurate for predicting Asian Americans' future academic performance than European Americans.

Prediction is an important aspect of scientific endeavors. For instance, educators predict student achievement, psychologists classify clients into different diagnoses, university personnel place students into developmentally appropriate courses, and economists forecast stock prices and economic conditions. Multiple regression is an important statistical tool for making these types of predictions.

One classic application of multiple regression is the prediction of college grades with standardized test scores and measures of high school academic success (Hills, 1964; McKelpin, 1965; Munday, 1965; Richards & Lutz, 1968; Sassenrath & Pugh, 1965; Stanley & Porter, 1967). Many applications of multiple regression for predicting college grades are designed to create an equation (which is later referred to as a selection equation) for admission officers to objectively select or sort applicants based upon predicted academic performance. However, practitioners interested in prediction should be cautious about using regression equations to predict applicants' grades. Specifically, using an estimated regression equation to select or sort applicants assumes the intercept and slope coefficients are statistically equal (i.e., invariant) across different demographic groups (Dorans, 2004).

Differential prediction, which occurs when the intercept and/or slope coefficients differ between two or more groups (Cleary, 1968; Humphreys, 1952), can impact admissions decisions that use quantitative information and multiple regression predictions. For instance, intercept differences indicate that one group's academic performance is over-predicted and another group's performance is under-predicted. Previous research suggests that racial/ethnic minority group performance is consistently over-predicted with a common regression equation (Breland, 1979; Burton & Ramist, 2001; Cleary, Humphreys, Kendrick, & Wesman, 1975; Duran, 1983; Linn, 1973; Stanley & Porter, 1967; Wilson, 1983; Young, 2001). In this case, admission decisions are biased in favor of minorities; using one equation to predict academic performance will tend to over-predict minorities' actual performance. In contrast, female's performance is consistently under-predicted (Bridgeman, McCamley-Jenkins, & Ervin, 2000; Chou & Huberty, 1990; Elliott & Strenta, 1988; Noble, 2003; Pennock-Román, 1994; Ramist, Lewis, & McCamley-Jenkins, 1993; Young, 1994).

Slope differences provide evidence about the accuracy of different variables for predicting group outcomes. For example, Young's (2001) review of differential prediction studies suggests that minority students tend to have smaller slope coefficients for academic predictors, such as test scores and high school grades, than their European American counterparts. Slope differences by race/ethnicity are often evidence that test scores and/or high school grades are less valuable indicators of minority students' future academic performance and should be considered differently and perhaps with less value in admissions decisions.

Researchers and practitioners need to assess the presence of differential prediction to ensure

responsible multiple regression-based predictions. While multiple regression is used to assess differential prediction (the application of regression to assessing differential prediction is also referred to as moderated multiple regression, or MMR, see for example Saunders, 1956), research suggests that it is not a perfect tool for uncovering differential prediction. Aguinis and Stone-Romero (1997) note that the power to detect slope coefficient differences is smaller when certain artifacts are present (e.g., small sample sizes, relatively low representation of minorities in the sample, measurement error in the predictor and criterion, and range restriction in the predictor). That is, the likelihood of uncovering true differences in slope coefficients is less likely when the aforementioned artifacts are present. This translates into researchers being less likely to conclude that test scores and/or high school academic achievement are less valuable indicators for a given minority group (e.g., comparisons by race/ethnicity, gender, first-generation status, etc.) even when such an inference is true in the population.

Dana and Dawes (2004) offer an additional caution for statisticians and practitioners who make predictions with multiple regression. Through the use of statistical simulations, Dana and Dawes (2004) contributed evidence to an existing body of research (Davis & Sauser, 1991; Dawes, 1979; Dawes & Corrigan, 1974; Dawes, Faust, & Meehl, 1989) that equal weights (i.e., slope coefficients that are equal for every predictor) tend to outperform statistically optimal weights (i.e., standardized slope coefficients derived with ordinary least squares, or OLS) in cross-validation samples. Dana and Dawes (2004) boldly conclude that multiple regression should not be used for prediction purposes when the total variance explained is small (i.e., R^2 is less than 0.25). Similarity, Einhorn and Hogarth (1975) suggest that regression should not be used when $R^2 < 0.50$.

High school grades and standardized test scores tend to account for less than 50% of the total variation in college grades (and sometimes less than 25% of variation). This poses a challenge for researchers who wish to predict college grades and/or conduct differential prediction studies. In particular, differential prediction studies use MMR to test the extent to which subgroups' differ in statistically optimal slope coefficients. Dana and Dawes' (2004) findings provide evidence that comparing the equivalence of statistically optimal weights may be inadvisable when R2 is small. Indeed, if equal weights account for the majority of variance in college grades rather than statistically optimal weights, it may be more appropriate to determine the extent to which equal weights differentially predict college grades for different subgroups.

The goal of this paper is to show how an external profile analysis technique can be used to assess differential prediction by race, while concurrently examining the value of equal and statistically optimal weights. A simple application of a criterion profile methodology (CPM; Davison & Davenport, 2002) is presented to test the extent to which statistically optimal and equal weights differentially predict the college grades of two minority groups (African; Asian Americans) when compared to European Americans.

One goal of this study was to assess differential prediction in a way that accommodates Dana and Dawes' (2004) concerns. Accordingly, the first section of this paper introduces the mathematical formulation of the CPM and describes how the CPM can address Dana and Dawes' (2004) concerns.

The CPM is an external profile analysis technique (Davison & Davenport, 2002) that yields a predictor profile that differentiates between subjects with high and low scores on a criterion, such as college grades. So, another goal of this study was to introduce researchers to the CPM, since it is applicable to other research endeavors. The profile analysis feature of the CPM was described to clearly articulate the model. In this study, high school grades and ACT test scores were used to demonstrate individual and sub-group profile differences. The third section discusses the results of the differential prediction analysis as it relates to using the CPM and the last section provides concluding remarks.

Description of the Criterion Profile Methodology

Profiles patterns identified with cluster analysis or multidimensional scaling have been criticized for not exhibiting criterion-related validity evidence (Watkins, 2000). The advantage of the CPM is that the identified profiles are explicitly related to a criterion, such as college grades in this study, and exhibit some degree of validity as determined by the strength of the relationship between the predictors and the criterion (Davison & Davenport, 2002). That is, the identified predictor patterns distinguish those low and high on the criterion variable.

Culpepper et al.

The CPM parses the variation in a criterion variable explained by a set of independent variables into two components: a level effect, which is characterized by an equally weighted linear composite of the predictors, and a pattern effect, which is the covariance between a subject's predictor profile and the regression coefficients. The relationship between the level effect and equal weights versus the pattern effect and optimal weights is discussed below.

To formally define these two effects we start with the usual regression model in Equation 1 below:

$$Y_{p} = \sum_{\nu=1}^{V} \beta_{\nu} X_{p\nu} + a + e_{p}$$
(1)

where Y_p represents the criterion score for person p, β_v represents the regression coefficient for variable v(v = 1 to V where V is the number of predictors and $V \ge 2$), and X_{pv} is the score for subject p on predictor v. Finally, a is the intercept of the regression equation and e_p is a random error term. The criterion profile is defined as the set of slope coefficients, β_1, β_2, \ldots , and β_v , for the p predictors.

Davison and Davenport (2002) prove that the regression model in equation 1 is equivalent to the following model:

$$Y_p = \gamma_1 Cov_p + \gamma_2 \overline{X}_p + a + e_p \tag{2}$$

where, \overline{X}_p is referred to as level, Cov_p is referred to as pattern, and γ_1 and γ_2 are their respective slope coefficients (these coefficients are standardized if Cov_p and \overline{X}_p represent z-scores). The first term on the right of Equation 2 constitutes the pattern effect, and the second term is the level effect. Regardless of the original number of predictors, the original regression equation can be reduced to three terms, *a*, Cov_p , and \overline{X}_p . It is important to note that Y_p and e_p are the same in Equations 1 and 2, so that the level and pattern variables together account for the same proportion of variation in the criterion as the original variables.

The equations for level and pattern are presented below in Equations 3 and 4:

$$\overline{X}_{p} = \frac{\sum_{\nu=1}^{r} X_{p\nu}}{V} ; \qquad (3)$$

$$\sum_{\nu=1}^{V} (\beta_{\nu} - \overline{\beta})(X_{\nu} - \overline{X}_{\nu})$$

$$Cov_{p} = \frac{\sum_{\nu=1}^{V} (\beta_{\nu} - \beta)(X_{p\nu} - X_{p})}{V} ; \qquad (4)$$

where the only new variable, $\overline{\beta}$, in Equation 4 represents the average of the regression coefficients. Equation 3 shows that level, \overline{X}_p , is person p's unweighted average on the independent variables, which suggests that individuals who tend to have larger (smaller) standardized values on the V predictors will also tend to have larger (smaller) values for level.

Pattern (Cov_p) is the covariance between person p's predictor scores and the weights from the original regression, and it is a measure of the match between the observed score profile of person p and the pattern that distinguishes people with high scores on the criterion. Individuals with predictor scores whose pattern matches the configuration of the regression weights will have larger profile match statistics Cov_p and therefore higher predicted values.

Because it is a covariance measure, pattern is positive for subjects whose scores are consistent with the criterion profile (i.e., the configuration of the slope coefficients, β_v) and negative for subjects whose scores are consistent with the mirror image of the criterion profile. The mirror image profile is defined by slope coefficients with the exact opposite configuration as the criterion profile. The coefficients for the mirror image profile (ψ_v) can be found with the following expression: $\psi_v = \overline{\beta} - (\beta_v - \overline{\beta}) = 2\overline{\beta} - \beta_v$. Subjects with predictor profiles corresponding to the mirror image pattern tend to have lower predicted values after controlling for level. The criterion and mirror image profiles are discussed later during the application of the CPM with admissions data.

Value of the CPM for Differential Prediction Studies

The CPM is useful for identifying profiles that differentiate between individuals with high and low criterion values, such as first year cumulative grade point average in our case. However, the criterion profile is only useful for differentiating between high and low CGPA scorers when the pattern effect is statistically significant after controlling for level, which occurs when the statistically optimal weights add predictive value in addition to equal weights. In fact, pattern is generally statistically significant when variability exists among the standardized regression weights. In cases where pattern provides no additional prediction in the criterion over that of level, the equal weight profile differentiates between low and high scoring subjects, subjects with larger criterion scores tend to have high values on all the predictors rather than a configuration of predictor scores.

The pattern variable is also important, since it represents the extent to which practitioners should employ statistically optimal weights in decisions. Referring to Equation 4 again, we see that pattern is particularly important for assessing differential prediction. The relative size of the regression weights vary along two extremes: the weights are either close to being equal or they differ substantially in magnitude. Pattern will account for less variation in a criterion when the regression weights are similar or equal to each other, which would lead to equal weights outperforming statistically optimal weights. Conversely, statistically optimal weights are important for prediction purposes when pattern accounts for relatively more variation in a criterion than level, or equal weights. Pattern is useful to the extent that the optimal weights (betas) vary and this variance in weights accounts for differences in the criterion.

This study assesses the value of using equal vs. statistically optimal weights by estimating the amount of variation that is accounted for by level and pattern. More formally, the hypothesis is:

H₀: $R^2_{\text{Level}} = R^2_{\text{Level} + \text{Pattern}}$ and H₁: $R^2_{\text{Level}} \neq R^2_{\text{Level} + \text{Pattern}}$;

which is testable with the traditional *F*-test comparing parametric regression models with V-1 and N-V-1 degrees of freedom where V is the number of independent variables and N is the sample size (Davison & Davenport, 2002). Substantively, this test will provide evidence for whether or not statistically optimal weights provide predictive value above and beyond equal weights.

Methods

Sample

This study used data from the entering class of 2000 at a public research university. The data was collected from each student during the pre-college admissions process and provided to the researchers by the Office for Institutional Research. The sample consisted of 2,035 students who enrolled in the College of Liberal Arts (CLA) fall 2000 and persisted through one year of academic study. These 2,035 students were disaggregated by self-reported race/ethnicity. Of the 2,035 students, 68 were African American (AFA), 11 were American Indian, 186 were Asian American (ASA), 1,683 were European American (EA), 38 were Hispanic, 5 were International, and 44 were unidentified. Only the AFA, ASA and EA groups were included in the analyses, since there were small numbers of American Indians, Hispanics, International, and unidentified students in the sample. The final sample size included 1,933 students (four students had missing scores on at least one of the predictors).

Variables

In this application of the CPM, the predictors of interest were students' ACT English sub-score (ACTE), ACT math test sub-score (ACTM), and high school percentile rank (HSR) and the criterion was first-year cumulative grade point average (CGPA). The regression and CPM analyses were conducted by standardizing the predictors and criterion across racial subgroups onto a z-score scale with a mean of zero and variance of one. Table 1 reports descriptive statistics of the variables. Certainly, one could argue that ACTE, ACTM, and HSR predict first-year grades differently depending upon the type of coursework or degree program in which a student engages. It is important to note that the students in the CLA were chosen to reduce the potential heterogeneity in regression equations across different colleges within the university.

Point of Caution

With respect to the CPM, there are no limitations of formulating the general linear model in terms of level and pattern. In fact, the reconfiguration of the general linear model into the CPM accounts for the same proportion of variance in the criterion. However, it is important to consider

Culpepper et al.

^	Std. Weight	Sig.	Part Corr.	M	SD
Regression Model ^a					
ACT English	0.306	***	0.261	24.3	4.30
ACT Math	0.087	***	0.074	24.6	4.08
High School Rank	0.306	***	0.302	80.8	11.50
CPM Model ^a					
Level	0.496	***	0.493	-0.0004	0.71
Pattern	0.138	***	0.137	-0.00003	0.05
Cross-Validation Summary	Sample 1	S	ample 2		
R^2 , Level Only	0.233		0.229		
R^2 , Level + Pattern	0.259		0.242	-	

Table 1. Multiple Regression and Criterion Profile Methodology Summary.

Note: Std Weight = Standardized slope coefficient, Sig. = Level of significance,

Part Corr. = Part Correlation, M = average, SD = standard deviation.

The average CGPA was 3.01 with a standard deviation equal to 0.59.

^aThe model $R^2 = 0.250$ for both the regression and CPM models.

* p < 0.05, ** p < 0.01, *** p < 0.001

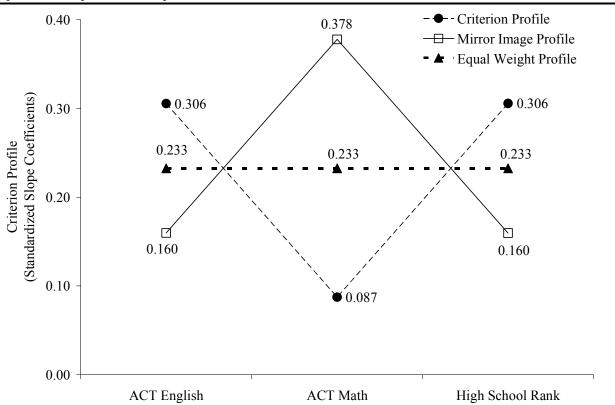


Figure 1. Pooled, within race/ethnicity, and equal weight criterion profiles. Note. $R^2 = 0.250$ for the criterion profile and $R^2 = 0.231$ for the equal weight profile.

one issue to ensure meaningful CPM analyses, which is that the independent variables need to be on either a substantively meaningful scale, such as the number of credit hours in various mathematics courses (Davison & Davenport, 2002), or the same scale, such as z-scores, to yield regression coefficients that are comparable in the criterion profile. Failure to address the scaling of the predictors may produce misleading or substantively uninformative results (Davison & Davenport, 2002).

Results

The results section consists of two subsections. In an effort to further articulate and demonstrate the CPM, the first section applies the CPM to identify a profile pattern that distinguishes those high and low on the criterion variable. The second section uses the CPM to assess the extent to which equal and statistically optimal weights differentially predict CGPA.

Profile Application of the Criterion Profile Methodology: Understanding Individual Differences.

Table 1 presents the regression summary of ACTE, ACTM, and HSR as predictors of CGPA. The regression model accounted for approximately 25.0% of the variation in CGPA. Furthermore, all the predictors were positively related to CGPA and were statistically significant at the 0.001 level. The standardized slope coefficients equaled 0.306, 0.087, and 0.306, for ACTE, ACTM, and HSR, respectively. The standardized slope coefficients define the criterion profile, which was characterized by larger weights for ACTE and HSR than for ACTM. The mirror image profile consisted of weights with an exact opposite configuration of the criterion profile. Figure 1 plots the criterion and mirror image profiles, in addition to the equal weight profile.

Figure 2 plots three subjects' standardized predictor profiles to demonstrate how the CPM can be used to describe individual differences. Figure 2 shows that subject 261 more closely matched the criterion profile and subject 144 matched the mirror image profile. The average pattern was approximately zero with a corresponding standard deviation of 0.05. Subject 144 had a pattern value about two standard deviations below the mean ($Cov_{144} = -0.13$) and subject 261 had a pattern value about two standard deviations above the mean ($Cov_{261} = 0.12$). Subject 122's standardized predictor profile resembled the equal weight profile, since the profile was nearly flat and the values for the three predictors were within one standard deviation of each other. Additionally, subject 122's profile did not match either the criterion or mirror image profiles, as indicated by $Cov_{122} = -0.001$. Moreover, subject 122 had the largest level value and subject 261 had the smallest value for level.

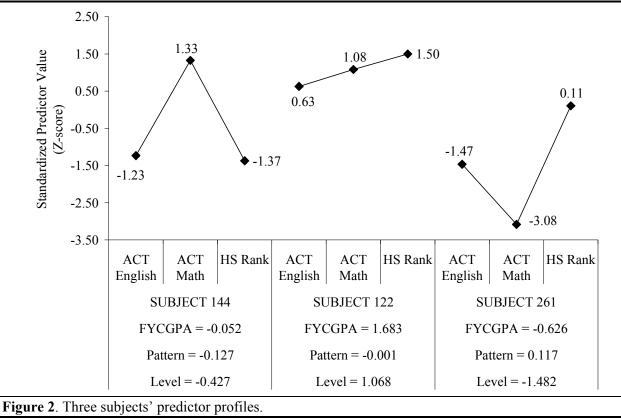
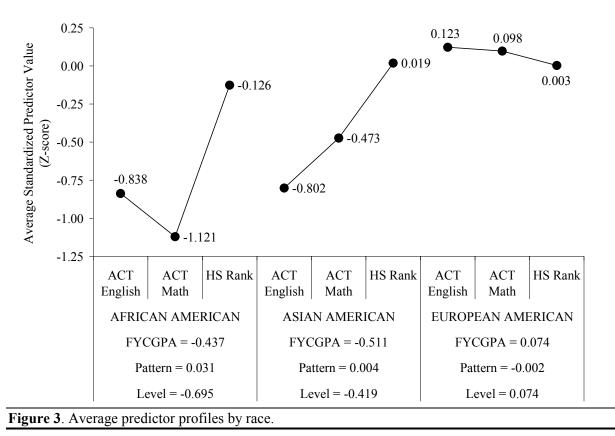



Figure 2 also includes information pertaining to the subjects' CGPA, which were standardized to z-scores. Of these three subjects, 122 performed the best academically (1.68) followed by Subject 144 (-0.05), and Subject 261 (-0.63). It is important to determine the extent to which higher academic performance was associated with individual differences in level, individual differences in pattern, or

Multiple Linear Regression Viewpoints, 2008, Vol. 34(2)

Culpepper et al.

individual differences in both level and pattern. To answer this question we need to understand the amount of variation that was captured by level and pattern independently (note that the bivariate correlation between level and pattern equaled -0.11, so the effects were nearly orthogonal). Table 1 presents the standardized slope coefficients (later denoted as β), *p*-values, and part-correlations for level ($\beta = 0.496$; p < 0.001) and pattern ($\beta = 0.138$; p < 0.001). A significant *F*-test (*F*(2, 1,929) = 23.6; p < 0.001) provided evidence that pattern accounted for variation in college grades after controlling for level.

The *F*-test results suggest that statistically optimal weights provided some predictive value that was not captured by equal weights. Still, the results suggest that the vast majority of variance accounted for in CGPA was attributed to level, or an equal weighting scheme. Squaring the part correlations in Table 1 yields the change in R^2 effect-size. Level alone accounted for 23.1% of the total variance in CGPA or 92.5% of the explained variance in CGPA (e.g., 0.231/0.250 = 0.925). Pattern accounted for 1.9% additional variance in CGPA or 7.5% of the explained variance in CGPA. This evidence suggests that individual differences in CGPA were more associated with differences in level than with pattern. From a prediction perspective, equal weights captured most of the variance in CGPA when compared to statistically optimal weights.

Davison and Davenport (2002) note that it is also important to cross-validate CPM findings to assess the value of level and pattern in a different sample. The total sample was randomly divided into two groups. Standardized test scores and high school rank were regressed onto CGPA and the resulting standardized slope coefficients were used to create pattern variables in the omitted sample. The bottom portion of Table 1 summarizes the cross-validation findings. In particular, level accounted for 23.3% and 22.9% of the total variance in CGPA within each sample. Pattern accounted for an additional 2.6% and 1.3% after controlling for level. The cross-validation results provide additional evidence that level accounted for the vast majority of variance in CGPA. Note that this cross-validation is especially important given sample fluctuations of regression weights and the fact that practitioners may use them as if they are stable.

This finding suggests that the differences among CGPA scores for the three subjects in Figure 2 were largely due to individual differences in level rather than pattern; i.e., subjects with higher academic performance in college tended to have higher scores on all of the predictors rather than a configuration of

predictor values that matched the criterion profile. For instance, Figure 2 shows that the subject who had the highest values on all of the predictors (Subject 122) also had the largest CGPA. Conversely, the two subjects that exhibited variability in their standardized predictor values had lower level values and lower academic performance.

Differential Prediction Application of the Criterion Profile Methodology

The previous section presented a profile application of the CPM. This section focuses upon the use of the CPM as a means of comparing the predictive value of statistically optimal weights and/or equal weights in differential prediction studies. Previous research suggests that an equally weighted linear composite of the independent variables provides predictive power comparable to or better than statistically optimal weights (Dana & Dawes, 2004; Davis & Sauser, 1991; Dawes, 1979; Dawes & Corrigan, 1974; Dawes et al., 1989). The use of the CPM for differential prediction studies offers a way to examine whether equal weights and/or statistically optimal weights are differentially valid for different groups simultaneously.

The CPM statistical results in Table 1 provided evidence that equally weighting the independent variables accounted for nearly all of the variation in CGPA. Thus, the value in using statistically optimal weights after controlling for an equally weighted linear composite was limited. In this instance, where level accounts for the majority of variation in CGPA, it may not be appropriate to assess differential prediction of subgroups by comparing the statistically optimal regression equations. Instead, a more meaningful differential prediction study should independently compare the extent to which level, a composite that equally weights the independent predictors, and pattern differentially predicts CGPA for students of different races/ethnicities.

Given the relative value of equal and statistically optimal weights in this study, it may be statistically appropriate to exclude pattern from the MMR model and only estimate whether level differential predicts college grades. Instead, pattern was included in the differential prediction model to demonstrate how researchers can use the CPM to address situations where level and pattern each account for a significant amount of variation in the criterion.

Table 2 presents CPM results for comparing the equivalence of subgroup regression equations. The estimated CPM-MMR model is shown below in Equation 5:

$$FYCGPA_{p} = b_{0} + b_{1}(AFA_{p}) + b_{2}(ASA_{p}) + b_{3}\overline{X}_{p} + b_{4}Cov_{p} + b_{5}(AFA_{p})\overline{X}_{p} + b_{6}(ASA_{p})\overline{X}_{p} + b_{7}(AFA_{p})Cov_{p} + b_{8}(ASA_{p})Cov_{p} + e_{p}$$

$$(5)$$

where the dummy variables: AFA_p and ASA_p , equal one for African American and Asian American students, respectively, and zero otherwise. Additionally, CGPA, level, and pattern were standardized. b_0 represents the average EA CGPA in standard deviation units, since EA was the reference group. b_1 and b_2 represent the average difference in CGPA between AFA and EA and ASA and EA, respectively. In other words, these two parameters represent necessary intercept adjustments to better predict these two minority groups relative to the majority group. Furthermore, the EA coefficient for level was b_3 and b_5 and b_6 denote the amount that the slope coefficient for level differed between AFA and EA and ASA and EA, respectively. Just as b_1 and b_2 represented adjustments, so does b_5 and b_6 . b_4 represents the contribution of pattern to the prediction equation for EA. b_7 and b_8 represent the corresponding adjustments to pattern for AFA and ASA, respectively.

Table 2. Criterion Profile Meth Moderated Multiple Regression	0,	
	Slope	Sig.
Intercept	0.031	
African American	-0.040	
Asian American	-0.181	*
Level	0.459	***
African American * Level	0.066	
Asian American * Level	0.182	*
Pattern	0.140	***
African American * Pattern	-0.015	
Asian American * Pattern	0.043	
Note. The model $R^2 = 0.259$.		
Level and Pattern were standar	dized.	
* $p < 0.05$, ** $p < 0.01$, *** p	< 0.001	

Culpepper et al.

The extent to which all adjustments are non-significant indicates the degree to which one regression equation would be equally predictive for the three racial/ethnic groups. Statistically significant b_5 and/or b_6 parameters would indicate group differences in the accuracy of equal weights for predicting college grades. Similarly, statistically significant b_7 and/or b_8 parameters would suggest that the ethnic groups were not equal relative to using optimal weights as represented by the beta coefficients.

The evidence in Table 2 suggests that AFA and EA did not statistically differ in regression equations. None of the adjustments for the AFA group were significant which indicates that the estimates provided by the referent group, EA, were sufficient for AFA. That is, level ($b_5 = 0.066$; p > 0.05) and pattern ($b_7 = -0.015$; p > 0.05) predicted the same for AFA and EA and there were no intercept differences ($b_1 = -0.040$; p > 0.05), which indicated that the AFA and EA groups performed similarly academically after controlling for the three measures of pre-collegiate academic success. Conversely, ASA exhibited a statistically lower intercept than EA ($b_2 = -0.18$; p < 0.05) and a larger slope coefficient for level ($b_6 = 0.18$; p < 0.05). The former finding suggests that the ASA group tended to earn lower CGPA than the EA group. The slope coefficients in equation 5 represent partial correlations, so the latter finding suggests that equal weights demonstrated more criterion-related validity for ASA students than for their EA counterparts. Moreover, in additional analyses, level accounted for 22.6% and 21.0% of the variance in CGPA for ASA and EA, respectively, which suggests that equal weights may have been slightly more accurate for ASA students. EA and ASA did not differ in the extent to which using statistically optimal weights related to the subsequent quality of the prediction.

Conclusion

This paper used the CPM to: 1) conduct profile analysis to differentiate between individuals and groups who earn high and low college grades; and 2) explore differential predictability in the use of equal and statistically optimal weights. The results provided evidence that equal weights, or level, accounted for more variance in CGPA than statistically optimal weights, pattern. The criterion profile, or statistically optimal weights, provided little additional predictive ability for differentiating between students with high and low CGPA scores. Therefore, the best weighting scheme was one that treated test scores and high school rank equally rather than the statistically optimal weighting scheme that gave more weight to ACT English and high school rank than to ACT Math. Perhaps intuition or research would suggest that ACT Math is not as good of a predictor of academic performance for students in liberal arts, since their coursework may include less mathematics. The findings of this study suggest that using equal weights for all applicants will capture most of the variability in first-year grades; approximately 90% of the accounted for variance. From a practitioner's perspective, the evidence suggests that ACT Math scores should be treated with the same weight or importance as ACT English scores, and high school rank in decisions for admitting applicants to the College of Liberal Arts.

This finding had direct relevance for assessing differential prediction. That is, statistically optimal weights accounted for very little variance in addition to equal weights. Thus, it was more appropriate to test the extent to which equal and statistically optimal weights differentially predicted grades for different racial groups. In fact, an equal weighting scheme was more valid for ASA than for EA. There was no evidence to suggest that AFA and EA equations differed, so the equal and statistically optimal weighting schemes provided similar predictive accuracy.

The use of equal or statistically optimal weights poses another methodological challenge for assessing differential prediction. Future differential prediction studies should determine the value of equal and statistically optimal weights by computing the variance accounted for by level and pattern in college grades in the full sample and in cross-validation samples. Failure to determine the relative value of equal and statistically optimal weights may result in researchers comparing the equivalence of groups in statistically optimal coefficients when equal weights account for the vast majority of variance in a criterion. This study demonstrated that the CPM is an appropriate method for addressing this methodological issue.

References

- Breland, H. M. (1979). *Population validity and college entrance measures* (Research Monograph No. 8). New York: College Entrance Examination Board.
- Bridgeman, B., McCamley-Jenkins, L., & Ervin, N. (2000). *Predictions of freshman grade-point average from the revised and recentered SAT I: Reasoning Test* (Research Report No. 2000-1). New York: College Entrance Examination Board.
- Burton, N. W., & Ramist, L. (2001). *Predicting success in college: SAT*® *studies of classes graduating since 1980* (Research Report No. 2001-1). New York: College Entrance Examination Board.
- Chou, T., & Huberty, C. J. (1990). A freshman admissions prediction equation: An evaluation and recommendation (No. ERIC Document Reproduction Service No. ED 333 081). Athens, Georgia: University of Georgia.
- Cleary, T. A. (1968). Test bias: Prediction of grades of Negro and white students in integrated colleges. *Journal of Educational Measurement*, *5*, 115-124.
- Cleary, T. A., Humphreys, L. G., Kendrick, S. A., & Wesman, A. (1975). Educational uses of tests with disadvantaged students. *American Psychologist*, 30, 15-41.
- Dana, J., & Dawes, R. M. (2004). The superiority of simple alternatives to regression for social science predictions. *Journal of Educational and Behavioral Statistics*, 29, 317-331.
- Davis, K. R., & Sauser, W. I. (1991). Effects of alternative weighting methods in a policy-capturing approach to job evaluation: A review and empirical investigation. *Personnel Psychology*, 44, 85-127.
- Davison, M. L., & Davenport, E. C., Jr. (2002). Identifying criterion-related patterns of predictor scores using multiple regression. *Psychological Methods*, 7, 468-484.
- Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34, 571-582.
- Dawes, R., M. & Corrigan, B. (1974). Linear models in decision making. *Psychological Bulletin*, 81, 95-106.
- Dawes, R., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 243, 1668-1674.
- Dorans, N. J. (2004). Using subpopulation invariance to assess test score equity. *Journal of Educational Measurement*, 41, 43-68.
- Duran, R. P. (1983). *Hispanics' education and background: Predictors of college achievement* (Research Report). New York: College Entrance Examination Board.
- Einhorn, H. J., & Hogarth, R. M. (1975). Unit weighting schemes for decision making. *Organizational Behavior and Human Performance*, 13, 171-192.
- Elliott, R., & Strenta, A. C. (1988). Effects of improving the reliability of the GPA on prediction generally and on comparative predictions for gender and race particularly. *Journal of Educational Measurement*, 25, 333-347.
- Hills, J. R. (1964). Prediction of college grades for all public colleges of a state. *Journal of Educational Measurement*, 1, 155-159.
- Humphreys, L. (1952). Individual differences. Annual Review of Psychology, 3, 131-150.
- Linn, R. L. (1973). Fair test use in selection. Review of Educational Research, 43, 139-161.
- McKelpin, J. P. (1965). Some implications of the intellectual characteristics of freshmen entering a liberal arts college. *Journal of Educational Measurement, 2*, 161-166.
- Munday, L. (1965). Predicting college grades in predominately negro colleges. *Journal of Educational Measurement*, 2, 157-159.
- Noble, J. (2003). The effects of using ACT composite score and high school average on college admission decisions for racial/ethnic groups (ACT Research Report Series No. 1). Iowa City: ACT Program.
- Pennock-Román, M. (1994). College major and gender differences in the prediction of college grades (College Board Report No. 2). New York: College Entrance Examination Board.
- Ramist, L., Lewis, C., & McCamley-Jenkins, L. (1993). *Student group differences in predicting college grades: Sex, language, and ethnic groups* (College Board Report No. 1). New York: College Entrance Examination Board.
- Richards, J. M., Jr., & Lutz, S. W. (1968). Predicting student accomplishment in college from the ACT assessment. *Journal of Educational Measurement*, *5*, 17-29.

Culpepper et al.

- Sassenrath, J. M., & Pugh, R. (1965). Relationships among CEEB Scholastic Aptitude Test and American College test scores and grade point average. *Journal of Educational Measurement*, 2, 199-205.
- Saunders, D. R. (1956). Moderator variables in prediction. *Educational and Psychological Measurement*, 16, 209-222.
- Stanley, J. C., & Porter, A. C. (1967). Correlation of scholastic aptitude test scores with college grades for negroes versus whites. *Journal of Educational Measurement, 4*, 199-218.
- Watkins, M. W. (2000). Cognitive profile analysis: A shared professional myth. School Psychology Quarterly, 15, 465-479.
- Wilson, K. M. (1983). A review of research on the prediction of academic performance after the freshman year (College Board Research Report No. 83-2 and Educational Testing Service Research Report No. 83-11). New York: College Entrance Examination Board.
- Young, J. W. (1994). Differential prediction of college grades by gender and by ethnicity: A replication study. *Educational and Psychological Measurement*, 54, 1022-1029.
- Young, J. W. (2001). *Differential validity, differential prediction, and college admission testing: A comprehensive review and analysis* (Research Report No. 2001-6). New York: College Entrance Examination Board.

Send correspondence to:	Steven Andrew Culpepper
	University of Colorado Denver
	Email: <u>steve.culpepper@ucdenver.edu</u>

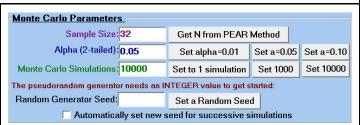
A Monte Carlo Program for Multiple Linear Regression

Gordon P. Brooks

Ohio University

The primary purpose of this presentation is to demonstrate a new computer program that statistics instructors can use to help teach certain regression topics in their courses. In particular, a computer program was written in Borland Delphi 2007 and will run under most recent versions of the Microsoft Windows operating system, including XP and Vista. The program may be downloaded free of charge.

The MCMR: Monte Carlo for Multiple Regression program performs Monte Carlo simulations of ordinary least squares multiple linear regression with up to 6 predictors. The program runs single sample analyses in addition to Monte Carlo simulations. For single samples, data can be saved and imported in comma-delimited text format. For Monte Carlo analyses, sampling distribution data can be saved for several regression statistics for further analyses elsewhere. The on-screen results from any analysis can be saved to a file and printed. The summary results provided from the Monte Carlo simulations include R-squared statistics, shrinkage statistics, regression coefficients, standard errors, and other relevant statistical results. Suggestions for use will be provided to help users understand how the program can be used effectively in intermediate statistics courses.


MCMR: Monte Carlo for Mulitple Regression (version	1 2008j)			
File Reset (F4) Run Analysis (F9) Options Help				This is the Opening Screen
Population Parameters <u>Actual</u>	Monte Carlo Parameters			that appears when the program
# of Predictors: Y: 0.0 1.0	Sample Size: <mark>32</mark>	Get N from PEAR Method		
Predictors: Y: 0.0 1.0 C 1 X1: 0.0 1.0	Alpha (2-tailed): <mark>0.05</mark>	Set alpha=0.01 Set a=0.05	Set a=0.10	is started (or after the "Reset
	Monte Carlo Simulations: 10000	Set to 1 simulation Set 1000	Set 10000	(F4)" menu option is chosen).
© 3 X3:0.0 1.0	The pseudorandom generator needs an	NTEGER value to get started:		
C 4	Random Generator Seed:	Set a Random Seed		
C 5	Automatically set new	seed for successive simulations		
C 6	Regression Coefficient Informatio			
Population Correlations (Rho)	<u>B SEB Beta</u>	<u>t Sig Zero- Part</u> order Corr	and the second se	
Get Matrix for a given R ²	B0			
X1 Blank all correlations	X1			
X2 X2 Set all Blank to 0	X2			
X3	X3			
		, <u>,</u> , ,		
	# samples w/at least 1 significant X:	after SIG model:		
	# samples watheast I significant A.			
Model Summary Information			010	
<u> </u>		d <u>f Mean F</u> <u>Square</u>	<u>_SIG</u>	
	Regression			
Cross-validity R ² (Rc ²) Precision Efficacy (R				
Cruss-valuity rs- (rsc-) Precision Efficacy (R	TOTAL	Expected F	R ² if Null true	
MC _{MR}		✓	Run (F9)	

The MCMR Program is available at: http://oak.cats.ohiou.edu/~brooksg/software.htm

3 sections require user input

This is where we describe the population from which samples will be drawn in the Monte Carlo process. That is, the Monte Carlo process randomly generates samples of data that could come from the particular population described (using means, standard deviations, and correlations).

Click "Run" (bottom right) or press F9 to begin the Monte Carlo analysis.

Set sample size, alpha, number of simulations, and maybe a seed for the random number generator (if you use the same seed, you get the same results).

- opulation	n Paramet			tual
# of Predictors:	V 00	<u>SD</u>	<u>_M</u>	<u>_SD</u>
r realetors.				
0 1	X1: 0.0	1.0		
02	X2: 0.0	1.0		
3	X3: 0.0	1.0		
O 4				
O 5				
0.6				

Choose the number of predictors and Set the population means and standard deviations (Y is the dependent variable, X1 is predictor 1, etc.)

Blank all correlations
X2 Set all Blank to 0

Set the population correlations (rho). You can get a random matrix that meets certain criteria (described later). Some matrices will not work as proper CORRELATION MATRICES. If one is entered, and error message will pop up, saying that the matrix is not Positive Definite (see Get Matrix section below).

After an analysis

File Reset (F4) Run Analysis (F9) Options Help			
Population Parameters	Monte Carlo Parameters		
# of Predictors: Y: 0.0 1.0 0.000 0.994	Sample Size: 37 Get N from PEAR Method		
	Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10		
	Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 Set 10000		
	The pseudorandom generator needs an INTEGER value to get started:		
	Random Generator Seed: 1932 Set a Random Seed		
	Automatically set new seed for successive simulations		
	Regression Coefficient Information (Averages and Counts)		
C 6	<u>B</u> <u>SEB</u> <u>Beta</u> Rejected Pro- <u>Zero-</u> <u>Part</u> <u>VIF</u>		
DV Get Matrix for a given B ²	portion <u>order</u> <u>Corr</u>		
	B0 -0.0008 0.1760 492 0.0492		
	X1 0.0002 0.1797 -0.0001 494 0.0494 -0.0008 0.0000 1.1334		
X2 0.0 0.0 <u>X2</u> Set all Blank to 0	X2 0.0005 0.1794 0.0005 500 0.0500 0.0017 0.0006 1.1323		
×30.0 0.0 0.0 <u>×3</u>	X3 -0.0005 0.1798 -0.0008 524 0.0524 -0.0013 -0.0007 1.1350		
X4 0.0 0.0 0.0 <u>X4</u>	X4 0.0009 0.1795 0.0008 490 0.0490 0.0006 0.0007 1.1345		
×5 <mark>0.0</mark> 0.0 0.0 0.0	X5 0.0029 0.1801 0.0030 542 0.0542 0.0020 0.0027 1.1339		
Show Actual Correlations rho ² = 0.000	# samples w/at least 1 significant X: 2154 (0.215) after SIG model 508 (0.051)		
Model Summary Information (Averages and Counts)			
<u> </u>			
0.3564 0.1385 0.0365 0.993	Regression 5.01 5 1.001 <mark>524 0.0524</mark>		
Cross-validity R ² (Rc ²) Precision Efficacy (F	C ² /R ²) Residual 31.06 31 1.002 Expected R ² if Null true		
0.0044 0.0120	TOTAL 36.07 36 k/(n-1) = 0.1389		
MC _{MR}	Finished 10000 VRun (F9)		

4 boxes contain results after an analysis, but not all are immediately obvious. Each section is described in greater detail below. This analysis was done with a seed of 1932. All population correlations were 0.0.

	n Par	amete			<u>tual</u>		AVERAGE Sa	mple Correlati	ons	
# of		<u>M</u>	<u>SD</u>	<u>M</u>	<u>SD</u>		DV			
Predictors:		0.0		0.000	0.994		X1 -0.001 <u>X1</u>	-		
01	X1:			0.004	0.994		X2 0.002 0.001			
02	X2:	2012/00	0.000	0.001	0.995		X3 -0.001 -0.00		-	
03	X3:			0.000	0.994		X4 0.001 0.002			
O 4	X4:	1997-1997-1997-1997-1997-1997-1997-1997		0.001	0.995		x5 0.002 0.002	-0.001 0.002	0.004	
5	X5:	0.0	1.0	0.000	0.992					
O 6							Show Pop. Co	rrelations rh	o ² = 0.000	
Regres	ssio	n Co	effici	ent Ir	nform	ation (Av	/erades a	nd Counts	s)	
-	B		SEB	B	<u>eta</u>	Rejected	l Pro-	<u>Zero-</u>	Part	VIE
B0 -0.					eta	-	-			<u>VIF</u>
		8 0	SEB		<u>eta</u> 0001	Rejected	l Pro- portion	<u>Zero-</u>	Part Corr	<u>VIF</u> 1.1334
X1 0.0	.000	8 0 2 0	<u>SEB</u> .1760	-0.0		Rejected <mark>492</mark>	Pro- portion 0.0492	<u>Zero-</u> order	Part Corr	
x1 0.0 x2 0.0	.000)002	8 0 2 0 5 0	<u>SEB</u> .1760 .1797	-0.0	0001	Rejected 492 494	Pro- portion 0.0492 0.0494	<u>Zero-</u> order -0.0008	Part Corr 0.0000	1.1334
X1 0.0 X2 0.0 X3 -0	.000)002)005	8 0 2 0 5 0 5 0	SEB .1760 .1797 .1794	-0.0 0.0 -0.0	0001 005	Rejected 492 494 500	0.0492 0.0494 0.0500	Zero- order -0.0008 0.0017	Part Corr 0.0000 0.0006	1.1334 1.1323
X1 0.0 X2 0.0 X3 -0 X4 0.0	.000)002)005 .000	8 0 2 0 5 0 5 0 0 0	SEB .1760 .1797 .1794 .1798	-0.0 0.0 -0.0	0001 005 0008	Rejected 492 494 500 524	Pro- portion 0.0492 0.0494 0.0500 0.0524	Zero- order -0.0008 0.0017 -0.0013	Part Corr 0.0000 0.0006 -0.0007	1.1334 1.1323 1.1350

The average ACTUAL regression coefficient information is reported in this box — except for the "Rejected" and "Proportion" columns, which report the number (and proportion) of samples in which the particular regression coefficient (represented by X1, X2, etc.) was statistically significant.

"# samples w/at least 1 significant X" reports how many samples had at least one significant predictor.

"after SIG model" reports how many samples had at least one significant predictor following a significant overall regression model (the idea being that we don't usually examine the statistical significance of regression coefficients unless the model was first significant—but that doesn't mean that some predictors weren't significant anyway).

B0 represents the CONSTANT in the regression equation. By default, B0 is not included in the 2 counts (above), but there is a menu option that will allow it to be included.

<u>_R_</u>	<u></u>	(<u>Ra²)</u>	<u>Std. Error of</u> the Estimate		<u>Squares</u>	df	Mean Square		Proportion Significant
0.3564	0.1385	0.0365	0.9931	Regression		5	1.001	<mark>524</mark>	<mark>0.0524</mark>
Cross-validit	ty R² (Rc²)		icacy (Rc²/R²)	Residual	-	31	1.002		l R ² if Null tru
0.0044		0.0120		TOTAL	36.07	36		k/(n-1)	= 0.1389
ignificant o	overall regre	ssion models		w many (and	X Stop Ri	unning	·	V	Run (F9)
				e bottom pan o Running" bu		ss bar) lo	oks like this	s. You can st	op the Mon
			Finished	10000				-	Run (F9)
After the an	alysis is fini		tom panel wil	ll look like thi		ave abor	ted the proc	ess by pressi	ng the "Sto
Running" b	utton, the nu	mber actually	y finished wil	l appear in the	e panel.				
Running" b	utton, the nu	mber actually	y finished wil Finished	**	e panel.		Click "Show RUN another	Pop. Correlatio r analysis	ons" button to
f you revie continue wi	w the ACTU	JAL correlati	Finished	10000 ng on the "Sho til you press th	ow Actual		RUN another ions" buttor	analysis 1, you will no	ot be able to
If you revie continue wi	w the ACTU	JAL correlati	Finished ons by clickin o analyses un	10000 ng on the "Sho til you press th " button.	ow Actual		RUN another ions" buttor	n, you will no nutton (which	ot be able to
f you revie continue wi he same bu Although no going backy	w the ACTU th additional tton as the " ot done in th vards by one	JAL correlati Monte Carlo Show Actual is example, ve sample. Ofte	Finished ons by clickin o analyses unt Correlations Finished when you run en, you get to	10000 ng on the "Sho til you press th " button.	ow Actual he "Show 3 GLE SAM 'Run" butt	Pop. Cor	RUN another ions" buttor relations" b Back U lyses, you v uickly and y	n, you will no putton (which Up	ot be able to is actually Run (F9) option of
f you revie continue wi he same bu Although no going backy a sample wi	w the ACTU th additional tton as the " ot done in th vards by one th interestin	JAL correlati Monte Carlo Show Actual is example, ve sample. Ofte	Finished ons by clickin o analyses unt Correlations Finished when you run en, you get to s "Back Up"	10000 ng on the "Sho til you press th " button. 1 multiple SING c clicking the "	ow Actual he "Show 3 GLE SAM 'Run" butt	Pop. Cor	RUN another ions" buttor relations" b Back U lyses, you v uickly and y	n, you will no putton (which Up	ot be able to is actually Run (F9) option of
f you revie continue wi he same bu Although no going backw a sample wi ACTUAL S DV X1 -0.267 X2 0.050 0 X3 -0.093 0	w the ACTU th additional tton as the " ot done in th vards by one th interestin Single Samp X10.147 X20.35 * [-0.41*]	JAL correlati Monte Carlo Show Actual is example, v e sample. Ofte g results. Thi ble Correlati	Finished ons by clickin o analyses unt Correlations Finished when you run en, you get to s "Back Up"	10000 ng on the "Sho til you press the "button. 1 multiple SING o clicking the " button will all Another do statistically	ow Actual he "Show GLE SAM 'Run" butt low you to lifference / significa	Pop. Cor PLE ana ton too q go back for SIN ant pairy	RUN another ions" buttor relations" b Back U lyses, you v uickly and y 1 sample (l NGLE SAN vise correla	n, you will no putton (which Up	ot be able to is actually Run (F9) option of le to stop of vses is that
If you revie continue wi the same bu Although no going backy a sample wi ACTUAL S DV X1 -0.267 X2 0.050 0 X3 -0.093 0 X4 -0.31 * -	w the ACTU th additional tton as the " ot done in th vards by one th interesting Single Samp $\times 1$ 0.147 $\times 2$	JAL correlati Monte Carlo Show Actual is example, ve sample. Ofto g results. Thi ble Correlati	Finished ons by clickin o analyses unt Correlations Finished when you run en, you get to s "Back Up"	10000 ng on the "Sho til you press the "button. 1 multiple SING o clicking the " button will all Another do statistically	ow Actual he "Show GLE SAM 'Run" butt low you to lifference / significa	Pop. Cor PLE ana ton too q go back for SIN ant pairy	RUN another ions" buttor relations" b Back U lyses, you v uickly and y 1 sample (l NGLE SAN vise correla	Analysis h, you will no putton (which Jp vill have the you aren't ab- but only 1). MPLE analy ations are n	ot be able to is actually Run (F9) option of le to stop of vses is that

	<u>_B</u> _	<u>SEB</u>	nt Inform: <u>Beta</u>	t	Sig	<u>Zero-</u> order	<u>Part</u> Corr	VIF
B0	0.0300	0.1699		<mark>0.1766</mark>	0.8610			
X1	-0.3296	0.1523	-0.3974	-2.1649	0.0382	-0.2665	-0.3422	1.3480
X2	0.1560	0.2108	0.1366	0.7400	0.4649	0.0499	0.1170	1.3634
хз	0.1075	0.1918	0.1097	0.5607	0.5790	-0.0928	0.0886	1.5318
X4	-0.3338	0.1524	-0.3659	-2.1908	0.0361	-0.3094	-0.3463	1.1159
X5	-0.0686	0.1708	-0.0658	-0.4017	0.6907	-0.1449	-0.0635	1.0721
						,		,

For SINGLE SAMPLE analyses, the "Rejected" and "Proportion" columns change to the actual *t* statistics and *p* values ("Sig") for each regression coefficient.

By the way, "B" is the unstandardized regression coefficient, "SEB" is the standard error for the unstandardized regression coefficient, "Zero-order" is the Pearson correlation between each predictor and Y, "Part Corr" is the part (or semi-partial) correlation between each predictor and Y GIVEN the other predictors in the model, and "VIF" is the variance inflation factor (1/Tolerance) used for diagnosing multicollinearity.

The "At least 1 significant predictor (X) ?" box shows whether any of the regression coefficients was statistically significant (but not which one).

Both bottom boxes turn from white to GREEN if "YES"

10000	nmary Inform R ²	ation (Single Adjusted R ²	Second Second Second	Source of	Sum of	df	Mean	F	_Sig_
<u>_R</u> _	<u>_R-</u>	<u>Aujusteu R-</u> (<u>Ra²)</u>	the Estimate		<u>Squares</u>		<u>Square</u>	_ <u>.</u>	
0.4746	0.2253	0.1003	0.9766	Regression	8.60	5	1.719	1.8029	0.1414
Cross-valid	ity R ² (Rc ²)	Precision Effi	cacy (Rc²/R²)	Residual	29.57	31	0.954	Expecte	ed R ² if Null true
0.0000		0.0000		TOTAL	38.16	36			= 0.1389

For SINGLE SAMPLE analyses, the "Rejections" and "Proportion Significant" columns change to the actual *F* statistic and the actual *p* value significance of the regression model ("Sig").

If the model is statistically significant, the "F" and "Sig" boxes turn from yellow to GREEN. If Adjusted R^2 or Cross-validity R^2 are negative they are set to 0.0 (theoretically, neither they nor R^2 can be negative).

By the way, the "Expected R² if Null True" box uses the calculation presented by Herzberg (1969), k/(n-1), to show the bias of the R² statistic. The "Options" menu allows you to change the information reported here to a few other things.

File Reset (4) Run Ana	alysis (F9)	Options	Help	
- <u>Populatio</u>	<u>n Paramet</u>			tual	Monte C
# of Predictors:	Y: 0.0	<u>SD</u>	<u>_M</u> -0.001	<u>_SD</u> 0.993	
Predictors.					
	X1: 0.0	1.0	0.001	0.989	
nalysis, just like clickin		utton or pressin	g the F9 key.		· · · ·
View and Save A			0.000	. 10000	2000 n .:
	ulation Data for Mo ulation Data for Pre	••••••		aximum 10000 sa ximum 10000 sir	
	elimited Data (no	-			
Exit		·····y,			Ctrl+F4
		version of the r	esults in anothe	er window (below	y), which will also allow ye
	Ionte Carlo simulate	ed samples (up	to a maximum	of 10,000) for ana	R ² , Standard Error of the alysis in any program that ile.
	ulated samples (up t	o a maximum o	of 10,000) for a	nalysis in any pro	cs (e.g., B, SEB, Beta) fro gram that accepts Comma
If you are running a SIN the current single sampl					AMPLE data. The data fro
allow you to import data	a saved in appropriat	te format from	any other prog	ram (e.g., a spread	aved with MCMR, or will lsheet or statistics program ne data begin on line 1.

View Information	
Save Print Exit	
MCMR AnalysisInformation as it appears on Screen	•
<pre>(note that the term AVERAGE has been used in this) (output even for individual single sample results)</pre>	-
Population Parameters:	=
Number of Predictors = 5 Number of Cases = 32 Alpha level = 0.05 Number of Simulations = 10000	
Seed Showing Now = 1932	
Means and Standard Deviations:	
Dependent V: Pop_M=0.0 Pop_SD=1.0 Avg_M=0.001 Avg_SD=0.991 Predictor 1: Pop_M=0.0 Pop_SD=1.0 Avg_M=0.000 Avg_SD=0.993	
Predictor 2: Pop_M=0.0 Pop_SD=1.0 Avg_M=0.003 Avg_SD=0.992 Predictor 3: Pop_M=0.0 Pop_SD=1.0 Avg_M=-0.001 Avg_SD=0.991	
Predictor 4: Pop_M=0.0 Pop_SD=1.0 Avg_M=0.000 Avg_SD=0.995 Predictor 5: Pop_M=0.0 Pop_SD=1.0 Avg_M=0.001 Avg_SD=0.993	
Population Correlations:	
r1y=0.0 r2y=0.0 r21=0.0	
r3y=0.0 r31=0.0 r32=0.0 r4y=0.0 r41=0.0 r42=0.0 r43=0.0	
r5y=0.0 r51=0.0 r52=0.0 r53=0.0 r54=0.0	

All "View and Save" options will open this window. From here, you can "Save" or "Print" the information in the window (using the appropriate menu option).

•	ALL OPTIONS START WITH NEXT ANALYSIS CONSTANT Include Constant in Equation	Currently, only analyses with the Constant Included in the Equation are permitted. There are 4 types of information that can be
•	Do Not Include Constant EXPECTED R ² info (starts with next analysis) Always use Expected R ² for true Null Hypothesis Use Expected R ² for given rho ² {rho ² + [k/(n-1)](1-rho ²)} (Herzberg, 1969) Show average shrinkage based on Adjusted R ² (R ² - Ra ²) Show average shrinkage based on Cross-Validity R ² (R ² - Rc ²)	reported in the box that by default is labeled "Expected R ² if Null true" — 2 for expected R ² and 2 for shrinkage. Precision Efficacy (Brooks, 1998) is calculated
•	PRECISION EFFICACY Calculation Use Cross-Validity R ² in Precision Efficacy Formula Use Adjusted ² in Precision Efficacy Formula	using Cross-Validity R^2 by default, but could be calculated using Adjusted R^2 . (see help menu for additional information about Precision Efficacy) Different formulas can be used to calculate Cross-
۰	CROSS-VALIDITY R ² (Shrinkage) FORMULA TO USE: Stein (1960)-Darlington (1968) Random-model formula Lord (1950) from Uhl & Eisenberg (1970) Random-model formula Browne (1975) Random-model formula Lord (1950)-Nicholson (1960) Fixed-model formula Rozeboom (1978) Fixed-model formula Olkin-Pratt from Herzberg (1969) Adjusted R ² formula (note: Adjusted R ² is from Wherry (1931)-Ezekiel (1930)	Validity $R^2 - 6$ are available here. You can choose to have significant B0 included in the counts reported (by default it is not).
	"AT LEAST 1" COUNTS Include B0 in "At Least 1" counts	

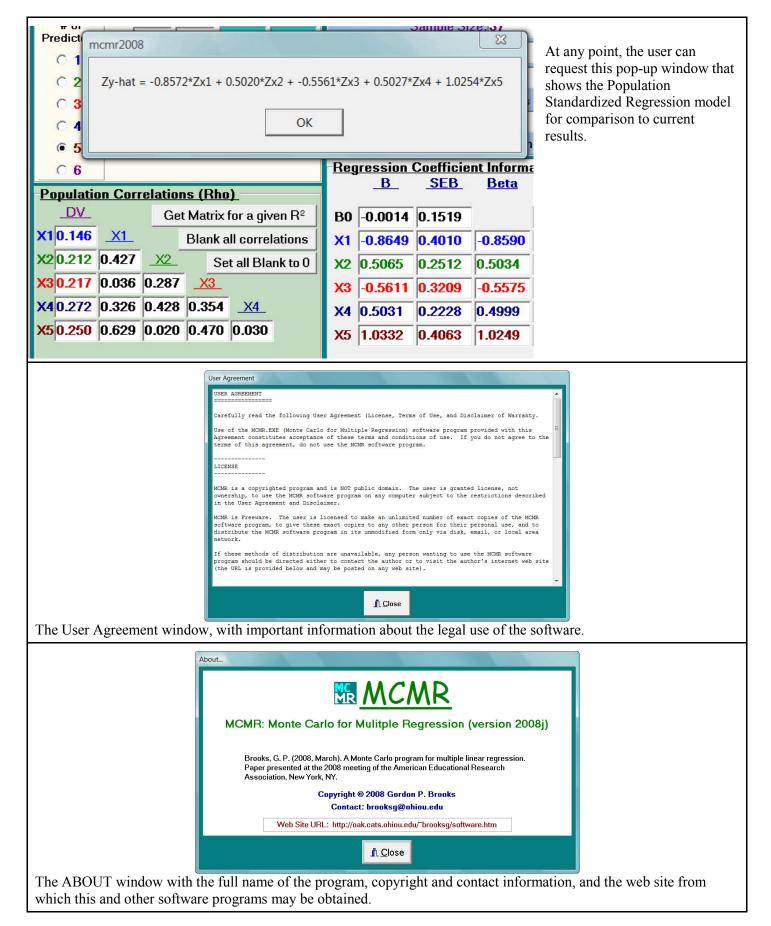
Multiple Linear Regression Viewpoints, 2008, Vol. 34(2)

Precision Efficacy (PEAR) Information

Show Population Regression Equation

User Agreement

About


The "Precision Efficacy (PEAR) Information" option will open a window that contains an except from a paper written in 1998 (see below).

"Show Population Regression Equation" will show the STANDARDIZED regression model based on the Population Correlation matrix used to generate data for the analysis.

"User Agreement" opens a window with LICENSE information (important).

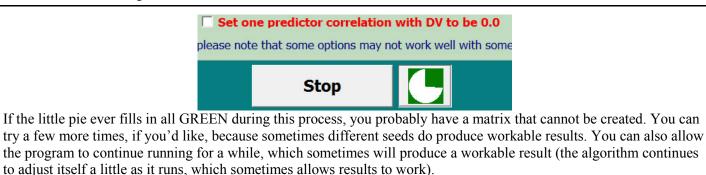
"About" provides some basic information about the MCMR program.

Precision Efficacy Information	
EXCERPTED AND ADAPTED FROM:	
Brooks, G. P. (1998, October). Precision efficacy analysis for regression. Paper presented at the meeting of the Mid-Western Educational Research Association, Chicago, IL. (ERIC Document Reproduction Service No. ED 428 083)	
FUNDAMENTALS OF PRECISION EFFICACY ANALYSIS FOR REGRESSION (PEAR)	
The primary goal of precision efficacy analysis is to reduce the upward bias of R ² , thereby better estimating both RHO ² and RHOc ² so that results are less likely to be sample specific. The PEAR method provides researchers with a means to determine the optimum minimum sample size for prediction studies. Provided that the researcher can make a reasonable estimate of the population RHO ² , the PEAR method has been shown to provide very consistent precision efficacy rates.	
PRECISION EFFICACY	
The term precision efficacy (PE) is proposed to indicate how well a regression model is expected to perform when applied to future subjects relative to its effectiveness in the derivation sample. It should be noted that Brooks and Barcikowski (1994, 1995, 1996) have used the terms "predictive power" and "precision power" for this expectation. However, it is believed that the use of the word "power" may mislead researchers into thinking that precision power is directly related to statistical power. Therefore, for the present study, the term precision efficacy will be used, recognizing that efficacy is the "the power to produce an effect" (Woolf, 1975, p.362).	
Precision efficacy provides a measure of the relative efficiency of a regression equation, but does not indicate the value of a model in any absolute sense for either prediction or explanation. The formal definition of precision efficacy is	
$PE = Rc^2 / R^2,$	
where R^2 is the sample coefficient of determination and Rc^2 is the sample cross-validity estimate. For example, if 48% cross-validity shrinkage from sample R^2 =.50 to Rc^2 =.26 occurs, the precision efficacy is PE=.26/.50=.52. Larger precision efficacy values imply that a regression model is expected to generalize better in future samples.	
Cross-validity estimates describe how well a multiple linear regression equation will generalize to other samples. Several	
Print ✓ Done	

Secondary Window: Get a Population Ma	atrix with certain Given Characteristics
Population Correlations (Rho) DV Get Matrix for a given R ² X1 0.170 X1 Blank all correlations X2 0.329 0.725 X2 Set all Blank to 0 X3 0.107 0.631 0.810 X3 X4 0.318 0.413 0.849 0.476	If you click the "Get Matrix for a Given R2" button, the following window will open — allowing you to get a correlation matrix that meets certain criteria.
Set R ²	
What R ² would you like for your data	0.25 Set to .10 Set to .25 Set to .50 Set to .75
(please note that because this will serve a	as a POPULATION matrix, the sample data may not produce this matrix exactly)
How close do you want to approxim	nate this R ² value? 0.01 Set to .005 Set to .01 Set to .02
(please note that the closer you wish to a	approximte R ² , the longer this process may take 0.01 works relatively well)
What VIF value do you consider prol	blematic? 10 Set to 5 Set to 10 Set to 20
(many scholars consider it problematic wh	when VIF is over 10, but some consider it troublesome even when VIF > 5)
NONE Some	E correlations do you want in your population matrix? About HALF O Most O ALL wility, so you may not get exactly the right numberyou can always try again)
 Absolutely None (all correlation) No worrisome Collinearity (no V 1 or 2 predictor with VIF over the 2 or 3 predictors with VIF over the 4 or more predictors with VIF over Set one predictor correlation with 	VIF values for any predictor above the "problematic" value set above) he "problematic" value set above the "problematic" value set above over the "problematic" value set above
	× Cancel ✓ OK
	hen you click "OK" a correlation matrix will be found with the given criteria will be transferred to the main MCMR program screen into the "Population

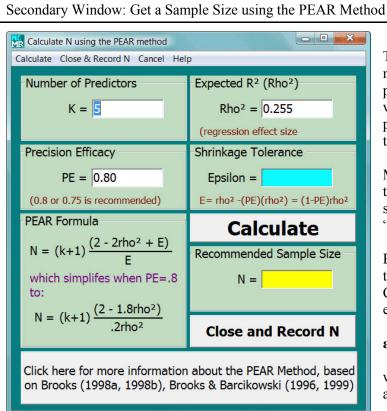
What R² would you like for your data?0.25Set to .10Set to .25Set to .50Set to .75(please note that because this will serve as a POPULATION matrix, the sample data may not produce this matrix exactly)You can choose any R² for your POPULATION correlation matrix (so really this is a rho² or ρ² value), but buttons are provided for some common values (these are based on tables from Park & Dudycha, 1974).Remember, however, that this will derive a POPULATION correlation matrix, from which samples will be drawn during the Monte Carlo process. This value says nothing specific about any of the R² values calculated in the samples (other than they should be from the population with the derived population correlation matrix).
How close do you want to approximate this R² value?0.01Set to .005Set to .01Set to .02(please note that the closer you wish to approximte R², the longer this process may take 0.01 works relatively well)You can choose how close you want to approximate the population R² set in the previous box. While it is indeed possible to approximate some matrices very closely, anything smaller than 0.001 will likely take a good deal of time. The values 0.01, or even 0.005, seem to work pretty well if you really want to get exact.Remember, however, that this is how closely you approximate the desired population R² in the POPULATION correlation matrix, and says nothing about the samples drawn during the Monte Carlo process.
What VIF value do you consider problematic?10Set to 5Set to 10Set to 20(many scholars consider it problematic when VIF is over 10, but some consider it troublesome even when VIF > 5)You can set any value above 1.0 for the critical VIF threshold value. Most scholars choose 5.0 or 10.0, depending on how much MULTICOLLINEARITY(also called COLLINEARITY) you're willing to tolerate.Recall that VIF = 1/Tolerance, where Tolerance = $1 - R_j^2$, where R_j^2 is the squared correlation when the j^{th} predictor acts as a temporary dependent variable being predicted by all the other predictors.
Approximately how many NEGATIVE correlations do you want in your population matrix? • NONE • Some • About HALF • Most • All (please note that this is based on probability, so you may not get exactly the right numberyou can always try again) This option will allow you to create a population correlation matrix with some (or many) negative correlations.

\$


How much MULTICOLLINEARITY would you like built into your population correlation matrix?

- Absolutely None (all correlations among predictor = 0)
- No worrisome Collinearity (no VIF values for any predictor above the "problematic" value set above)
- 1 or 2 predictor with VIF over the "problematic" value set above
- 2 or 3 predictors with VIF over the "problematic" value set above
- 4 or more predictors with VIF over the "problematic" value set above
- Set one predictor correlation with DV to be 0.0

(please note that some options may not work well with some numbers of predictors)


- This box will allow you to request a certain level of multicollinearity in your population correlation matrix.
 - "Absolutely None" requires that all intercorrelations among predictors are 0.0, but the correlations between the predictors and Y will be set randomly to provide the R^2 given above.
- * "No Worrisome Collinearity" will produce a population correlation matrix where all predictor intercorrelations will be non-zero, but will be probably smaller than the critical VIF set above.
- * "1 or 2 predictors with VIF" will produce a population correlation matrix such that predictor intercorrelations will probably result in at least 1, but not more than 2, VIF values over the critical value
- \$ "2 or 3 predictors with VIF" will produce a population correlation matrix such that predictor intercorrelations will probably result in at least 2, but not more than 3, VIF values over the critical value
- \$ "4 or more predictors with VIF" will produce a population correlation matrix such that predictor intercorrelations will probably result in at least 4 VIF values over the critical value

Note that "probably" was included in these descriptions. There are rare occasions, given certain starting correlations used in the algorithm, where the resulting correlation matrix does not match the criteria exactly. You can either go ahead and use the derived matrix, or simply try another. Different seeds used in each run of this sub-program result in different matrices being created.

ite, as correlation matrices	are assumed to be. We ne	eed a good
enerate data. Please try and	other matrix.	-
	ОК	OK

This error message will be shown whenever the "Stop" button is pushed (above), whenever the user has entered an inappropriate matrix, or on very rare occasions where rounding the derived correlations to 3 decimal places impacts the matrix enough to make it unusable.

Precision Efficacy would therefore be PE = 1 - PS, or

$\mathbf{PE} = \mathbf{R_C}^2 / \mathbf{R}^2$

Solving $PE = 1 - \epsilon/R^2$ for ϵ , and replacing R^2 with an expected, a priori Re^2 , results in the formula

$\varepsilon = R_{\rm E}^2 - (PE)(R_{\rm E}^2)$

where R_E^2 is often just set at the expected population ρ^2 . Because Precision Efficacy (PE) is usually set at .75 or .80, shrinkage would usually be $.25\rho^2$ or $.2\rho^2$, respectively. Note that shrinkage may also be set absolutely as something like $\epsilon = .05$ or $\epsilon = .10$.

Once parameters are set, "Calculate" will determine the required sample size. The recommended sample size will appear in the YELLOW box underneath the "Calculate" button.

"Close and Record N" will move this sample size to the main screen.

"Cancel" (on the menu bar) will close the dialog window without making any changes to the main screen.

The user can change the parameters of the PEAR method (Brooks, 1998). By default, this window will provide the information for the analysis in the main window, if possible. For example, once the number of predictors is determined, it will be filled in here. Note that any number of predictors can be inserted.

More information about Precision Efficacy (PE) and the Precision Efficacy Analysis for Regression (PEAR) sample size method can be found by clicking the "Click here for more information" button (see below).

Briefly, however, Precision Efficacy is a complement to Proportional Shrinkage based on an appropriate Cross-validity $R^2 (R_C^2)$ formula. Shrinkage itself (ε , or epsilon) can be written as

$$\varepsilon = \mathbf{R}^2 - \mathbf{R}_{\mathrm{C}}^{2}$$

whereas Proportional Shrinkage (PS) might be written as $PS = (R^2 - R_C^2) / R^2$

Although the PEAR method was derived using Cross-Validity R^2 (Brooks, 1998), it is theoretically reasonable to apply the same idea to Precision Efficacy calculated using Adjusted R^2 instead. Algina and Olejnik (2000) have discussed a similar idea, but different approach, to sample sizes for Adjusted R^2 .

In this case, sample sizes would be determined such that the SHRINKAGE from R^2 to Adjusted R^2 would be maintained within a certain range. For example, if R^2 is .25, then Adjusted R^2 would be at least .20 when Precision Efficacy of .80 was used as the criterion. The formula for sample sizes to be used with such an approach would be

$$N = (k+1)(1 - R_E^2 + \varepsilon) / \varepsilon$$

Where

 R_E^2 = expected population ρ^2 k = number of predictors $\varepsilon = (R^2 - R_A^2)$

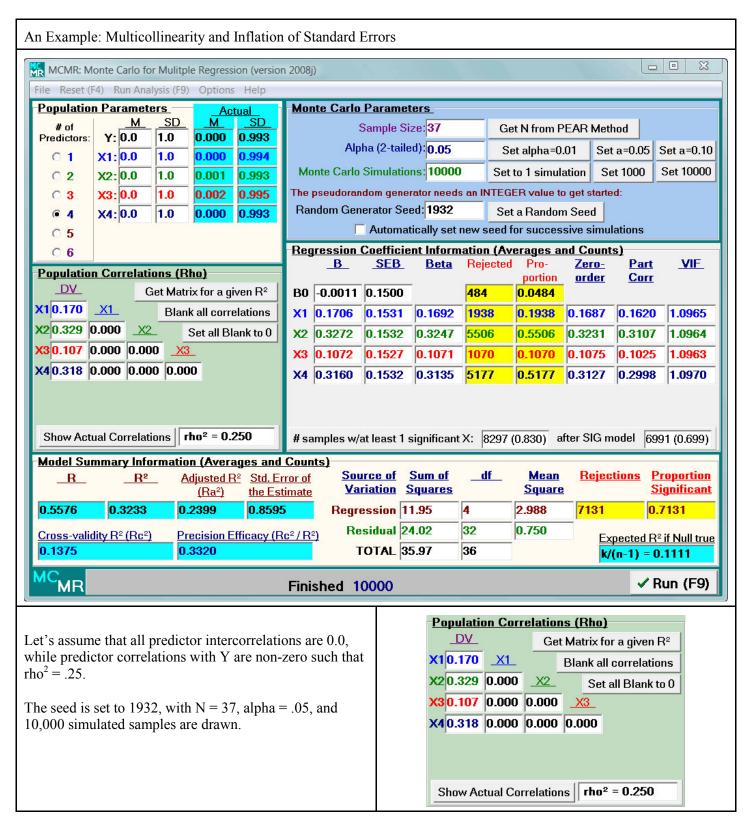
as compared to

 $N = (k+1)(2-2R_E^2+\varepsilon) / \varepsilon$

where $\varepsilon = (\mathbf{R}^2 - \mathbf{R}_C^2)$

for Cross-Validity (see Brooks, 1998). Shrinkage tolerance can also be calculated as

 $\varepsilon = (1 - PE) R^2$


where, for PE = .80, it would simplify to (just like it would also for the Cross-Validity approach)

 $\varepsilon = .2R^2$

Recall that one of the options on the "Options" menu is to use Adjusted R^2 in the Precision Efficacy formula instead of Cross-Validity R^2 .

The key difference is that for Cross-validity Precision Efficacy, the idea is to INCREASE Cross-validity R^2 ; however, for Adjusted R^2 , the idea is more to DECREASE R^2 , making it closer to the true population parameter (since Adjusted R^2 is usually a good estimate of rho²).

Either method helps make the model more generalizable by decreasing the standard errors for the regression coefficients. The Corss-validity approach is more stringent because it accounts for error not only in the regression model derivation sample, but also for the error in future samples to which the regression model is applied.

	-	<u>B</u>	<u>SEB</u>	Beta	Rejected		ind Count Zero- order	<u>Part</u> <u>Corr</u>	VIE	
в	-0.	.0011	0.1500		<mark>484</mark>	0.0484				
X 1	0.1	1706	0.1531	0.1692	<mark>1938</mark>	0.1938	0.1687	0.1620	1.0965	
X2	0.3	3272	0.1532	0.3247	<mark>5506</mark>	0.5506	0.3231	0.3107	1.0964	
X	0.1	1072	0.1527	0.1071	1070	0.1070	0.1075	0.1025	1.0963	
X	0.3	3160	0.1532	0.3135	5177	0.5177	0.3127	0.2998	1.0970	
nflation to be no	Facto ear 1.	ors ("VI	F") are al ince each	gression co l roughly 1 of the 10,0	.096—sin	ce there is	no correla	tion amor	ng the pred	ictors
E SAM this m but wi r, if you yould s Square ell). Th	IE, w atrix, ll hav 1 exa ee so s due is is 1	ve introd , the rho ve some umine the ome min- e to the r not a RE	luce multi ² is not ex minor im e model s or difference regression EAL difference	EEN THE collinearity actly .250 pact on our ummary rea nces — esp (which im rence, but r	7. any more. results. sults (we vector) becially in pacts othe ather due	This won't R^2 and r	X4 <mark>0.318</mark>	0.725 0.631 0	.810 <u>X3</u> .849 0.476	all co iet all
pulatio			set of the		-				1	
opulatio										
opulatio		<u>_B</u>	<u>SEB</u>	<u>ent Inform</u> <u>Beta</u> –	Rejected	Pro- portion	nd Counts Zero- order) <u>Part</u> <u>Corr</u>	<u>VIF</u>	
opulatio	B0	_ <u>B</u>	<u>SEB</u> 0.1491	Beta	Rejected <mark>483</mark>	Pro- portion 0.0483	<u>Zero-</u> order	<u>Part</u> <u>Corr</u>		
opulatio	B0 X1	_ <u>B</u>	<u>SEB</u> 0.1491 3 0.2976	<u>Beta</u> -0.4494	Rejected <mark>483</mark>	Pro- portion 0.0483 0.3220	<u>Zero-</u> order 0.1687	Part Corr -0.2192	4.3880	
opulatio	B0 X1	<u>B</u> 0.0004 -0.4518 2.2385	<u>SEB</u> 0.1491 3 0.2976	Beta -0.4494 2.2230	Rejected 483 3220	Pro- portion 0.0483 0.3220 0.6905	Zero- order 0.1687	Part Corr -0.2192 0.3658		
opulatio	B0 X1 X2 X3	<u>B</u> 0.0004 -0.4518 2.2385 -0.9751	<u>SEB</u> 0.1491 0.2976 0.8839	Beta -0.4494 2.2230 -0.9700	Rejected 483 3220 6905 6668	Pro- portion 0.0483 0.3220 0.6905 0.6668	Zero- order 0.1687 0.3242 0.1063	Part Corr -0.2192 0.3658	4.3880 39.2285 7.8630	
opulatio	B0 X1 X2 X3 X4	<u>B</u> 0.0004 -0.4518 2.2385 -0.9751 -0.9337	SEB 0.1491 0.2976 0.8839 0.3966 0.5275	Beta -0.4494 2.2230 -0.9700	Rejected 483 3220 6905 6668 4125	Pro- portion 0.0483 0.3220 0.6905 0.6668 0.4125	Zero- order 0.1687 0.3242 0.1063 0.3119	Part Corr -0.2192 0.3658 -0.3550 -0.2562	4.3880 39.2285 7.8630	

Other important results, of course, include the regression coefficients ("B" and "Beta") themselves, along with the number of times they were significant. Indeed, different predictors are significant more frequently before (X2 and X4) and after (X2 and X3) due to the multicollinearity introduced into the population, even though the pairwise relationships (zero-order correlations) between the predictors and the dependent variable have not changed.

n Examp	le: Shrin	kage	and Sar	nple Siz	ze									
R MCMR: M	onte Carlo fo	or Mulitp	le Regress	ion (versior	n 2008	j)								
File Reset (I	F4) Run Ana	alysis (F9) Options	: Help										
<u>Populatio</u>				tual	Mo	nte Carlo	Parame	ters						
# of	M DO	SD	<u>M</u>	<u>SD</u>			Sample S	ize: <mark>42</mark>		Ge	t N from P	EAR M	ethod	
Predictors:	Y: 0.0 X1: 0.0	1.0 1.0	0.000	0.994 0.992		Alp	oha (2-tail	ed): <mark>0.05</mark>		Se	et alpha=0.	.01 S	Set a=0.05	Set a=0.10
02	X2: 0.0	1.0	0.000	0.993	М	onte Carlo	Simulatio	ons: 10000		Set	to 1 simula	ation	Set 1000	Set 10000
03	X3: 0.0	1.0	-0.001		The	pseudora	ndom gene	erator needs	an IN	ITEGI	ER value to	o qet sta	rted:	1
• 4	X4: 0.0	1.0	0.001	0.994	Ra	ndom Gei	nerator Se	ed: 73681	79	Set	a Randon	n Seed	1	
05			10.001	0.001		F	Automa	tically set i	new s	-			ulations	
06					Reg	ression		ent Inform				nd Cou	nts)	
Populatio	n Correlat	ions (F	(ho)			<u> </u>	<u>SEB</u>	<u>Beta</u>	Reje	ected	Pro- portion	Zero orde	The second se	Contraction of the second s
DV		angapan da sa Tang	rix for a gi	iven R²	в0	-0.0005	0.1390	_	515		0.0515	Urue		•
X10.239	<u></u>	Blar	nk all corri	elations	xı	0.0960	0.1489	0.0952	992			0.2347	7 0.0873	3 1.2000
x20.085	0.052 🗶		Set all BI		x2			-0.6498		1		0.087	_	
X3 0.389	0.207 0.22	27 🔀			X3	0.4071	0.1505	0.4044	743		0.7433	0.3860	Sector and	
X40.186	0.130 0.9	10 0.1	57			0.7067	0.3536	0.7025	495			0.1878		_
						0.7007	0.0000	0.7025	1.00	•	0.4550	0.107	,0.2700	, 1.0410
		15			_				_				_	
Show Act	ual Correlat	tions	rho² = 0.:	257	# sa	amples w/	at least 1	significant	X: 8	748 ((0.875) a	fter SIG	model 7	746 (0.775)
Model Su	mmary Inf	ormatic	on (Avera	iges and	Cour		5.000 C	100.00 100	2.75	~	W54.54	Marine and		
<u>_R</u> _	R ²	_ <u>A</u>	<u>djusted F</u> (<u>Ra²)</u>	<u>82</u> <u>Std. Er</u> the Est			urce of triation	<u>Sum of</u> Squares	<u>_d</u>	f_	<u>Mean</u> Square			<u>Proportion</u> Significant
0.5579	0.3223	0	.2495	0.8554	ļ	Regr	ession 1	3.54	4		3.384	<mark>7997</mark>	7 0).7997
Cross-valid	lity R ² (Rc ²) <u>P</u> i	recision E	fficacy (R	c²/R	2) Re	esidual 2	7.44	37		0.742		-vnected F	R ² if Null true
0.1564			.3973			100 C	TOTAL 4	0.97	41				<u>_xpecteu r</u> k/(n-1) =	
MCMR					Fini	shed 1	0000						1	Run (F9)

Note that in this example, with a sample size of N = 42 (which provided statistical power for the model of approximately .80), shrinkage occurs from $R^2 = .32$ down to Adjusted $R^2 = .25$ or down to Cross-Validity $R^2 = .16$.

Recall that Adjusted R^2 represents the proportion of variance expected to be accounted for (explained) in the population if this particular regression model is used to predict scores in the population. It is generally considered a better SHRINKAGE estimate when <u>explanation</u> is the key purpose for the regression analysis.

Cross-validity R^2 represents the proportion of variance expected to be accounted for if this particular regression model is used in another sample of cases from the same population. It is generally considered a better SHRINKAGE estimate when **prediction** is the key purpose for the regression analysis.

If we use N = 60 (based on 15 cases per predictor), shrinkage is less, but perhaps still too much.	<u>_R</u> 0.5411 <u>Cross-validi</u> 0.1830	 0.3009 ity R ² (Rc ²)	Adjusted R ² (Ra ²) 0.2501 Precision Ef	Std. Error of the Estimate 0.8578 ficacy (Rc² / R²)
If we use, N = 70, which gives us some comfort that Precision Efficacy (using Adjusted R2) will be at least .80, shrinkage is even less.	R 0.5361 <u>Cross-validi</u> 0.1937	R ² 0.2946 ity R ² (Rc ²)	Adjusted R ^a (Ra ²) 0.2512 Precision Ef	Std. Error of the Estimate 0.8588 ficacy (AdjR ² /R ²)
If we use N = 150, which gives us comfort that Precision Efficacy (using Cross-validity R2) will be at least .80, reduces shrinkage even further.	_R_ 0.5205 Cross-validi 0.2285	 0.2744 ity R ² (Rc ²)	Adjusted R ^a (Ra ²) 0.2544 Precision Ef 0.8198	Std. Error of the Estimate 0.8612 ficacy (Rc²/R²)

While there is no agreed-upon criterion for SHRINKAGE, several authors have recommended CROSS-VALIDATION as more appropriate methods for determining sample sizes than using statistical power (e.g., Algina & Keselman, 2000; Brooks & Barcikowski, 1999; Park & Dudycha, 1974; Stevens, 1996).

Note that there are also other methods that exist for calculating sample sizes in regression, including statistical power for the *t* tests of the regression coefficients and size of the confidence intervals for the regression coefficients (and therefore size of the standard errors of the regression coefficients).

There are many conventional rules ("rules of thumb") that scholars have recommended over the years as well. These can all be tested and compared using the Monte Carlo method with the MCMR program.

Much more on the topic can be found in Brooks (1998).

MCMR: Monte Carlo for Mulitple Regression					
and menter cane for maniple negression	(version 2008j)				
File Reset (F4) Run Analysis (F9) Options H	lelp				
Population Parameters Actual	Monte Carlo Pa	arameters			
	SD San	nple Size: <mark>37</mark>	Get N from F	EAR Method	
	.067 Alpha	(2-tailed):0.05	Set alpha=0	.01 Set a=0.05	Set a=0.10
	.044		Set to 1 simul		Set 10000
		1			SEC 10000
• 3 X3: 0.000 1.000 0.145 0.			an INTEGER value to		
O 4		ator Seed: <mark>926245</mark>			
05		-	ew seed for succes		
○ 6		<u>efficient Informa</u> <u>SEB Beta</u>	<u>tion (Single Sam</u> t Sig	<u>ple)</u> Zero- Part	VIF
Population Correlations (Rho)		<u>SED Dela</u>	t Sig	order Corr	and the second
Get Matrix for a giver	n R ² B0 -0.0333 0.	1736	-0.1921 0.8489		
X1 0.00 X1 Blank all correlat	tions X1 0.0789 0.	1623 0.0772	0.4860 0.6302	0.0657 0.0771	I 1.0031
X2 0.00 0.00 X2 Set all Blank	k to 0 X2 0.0317 0.	1729 0.0294	0.1836 0.8554	-0.0166 0.0291	1.0172
X30.00 0.00 0.00	X3 0.5120 0.		2.5580 0.0153	0.4030 0.4058	3 1.0157
- <u>Model Summary Information (Single S</u> <u>R</u> <u><u>R</u>2<u>Adjusted R</u>2 (<u>Ra</u>2)</u>			<u>df Mean</u> Square	_ <u>F</u> _	_Sig_
0.4116 0.1694 0.0939	1.0154 Regress				
		sion 0.94	3 2.313	<mark>2.2435</mark> 0).1016
Cross-validity B ² (Bc ²) Precision Effic	nacy (Re ² / R ²) Resid		3 2.313 33 1.031	/	
Cross-validity R ² (Rc ²) Precision Effic 0.0000 0.0000	cacy (no / n)	iual 34.02		Expected F	<u>R² if Null true</u>
	cacy (no / n)	iual 34.02	33 1.031 36	Expected F k/(n-1) =	<u>R² if Null true</u>
0.0000 0.0000 MCMR Regression Coefficient Information (Single Sam <u>B</u> <u>SEB</u> <u>Beta</u> t Sig B0 -0.0333 0.1736 -0.1921 0.8489	Finished 1 Finished 1 <u>TOT</u> Finished 1 <u>Finished 1</u> <u>Finished 1</u>	Jual 34.02	33 1.031 36 Bac SINGLE SAMP nbinations of Ty	Expected F k/(n-1) = k Up	3 ² if Null true 0.0833 Run (F9) show all th
0.0000 0.0000 MCMR Regression Coefficient Information (Single Sam <u>B</u> <u>SEB</u> Beta t Sig B0 0.0333 0.1736 -0.1921 0.8489 X1 0.0789 0.1623 0.0772 0.4860 0.6302	Finished 1 Finished 1 <u>Zero- Part VIF</u> 0.0657 0.0771 1.0031	Jual 34.02 Image: Constraint of the second seco	33 1.031 36 Bac SINGLE SAMP nbinations of Typ ression.	Expected F k/(n-1) = ck Up	Run (F9) show all th
0.0000 0.0000 MCMR Regression Coefficient Information (Single Sam B SEB Beta t Sig B0 0.0333 0.1736 -0.1921 0.8489 X1 0.0789 0.1623 0.0772 0.4860 0.6302	TOT Finished 1 Finished 1 <u>Finished 1</u> <u>Cero- Part VIE</u> 0.0657 0.0771 1.0031 -0.0166 0.0291 1.0172	We can run possible cor multiple reg In this first e predictor (X is NOT stati	33 1.031 36 Bac SINGLE SAMP nbinations of Typ ression. example where a 3) is statistically stically significa	Expected F k/(n-1) = ck Up LE analyses to a pe I errors that of ll correlations a r significant, but nt. Therefore, the second	Run (F9) show all th occur in re 0.0, one t the model he count
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	TOT Finished 1 Finished 1 <u>Finished 1</u> <u>Cero- Part VIE</u> 0.0657 0.0771 1.0031 -0.0166 0.0291 1.0172	We can run possible con multiple reg In this first of predictor (X is NOT stati boxes show	33 1.031 36 Bac SINGLE SAMP nbinations of Typ ression. example where a 3) is statistically	Expected F k/(n-1) = ck Up LE analyses to a pe I errors that of ll correlations a significant, but nt. Therefore, the for "At least 1 s	Run (F9) Run (F9) show all th occur in re 0.0, one t the model he count ignificant
0.0000 0.0000 MCMR Begression Coefficient Information (Single Sam B. SEB Beta t Sig B0 0.0333 0.1736 -0.1921 0.8489 X1 0.0789 0.1623 0.0772 0.4860 0.6302 X2 0.0317 0.1729 0.0294 0.1836 0.8554 X3 0.5120 0.2002 0.4090 2.5580 0.0153	TOT Finished 1 Finished 1 Definished 1 D	We can run possible con multiple reg In this first of predictor (X is NOT stati boxes show	33 1.031 36 Bac SINGLE SAMP nbinations of Typ ression. example where a 3) is statistically stically significa a GREEN YES	Expected F k/(n-1) = ck Up LE analyses to a pe I errors that of ll correlations a significant, but nt. Therefore, the for "At least 1 s	Run (F9) Run (F9) show all th occur in re 0.0, one t the model he count ignificant
O.0000 O.0000 MCMR Begression Coefficient Information (Single Sam B. SEB Beta t Sig Bo 0.0333 0.0789 0.1623 0.0772 0.4860 0.6302 X1 0.0789 0.1623 0.0772 0.4860 0.6302 X2 0.0317 0.1729 0.0294 0.1836 0.8554 X3 0.5120 0.2002 0.4090 2.5580 0.0153 At least 1 significant predictor (X) ? YES at least 1 significant predictor (X) ? Y	TOT Finished 1 Finished 1 Definished 1 D	We can run possible con multiple reg In this first of predictor (X is NOT stati boxes show	33 1.031 36 Bac SINGLE SAMP nbinations of Typ ression. example where a 3) is statistically stically significa a GREEN YES	Expected F k/(n-1) = ck Up LE analyses to a pe I errors that of ll correlations a significant, but nt. Therefore, the for "At least 1 s	Run (F9) Run (F9) show all th occur in re 0.0, one t the model he count ignificant
0.0000 0.0000 MCMR Regression Coefficient Information (Single Sam B B SEB Beta t Sig 30 -0.0333 0.1736 -0.1921 0.8489 (1) 0.0789 0.1623 0.0772 0.4860 0.6302 (2) 0.0317 0.1729 0.0294 0.1836 0.8554 (3) 0.5120 0.2002 0.4090 2.5580 0.0153	TOT Finished 1 Finished 1 Definished 1 D	We can run possible con multiple reg In this first of predictor (X is NOT stati boxes show predictor (X	33 1.031 36 Bac SINGLE SAMP nbinations of Typ ression. example where a 3) is statistically stically significa a GREEN YES	Expected F k/(n-1) = ck Up LE analyses to a pe I errors that of ll correlations a significant, but nt. Therefore, the for "At least 1 s	Run (F9) show all th occur in re 0.0, one t the model he count ignificant

36

TOTAL 40.96

Expected R² if Null true k/(n-1) = 0.0833

	<u>_B</u>	SEB	<u>Beta</u>	t	<u>ngle Samp</u> Sig	Zero- order	<u>Part</u> Corr	VIE
B0	-0.0766	0.2134		<mark>-0.3589</mark>	<mark>0.7219</mark>			
X1	0.0122	0.2299	0.0089	0.0530	0.9581	0.0236	8800.0	1.0212
X2	-0.2341	0.1992	-0.2031	-1.1751	<mark>0.2484</mark>	-0.1393	-0.1953	1.0810
х3	-0.4642	0.2941	-0.2703	-1.5781	0.1241	-0.2209	-0.2623	1.0620
At le	east 1 sigr	nificant pr	edictor (X)	? No	af	ter SIG m	odel? No	
or of	Sou	irce of	redictor (X) <u>Sum of</u> Squares	? No _df_	afi <u>Mean</u> Square	ter SIG m F	110	_Sig_
At le or of nate	Sou Va	irce of	<u>Sum of</u> Squares	1	Mean		_	
or of	Sou Va Regri	irce of riation	Sum of Squares	df	<u>Mean</u> Square	F	_	3775

In this second example where all correlations are 0.0, nothing was statistically significant. This is what we would expect most frequently when the Null Hypothesis is true.

	ression B	SEB		ť	Sig	Zero- order	<u>Part</u> <u>Corr</u>	VIF
BO	0.1836	0.160	7	1.1425	0.2615			
X1	-0.1045	0.143	7 -0.1131	-0.7278	0.4719	-0.1698	-0.1110	1.0375
X2	-0.4200	0.145	6 -0.4452	<mark>-2.8841</mark>	0.0069	-0.4331	-0.4400	1.0235
X3	-0.1483	0.144	9 -0.1598	-1.0229	0.3138	-0.1242	-0.1561	1.0486
At le	ast 1 sim	nificant	nredictor (X	17 YES	af	ter SIG m	odel? YE S	
<u>r of</u>	Sou	nificant Irce of riation	predictor (X <u>Sum of</u> Squares)? <mark>YES</mark> _df_	<u>Mean</u>	ter SIG m F	odel? <mark>YE</mark> s	Sig
<u>r of</u>	Sou Va	irce of	<u>Sum of</u> Squares	J			_	
At le rof nate / R:	Sou Va Regro	irce of riation	Sum of Squares 7.77	df	<u>Mean</u> Square	F 3.3201	_	<u>_Sig</u> 1316

In this third example where all correlations are 0.0, the overall regression model was statistically significant and at least one (here, exactly one, X2) predictor was statistically significant.

Note that different predictors are usually significant in different samples for Robustness (Type I error rate) analyses.

	<u>_B</u> _	<u>SEB</u>	ent Inform Beta	<u>ation (Si</u> t	<u>ngle Sam</u> Sig	<u>ple)</u> Zero- order	<u>Part</u> Corr	VIE	with non-zero d	creen comes from an analysis correlations, and therefore not a
B0	-0.0263	0.1631		<mark>-0.1610</mark>	0.8730	<u>ordor</u>	0011		Type I error ra	te analysis.
X1	0.2982	0.2164	0.2960	1.3777	0.1776	0.3670	0.2092	2.0026	In this fourth a	versula the everall regression
X 2	0.6706	0.3353	0.6802	1.9997	0.0538	0.3328	0.3036	5.0203		xample, the overall regression istically significant, but NONE
хз	-0.6156	0.3052	-0.6354	-2.0174	0.0518	0.1506	-0.3063	4.3040		rs was statistically significant.
	east 1 sigr	iificant pi	redictor (X)	? No	a	fter SIG m	odel? No		correlations are	ears to be very rare when all e 0.0 (a Type I error rate curs occasionally when the null ot true.
o <u>r of</u> mate			<u>Sum of</u> Squares	df	<u>Mean</u> Square	_ _ F	<u></u>	_Sig_		
	Regro	ession 9	.22	3	3.074	3.461 5	0.0	0272		
² /R ²	n Re	sidual 2	29.30	33	0.888	Ex	pected R ²	if Null true		
	Т	OTAL 3	8.53	36]		(n-1) = 0.			
Eini	shed 1				Bac	:k Up	✓ R	un (F9)		
1 11 113	SIICU I									
Re	gressia		fficient		tion (Av	/erages	and Co	ounts)		Finally, after running through
	B	<u>_</u>	<u>EB </u>	<u>Beta</u>	Rejected		Ze		Part <u>VIF</u>	several samples to show
	0.00	0.04	705		405	portio		<u>ler (</u>	Corr	students what a Type I error
B0		12 0.1			485	0.048				analysis is like, we can tell them that instead of us going
X1	0.000	5 0.1	747 0.	0001	524	0.0524	<mark>1</mark> -0.0	002 0.0	000 1.0627	one-by-one through these
X2	-0.00	38 0.1	739 -0	.0032	549	0.054	9 -0.0	031 -0.	0032 1.0617	single samples and keeping
Х3	-0.00	0.1	738 -0	.0007	483	0.048	3 -0.0	008 -0.	0008 1.0626	track, we can just have the
		,		,		,	,	ļ	1	computer do it for us and run 10,000 samples all at once.
										This screen shows the Monte Carlo results for 10,000
		w/at lea	ast 1 sign	ificant >	(: 1432	(0.143)	after S	IG mode	494 (0.049)	simulated samples. One can easily see the approximately
	nts)		of C	n of	46	h.	. D		a Branatian	.05 Type I error rate expected
ror o mate		iource Variati	AT A DECK	<u>n of</u> ares	<u>df</u>	<u>Mea</u> Squa		<u>ejection</u>	<u>s</u> <u>Proportion</u> <u>Significant</u>	for all tests.
mat	-		<u> </u>		•		<u>51</u>	0	0.0518	
	-		on 3.01	2		1.004		0	0.0018	
2/F	<u>}2)</u>		Jal 33.0		33	1.001		Expect	ed R ² if Null true	We can also discuss the idea
		тот	AL 36.0	6 3	36			and the second se) = 0.0833	of a "Protected F" test by reviewing the count boxes.
Iere	the pro	portion	ı of simu	lated sat	mples the	at had at	least or	e statisti	cally significant n	redictor FOLLOWING a
										ortion of samples that had any
· · · · · · · · ·				ω				(-, -)	to the real, the prop.	sition of sumpres must have any

n Example: Suppressor Variables		
K MCMR: Monte Carlo for Mulitple Regression (versic File Reset (F4) Run Analysis (F9) Options Help	n 2008j)	
	Monte Carlo Parameters	
Population Parameters <u>Actual</u>		
# of	Sample Size:	Get N from PEAR Method
C 1 X1:0.0 1.0 -0.005 0.996	Alpha (2-tailed): 0.05	Set alpha=0.01 Set a=0.05 Set a=0.10
C 2 X2:0.0 1.0 -0.004 0.992	Monte Carlo Simulations: 1000	Set to 1 simulation Set 1000 Set 10000
○ 3 X3:0.0 1.0 -0.005 0.989	The pseudorandom generator needs an	INTEGER value to get started:
○ 4 X4:0.0 1.0 -0.003 0.995	Random Generator Seed: 5367569	Set a Random Seed
© 5 X5:0.0 1.0 -0.005 0.991	Automatically set new	seed for successive simulations
06	Regression Coefficient Information	n (Averages and Counts)
		jected Pro- <u>Zero-</u> Part <u>VIF</u>
Population Correlations (Rho) DV Get Matrix for a given B ²		portion <u>order</u> <u>Corr</u>
	B0 -0.0096 0.1624 58	
X1 0.365 X1 Blank all correlations	X1 0.3932 0.2108 0.3888 45	
X2 0.063 0.409 X2 Set all Blank to 0	X2 -0.3904 0.4545 -0.3890 12	4 0.1240 0.0633 -0.1318 9.2201
X3 0.177 0.566 0.880 <u>X3</u>	X3 0.6683 0.6844 0.6646 14	1 0.1410 0.1756 0.1496 20.8620
X4 0.285 0.132 0.151 0.366 <u>X4</u>	X4 0.1505 0.2151 0.1496 96	0.0960 0.2827 0.1079 2.0072
X5 0.000 0.502 0.595 0.800 0.188	X5 -0.5254 0.3263 -0.5237 36	3 0.3630 0.0027 -0.2466 4.6957
	1 1 1	()
Show Actual Correlations rho ² = 0.279	# samples w/at least 1 significant X:	700 (0.700) after SIG model 578 (0.578)
Model Summary Information (Averages and	Counts)	
<u> </u>	rror of Source of Sum of	df <u>Mean Rejections Proportion</u> Square <u>Significant</u>
0.6108 0.3849 0.2691 0.838		2.444 668 0.6680
Cross unlidity D ² (Do ²) Brasisier Efficient //	D: 11 10.07	0.718
Cross-validity R² (Rc²)Precision Efficacy (f0.13120.2659	TOTAL 30.89 31	Expected R ² if Null true k/(n-1) = 0.1613
		N(II-1) - 0.1013
MC MR	Finished 1000	✓ Run (F9)

If we arbitrarily set a population correlation matrix in which one predictor has zero (0.0) correlation with the dependent variable (DV) but has non-zero correlation with the other predictors, we can examine suppressor relationships.

Population Corre	lations (Rho)	You can see a little better the correlations here.
_ <u>DV</u>	Get Matrix for a given R ²	Note the population multiple rho ² for this correlation matrix is
X1 0.365 <u>X1</u>	Blank all correlations	.279
X2 0.063 0.409	X2 Set all Blank to 0	
X30.177 0.566 0	0.880 <u>X3</u>	
X40.285 0.132 0	0.151 0.366 <u>X4</u>	
X5 0.000 0.502 0	0.595 0.800 0.188	
Show Actual Corre	elations rho ² = 0.279	

- <u>Model Sum</u> R	mary Inform R ²		<mark>es and Counts</mark> Std. Error of the Estimate	:) <u>Source of</u> Variation	and the second se	df	<u>Mean</u> Square	<u>Rejections</u>	<u>Proportion</u> Significant
0.6108	0.3849	0.2691	0.8389	Regression	12.22	5	2.444	<mark>668</mark>	0.6680
Cross-validit	y R ² (Rc ²)	Precision Effi	cacy (Rc ² / R ²)	Residual	18.67	26	0.718	Expected	l R ² if Null true
0.1312	,,	0.2659		TOTAL	30.89	31			= 0.1613
					S.				

We have an R2 value of .38 for this analysis.

	<u>_B_</u>	<u>SEB</u>	<u>Beta</u>	Rejected	Pro- portion	<u>Zero-</u> order	Part Corr	VIE
B0	-0.0096	0.1624		<mark>58</mark>	0.0580			
X1	0.3932	0.2108	0.3888	<mark>456</mark>	0.4560	0.3631	0.2859	1.9281
X2	-0.3904	0.4545	-0.3890	124	0.1240	0.0633	-0.1318	9.2201
хз	0.6683	0.6844	0.6646	141	0.1410	0.1756	0.1496	20.8620
X4	0.1505	0.2151	0.1496	96	0.0960	0.2827	0.1079	2.0072
X5	-0.5254	0.3263	-0.5237	363	0.3630	0.0027	-0.2466	4.6957
	1	1	1	,	,	1	1	,

Note the VIF is high for X3, not the variable with 0.0 correlation with the dependent variable (which is X5). However, there is a strong correlation between X3 and X5.

Population Correl	lations (Rho)	If we remove X5 from the analysis in an effort to remove the
DV	Get Matrix for a given R ²	multicollinearity (because among the predictors, it has very little correlation with Y), we would have this correlation
X10.365 X1	Blank all correlations	matrix.
X20.063 0.409 _	X2 Set all Blank to 0	Note that rho ² is lower without X5 EVEN THOUGH it had no
X30.177 0.566 0.	.917 <u>X3</u>	correlation with the Dependent Variable !!
X4 0.285 0.132 0.	.151 0.366	
Show Actual Corre	elations rho ² = 0.207	

-	<u>_B</u> _	<u>SEB</u>	<u>Beta</u>	Rejected	Pro- portion	Zero ordo	2	<u>Part</u> <u>Corr</u>	VIF
B0	0.0009	0.1680		<mark>482</mark>	0.0482				
X1	0.4181	0.2190	0.4116	4625	0.4625	0.358	38 0	.3068	1.8586
x 2	-0.0250	0.4111	-0.0244	<mark>525</mark>	0.0525	0.063	37 -0	0.0099	6.7221
X3	-0.1438	0.4838	-0.1409	605	0.0605	0.17	51 -	0.0475	9.3599
					-	-		CONTRACTOR NO.	
	0.2882 amples w/a	0.2051 at least 1 s	0.2838	2760 X: 6035 (0.2760 0.604)	0.28 2	1	. 2258 el 449	1.6217 3 (0.449)
# sa ote th	amples w/amples w/amples w/a	at least 1 s	significant	X: 6035 (evidenced by	0.604)	after SI	1		1
# sa ote th	amples w/a nat multicollin	at least 1 s earity has bee prmation (Aver 	significant en removed (as rages and Cour R ² Std. Error of	X: 6035 (evidenced by hts)	0.604) all VIF < 10	after SI	1		3 (0.449)
# sa ote th	amples w/a nat multicollin Summary Info 3R ²	at least 1 st earity has bee prmation (Aver	significant on removed (as ages and Cour	X: 6035 (evidenced by hts)	0.604) all VIF < 1(f <u>Sum of</u> <u>Squares</u>	after SI (0). df	G mod	el 449	3 (0.449)

MCMR: Monte Carlo for Mulitple Regression (version 2008) Image: Content of the sect of the s				
File Reset (F4) Run Analysis (F9) Options Help Monte Carlo Parameters Actual Predictors: Actual Y:0 Monte Stop 1 Monte Carlo Parameters 4 of 2 X1:0 1 0.002 0.991 6 3 X3:0 1 0.001 0.993 6 3 X3:0 1 0.001 0.996 C 4 5 6 1 0.001 0.996 C 4 5 6 8 SEB Beta Repeted FV successive simulations Pepulation Correlations (Rho) 0.001 0.996 Nonte Carlo Simulations; 10000 Set are now seed for successive simulations Pepulation Correlations (Rho) Egression Coefficient Information (Averages and Counts) B SEB Beta Repeted Pro- 0.6276 Carlo 2.3117 0.3395 1.7156 X2 0.3013 0.597 X2 Set all Blank too X2 0.3014 0.2039 0.3013 3123 0.3123 0.1270 0.2155 2.0076 X3 0.366 0.125 0.393 Ho 0.1448 0.4240 7090 0.7090 0.3592 0.3742 1.2993				
# of Predictors: M SD M SD M SD M SD Predictors: Y: 0 1 0.000 0.994 Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 C 1 X1: 0 1 0.001 0.993 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 Set 10000 G 3 X3: 0 1 0.001 0.993 The pseudorandom generator needs an INTEGER value to get stardet: Random Generator Seed: 1932 Set a Random Seed The pseudorandom generator needs an INTEGER value to get stardet: C 4 - - - - - - - C 5 - - - - - - - DV Get Matrix for a given R ² B SEB Bet a Rejected Pro- portion ander Courts - Part VIE DV Get Matrix for a given R ² Set all Blank to 0 - <				
Predictors: Y: 0 1 0.000 0.994 Alample Size (S) Get N Hull PLAK Methulu C 1 X1: 0 1 0.002 0.991 Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 C 2 X2: 0 1 0.001 0.993 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Set a=0.01 G 3 X3: 0 1 0.001 0.996 The pseudorandom generator needs an INTEGER value to get started: Random Cenerator Seed: 1932 Set a Random Seed Set a Random Seed Set apple				
C 1 X1: 0 1 0.002 0.991 Alpha (2-tailed); 0.05 Set alpha=0.01 Set a=0.10 C 2 X2: 0 1 0.001 0.993 Monte Carlo Simulations; 10000 Set to 1 simulation Set a=0.05 Set a=0.10 G 3 X3: 0 1 0.001 0.993 Monte Carlo Simulations; 10000 Set to 1 simulation Set a=0.05 Set a=0.10 G 4 0.001 0.996 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed; 1932 Set a Random Seed C 4 C 5 G Automatically set new seed for successive simulations Memore Carlo Simulation Set 0.001 New Set 0.001				
C 2 X2: 0 1 0.001 0.993 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Set 1000 G 3 X3: 0 1 0.001 0.996 The pseudorandom generator needs an INTEGER value to get started: C 4 - 5 -				
6 3 X3:0 1 0.001 0.996 C 4 C 4 C 5 C 5 C 6 Automatically set new seed for successive simulations Population Correlations (Rho) B SEB Beta Rejected Pro- DV Get Matrix for a given R ² B0 0.0019 0.1470 494 0.0494 X1 0.315 X1 Blank all correlations X2 0.3041 0.2039 0.3013 3123 0.1270 0.2155 2.0076 X3 0.366 0.125 0.393 H* samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771)				
C 4 Fandom Generator Seed: 1932 Set a Random Seed C 5 Get Matrix for a given R ² DV Get Matrix for a given R ² B0 0.0019 0.1470 494 0.0494 X1 0.315 X2 0.131 0.597 X2 Set all Blank all correlations X3 0.366 0.125 0.393 Show Actual Correlations rho ² = 0.257 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771)				
C 6 Regression Coefficient Information (Averages and Counts) DV Get Matrix for a given R ² X1 0.315 X1 Blank all correlations X2 0.131 0.597 X2 0.3041 X3 0.366 0.125 0.393 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771)				
B SEB Beta Rejected Pro- portion Part order VIE DV Get Matrix for a given R ² Blank all correlations B0 0.0019 0.1470 494 0.0494 X1 0.315 X1 Blank all correlations X1 0.4448 0.1892 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 0.131 0.597 X2 Set all Blank to 0 X2 0.3041 0.2039 -0.3013 3123 0.1270 -0.2155 2.0076 X3 0.366 0.125 0.393 VIE # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) Model Summary Information (Averages and Counts) Source of Sum of df Mean Rejections Proportion				
Population Correlations (Rho) portion order Corr DV Get Matrix for a given R ² B0 0.0019 0.1470 494 0.0494 X1 0.315 X1 Blank all correlations X1 0.4448 0.1892 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 0.131 0.597 X2 Set all Blank to 0 X2 -0.3041 0.2039 -0.3013 3123 0.1270 -0.2155 2.0076 X3 0.366 0.125 0.393 X3 0.4270 0.1648 0.4240 7090 0.7090 0.3592 0.3742 1.2993 Show Actual Correlations rho ² = 0.257 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) Model Summary Information (Averages and Counts) Source of Sum of df Mean Rejections Proportion				
X1 0.315 X1 Blank all correlations X2 0.131 0.597 X2 Set all Blank to 0 X3 0.366 0.125 0.393 X1 0.4448 0.1892 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X3 0.366 0.125 0.393 X2 0.3041 0.2039 -0.3013 3123 0.3123 0.1270 -0.2155 2.0076 X3 0.4270 0.1648 0.4240 7090 0.7090 0.3592 0.3742 1.2993				
X2 0.131 0.597 X2 Set all Blank to 0 X2 0.3041 0.2039 -0.3013 3123 0.1270 -0.2155 2.0076 X3 0.366 0.125 0.393 X2 0.1648 0.4240 7090 0.7090 0.3592 0.3742 1.2993 Show Actual Correlations rho² = 0.257 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) Model Summary Information (Averages and Counts) Source of Sum of df Mean Rejections Proportion				
X3 0.366 0.125 0.393 0.3641 0.2033 0.3013 0.3123 0.3123 0.1270 0.2133 2.0070 X3 0.4270 0.1648 0.4240 7090 0.7090 0.3592 0.3742 1.2993 Show Actual Correlations rho² = 0.257 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) Model Summary Information (Averages and Counts) Source of Sum of df Mean Rejections Proportion				
Show Actual Correlations rho² = 0.257 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) Model Summary Information (Averages and Counts)				
Model Summary Information (Averages and Counts) <u>R</u> <u>R²</u> Adjusted R ² Std. Error of Source of Sum of <u>df</u> Mean Rejections Proportion				
Model Summary Information (Averages and Counts) <u>R</u> <u>R²</u> Adjusted R ² Std. Error of Source of Sum of <u>df</u> Mean Rejections Proportion				
Model Summary Information (Averages and Counts) <u>R</u> <u>R²</u> Adjusted R ² Std. Error of Source of Sum of <u>df</u> Mean Rejections Proportion				
Model Summary Information (Averages and Counts) <u>R</u> <u>R²</u> Adjusted R ² Std. Error of Source of Sum of <u>df</u> Mean Rejections Proportion				
<u>R</u> <u>R</u> ² <u>Adjusted R</u> ² <u>Std. Error of</u> <u>Source of</u> <u>Sum of</u> <u>df</u> <u>Mean</u> <u>Rejections</u> <u>Proportion</u>				
0.5444 0.3095 0.2473 0.8563 Regression 11.50 3 3.834 7890 0.7890				
Cross-validity R ² (Rc ²) Precision Efficacy (Rc ² /R ²) Residual 24.56 33 0.744 Expected R ² if Null true				
0.1640 0.4311 TOTAL 36.06 36 k/(n-1) = 0.0833				
MC _{MR} Finished 10000 V Run (F9)				
MCMR: Monte Carlo for Mulitale Regression (version 2008)				
Image: MCMR: Monte Carlo for Mulitple Regression (version 2008)) Image: The important thing to notic we change from all standard File Reset (F4) Run Analysis (F9) Options Help Image: The important thing to notic we change from all standard				
Population Parameters Actual Monte Carlo Parameters				
Predictors: Y: 50 1 50.000 0.994 Sample 3/2e/3/ Get N from PEAR Method Variable Mean of 50 (while				
C 1 X1:0 1 0.002 0.991 View of the control of the c				
C 2 X2:0 1 0.001 0.993 Monte Carlo Simulations 10000 Set to 1 simulation Set 1000 Set 10000 is that only the CONSTANT				
C 4 Random Generator Seed: 1932 Set a Random Seed and its statistical significance				
C 5 Automatically set new seed for successive simulations changed.				
C 6 Regression Coefficient Information (Averages and Counts) B SEB SEB SEB				
Population Correlations (Rho) portion order Corr NOTHING ELSE changed !				
X10.315 X1 Blank all correlations X1 0.4448 0.1892 0.4396 6276 0.6276 0.3117 0.3395 1.7156				
X2 0.131 0.597 X2 Set all Blank to 0 X2 -0.3041 0.2039 -0.3013 3123 0.3123 0.1270 -0.2155 2.0076				
X3 0.366 0.125 0.393 X3 0.4270 0.1648 0.4240 7090 0.7090 0.3592 0.3742 1.2993				
Show Actual Correlations rho ² = 0.257 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771)				
Model Summary Information (Averages and Counts) R R ² Adjusted R ² Stid Error of Source of Sum of df Mean Rejections Proportion				
R R ² Adjusted R ² Std. Error of (Ra ²) Source of the Estimate Source of Variation Source of Squares Mean Square Rejections Square Proportion				
0.5444 0.3095 0.2473 0.8563 Regression 11.50 3 3.834 7890 0.7890				
Cross-validity R ² (Rc ²) Precision Efficacy (Rc ² /R ²) Residual 24.56 33 0.744 0.1640 0.4311 TOTAL 36.06 36 k/(n-1) = 0.0833				
MCMR Finished 10000 V Run (F9)				

Multiple Linear Regression Viewpoints, 2008, Vol. 34(2)

MCMR: Monte Carlo for Mulitple Regression (version 2008j)				
File Reset (F4) Run Analysis (F9) Options Help Dependent Variable				
Population Parameters <u>Actual</u> # of M SD M SD	Monte Carlo Parameters	Mean is 0.0, but the		
# of <u>M</u> SD <u>M</u> SD Predictors: Y: 0 10 0.001 9.940	Sample Size: 37 Get N from PEAR Method	Standard Deviation		
C 1 X1:0 1 0.002 0.991	Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10	changes to 10.0,		
C 2 X2:0 1 0.001 0.993	Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Set 10000	several things change,		
• 3 X3:0 1 0.001 0.996	The pseudorandom generator needs an INTEGER value to get started:	most notably the		
C 4	Random Generator Seed: 1932 Set a Random Seed	regression coefficients		
05	Automatically set new seed for successive simulations	and their significance		
<u> </u>	Regression Coefficient Information (Averages and Counts) <u>B</u> SEBBeta Rejected Pro-Zero-Part VIF	and the SUMS OF		
Population Correlations (Rho)	<u>B SEB Beta Rejected Pro-Zero-Part VIF</u> portion <u>order Corr</u>	SQUARES.		
Get Matrix for a given R ²	B0 -0.0195 1.4700 494 0.0494	SQUARES.		
X1 0.315 X1 Blank all correlations	X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3395 1.7156	But none of the other		
X2 0.131 0.597 X2 Set all Blank to 0	X2 -3.0413 2.0386 -0.3013 3123 0.3123 0.1270 -0.2155 2.0076			
X30.366 0.125 0.393	X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 0.3742 1.2993	important model		
		information changed $(\mathbf{p}^2 \mathbf{F})$		
		$(e.g., R^2, F, rejections, R^2, F, rejection$		
		Beta, VIF).		
Show Actual Correlations rho ² = 0.257	# samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771)			
Model Summary Information (Averages and	I Counts)			
R R ² Adjusted R ² Std. E	rror of <u>Source of Sum of df</u> <u>Mean</u> <u>Rejections</u> <u>Proportion</u>			
	stimate Variation Squares Square Significant			
0.5444 0.3095 0.2473 8.562				
Cross-validity R ² (Rc ²) Precision Efficacy (F				
0.1640 0.4311	TOTAL 3605.86 36 k/(n-1) = 0.0833			
MCMR	Finished 10000 🗸 Run (F9)			
)		
MCMR: Monte Carlo for Mulitole Repression (upreio	n 2008i)	Changing both the		
MCMR: Monte Carlo for Mulitple Regression (versic	on 2008j)	Changing both the Mean and the		
File Reset (F4) Run Analysis (F9) Options Help	n 2008j) Monte Carlo Parameters	Mean and the		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters		Mean and the Standard Deviation		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD M SD Predictors: Y: 50 10 50.001 9.940	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method	Mean and the Standard Deviation combines these		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10	Mean and the Standard Deviation combines these previous two results.		
Matrix Matrix<	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 Set 10000	Mean and the Standard Deviation combines these previous two results. That is, all the		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 @ 3 X3:0 1 0.001 0.996	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 © 3 X3:0 1 0.001 0.996	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 The pseudorandom generator needs an INTEGER value to get started: Description	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 @ 3 X3:0 1 0.001 0.996	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) Set Set See See See See See See See See	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 © 3 X3:0 1 0.001 0.996 C 4 5 6	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed; 1932 Set a Random Seed Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) MIE B SEB Beta Rejected Pro- Part VIE	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Set B B SEB Beta Rejected Pro- Zero- Part VIE portion order Corr Part VIE Portion Part VIE	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50,		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 © 3 X3:0 1 0.001 0.996 C 4 5 6 Population Correlations (Rho) End End End	Monte Carlo Parameters Sample Size; 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed; 1932 Set a Random Seed Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) B B SEB Beta Rejected Pro- Zero- Part VIF B0 49.9805 1.4700 10000 1.0000 1.0000 1.0000	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match		
File Reset (F4) Run Analysis (F9) Options Help Actual # of M SD M SD Predictors: Y: 50 10 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 @ 3 X3:0 1 0.001 0.996 C 4 C 5 C 6	Monte Carlo Parameters Sample Size; 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed; 1932 Set a Random Seed Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) B B SEB Beta Rejected Pro- Zero- B0 49.9805 1.4700 10000 1.0000	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual M SD M SD # of Y: 50 10 50.001 9.940 C 1 X1: 0 1 0.002 0.991 C 2 X2: 0 1 0.001 0.993 G 3 X3: 0 1 0.001 0.996 C 4 5 - 6 Population Correlations (Rho) DV Get Matrix for a given R ² X1 0.315 X1 Blank all correlations	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations B SEB Beta Rejected Pro- portion Part VIE B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 -3.0413 2.0386 -0.3013 3123 0.1270 -0.2155 2.0076	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD Predictors: Y: 50 10 50.001 9.940 C 1 X1: 0 1 0.002 0.991 C 2 X2: 0 1 0.001 0.993 G 3 X3: 0 1 0.001 0.996 C 4 5 - 6 Population Correlations (Rho) DV Get Matrix for a given R ² X1 0.315 X1 Blank all correlations X2 0.131 0.597 X2 Set all Blank to 0	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations B SEB Beta Rejected Pro- Zero- Part VIE portion order Corr B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 -3.0413 2.0386 -0.3013 3123 0.1270 -0.2155 2.0076	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD Predictors: Y: 50 10 50.001 9.940 C 1 X1: 0 1 0.002 0.991 C 2 X2: 0 1 0.001 0.993 G 3 X3: 0 1 0.001 0.996 C 4 5 - 6 Population Correlations (Rho) DV Get Matrix for a given R ² X1 0.315 X1 Blank all correlations X2 0.131 0.597 X2 Set all Blank to 0	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations B SEB Beta Rejected Pro- portion Part VIE B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 -3.0413 2.0386 -0.3013 3123 0.1270 -0.2155 2.0076	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD Predictors: Y: 50 10 50.001 9.940 C 1 X1: 0 1 0.002 0.991 C 2 X2: 0 1 0.001 0.993 G 3 X3: 0 1 0.001 0.996 C 4 5 - 6 Population Correlations (Rho) DV Get Matrix for a given R ² X1 0.315 X1 Blank all correlations X2 0.131 0.597 X2 Set all Blank to 0	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations B SEB Beta Rejected Pro- portion Part VIE B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 -3.0413 2.0386 -0.3013 3123 0.1270 -0.2155 2.0076	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 6 3 X3:0 1 0.001 0.993 6 6 6 6 6 7	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) Mile Set Corr Part VIE B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 -3.0413 2.0386 -0.3013 3123 0.3123 0.1270 -0.2155 2.0076 X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 0.3742 1.2993	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 © 3 X3:0 1 0.001 0.993 © 4 5 6	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations B SEB B SEB Beta Rejected Proprion order Corr Part B0 49.9805 1.4700 10000 1.0000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3113 2.0386 -0.3013 3123 0.3123 0.1270 VIE 5.0076 X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771)	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD SD Predictors: Y: 50 10 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 © 3 X3:0 1 0.001 0.993 © 4 C 5 6 Population Correlations (Rho)	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations B SEB B SEB Beta Rejected Pro- Zero- Part VIE portion order Corr B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 62.76 0.6276 0.3117 X2 -3.0413 2.0386 -0.3013 3123 0.1270 0.2155 X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 0.3742 1.2993 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) 1.2001	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help # of M SD M SD Predictors: Y: 50 10 50.001 9.940 \cap 1 X1: 0 1 0.002 0.991 \cap 2 X2: 0 1 0.001 0.993 \cap 3 X3: 0 1 0.001 0.993 \cap 4 \cap 5 \circ 6 Population Correlations (Rho) \Box \Box \Box \Box DV Get Matrix for a given R ² X1 $D.315$ $X1$ $Blank all correlations$ X2 0.131 0.597 X2 Set all Blank to 0 X3 $D.366$ 0.125 0.393 r	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations B SEB B SEB Beta Rejected Pro- Zero- Part VIE portion order Corr B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 62.76 0.6276 0.3117 X2 -3.0413 2.0386 -0.3013 3123 0.1270 0.2155 X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 0.3742 1.2993 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) 1.2001	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help # of M SD M SD Predictors: Y: 50 10 50.001 9.940 \cap 1 X1: 0 1 0.002 0.991 \cap 2 X2: 0 1 0.001 0.993 \cap 3 X3: 0 1 0.001 0.993 \cap 4 \cap 5 \circ 6 Population Correlations (Rho) \Box \Box \Box \Box DV Get Matrix for a given R ² X1 $D.315$ $X1$ $Blank all correlations$ X2 0.131 0.597 X2 Set all Blank to 0 X3 $D.366$ 0.125 0.393 r	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations B SEB Reigected Pro- Zero- Part VIE portion B0 49.9805 1.4700 10000 1.00000 1.0000 <tr< th=""><th>Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant</th></tr<>	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD SD Predictors: Y: 50 10 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 G 3 X3:0 1 0.001 0.993 G 3 X3:0 1 0.001 0.996 C 4 5 6	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) B SEB Beta B SEB Beta Rejected Pro- Zero- Part VIF portion order Corr B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.6276 0.3117 0.3395 1.7156 X2 -3.0413 2.0386 0.3013 3123 0.3123 0.1270 -0.2155 2.0076 X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 0.3742 1.2993 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) 1.2000<	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help # of M SD M SD Predictors: Y: 50 10 50.001 9.940 \cap 1 X1: 0 1 0.002 0.991 \cap 2 X2: 0 1 0.001 0.993 \cap 3 X3: 0 1 0.001 0.993 \cap 4 \cap 5 \cap 6 Population Correlations (Rho) \square <t< th=""><th>Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) B SEB B SEB</th><th>Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant</th></t<>	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) B SEB	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 G 3 X3:0 1 0.001 0.993 G 3 X3:0 1 0.001 0.993 G 3 X3:0 1 0.001 0.993 G 4 5 5 6	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Begression Coefficient Information (Averages and Counts) B SEB B SEB Beta Rejected Pro- Zero- Part VIE portion order Court 10000 X1 4.4481 1.8922 0.4396 62.76 0.6276 0.3117 0.3123 0.1270 -0.2155 2.0076 X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 0.3742 1.2993 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) ICounts Surce of Sum of df Mean Rejections Proportion Significant <th>Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant</th>	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		
File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual # of M SD SD Predictors: Y: 50 10 50.001 9.940 C 1 X1:0 1 0.002 0.991 C 2 X2:0 1 0.001 0.993 G 3 X3:0 1 0.001 0.993 G 3 X3:0 1 0.001 0.993 G 4 5 6	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 1000 Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) B SEB Beta Rejected Pro-Zero-Part VIF B0 49.9805 1.4700 10000 1.0000 X1 4.4481 1.8922 0.4396 6276 0.3117 0.3395 1.7156 X2 -3.0413 2.0386 -0.3013 3123 0.1270 0.2155 2.0076 X3 4.2703 1.6481 0.4240 7090 0.7090 0.3592 0.3742 1.2993 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) Interpretion Counts) Source of Sum of df <t< th=""><th>Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant</th></t<>	Mean and the Standard Deviation combines these previous two results. That is, all the information EXCEPT B0 remains the same as the previous example. But now with the Y mean at 50, B0 changed to match (and is significant		

MCMR: Monte Carlo for Mulitple Regression (versic File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual M SD 0.000 0.994 0 1 X1: 10 2 10.005 1.982 0 2 X2: 20 5 20.004 4.964 • 3 X3: 100 15 100.01 14.933 C 4 5 6	Monte Carlo Parameters Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Automatically set new seed for successive simulations VIE B SEB Beta Rejected Pro- Zero- Part VIE B0 -3.8563 1.2067 8593 0.3593 3123 0.3117 0.3395 1.7156 X2 0.0608 0.0408 -0.3013 3123 0.3123 0.1270 -0.2155 2.0076 X3 0.0285 0.0110 0.4240 7090 0.7090 0.3592 0.3742 1.2993	If we change the predictor Means and Standard Deviations, but leave the Dependent Variable Y standardized, you can see several differences — most notably in the regression coefficients. The "Sum of Squares" values have returned to what they were in the first example.
Show Actual Correlations rho ² = 0.257	# samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771)	
Model Summary Information (Averages and _R	source of timateSum of SquaresMean SquareRejections Significant3Regression11.5033.83478900.7890	
$\begin{tabular}{ c c c c c c } \hline MCMR: Monte Carlo for Mulitple Regression (version File Reset (F4) Run Analysis (F9) Options Help Population Parameters Actual M SD M SD Fredictors: Y: 50.0 10.0 50.001 9.940 C 1 X1: 10 2 10.005 1.982 C 2 X2: 20 5 20.004 4.964 G 3 X3: 100 15 100.01 14.933 C 4 C 5 C 6 File Population Correlations (Rho) DV Get Matrix for a given R2 X1 0.315 X1 Blank all correlations X2 0.131 0.597 X2 Set all Blank to 0 X3 0.366 0.125 0.393 Show Actual Correlations (rho2 = 0.257 Model Summary Information (Averages and R R R2 Adjusted R2 Std. Er (Ra2) the Est 0.5444 0.3095 0.2473 8.5628 Cross-validity R2 (Rc2) Precision Efficacy (R 0.1640 0.4311 MCMR$	Monte Carlo Parameters. Sample Size: 37 Get N from PEAR Method Alpha (2-tailed): 0.05 Set alpha=0.01 Set a=0.05 Set a=0.10 Monte Carlo Simulations: 10000 Set to 1 simulation Set 10000 Set 10000 The pseudorandom generator needs an INTEGER value to get started: Random Generator Seed: 1932 Set a Random Seed Automatically set new seed for successive simulations Regression Coefficient Information (Averages and Counts) B SEB Beta Rejected Pro- Zero- Part VIE B0 11.4368 12.0673 1528 0.1528 1.7156 X2 -0.6083 0.4077 -0.3013 3123 0.3123 0.1270 0.2155 2.0076 X3 0.2847 0.1099 0.4240 7090 0.7090 0.3592 0.3742 1.2993 # samples w/at least 1 significant X: 8730 (0.873) after SIG model 7705 (0.771) Counts) Source of Sum of Variation Squares Mean Rejections Proportion Significant Regression 1150.21 3 383.404 7890 0.7890 </td <td> Finally, if everything changes, the regression coefficients all change, but note that all the MODEL summary information and the CORRELATION information remains the same. Means and Standard Deviations have not impact on the decisions regarding the Null Hypotheses for either coefficients or the model, nor on the interpretations of the value of the predictors or the model. </td>	 Finally, if everything changes, the regression coefficients all change, but note that all the MODEL summary information and the CORRELATION information remains the same. Means and Standard Deviations have not impact on the decisions regarding the Null Hypotheses for either coefficients or the model, nor on the interpretations of the value of the predictors or the model.

References

- Algina, J., & Keselman, H. J. (2000). Cross-validation sample sizes. *Applied Psychological Measurement*, 24, 173–179.
- Algina, J., & Olejnik, S. (2000). Determining sample size for accurate estimation of the squared multiple correlation coefficient. *Multivariate Behavioral Research*, *35* (*1*), 119-137.
- Brooks, G. P. (1998a, October). *Precision Efficacy Analysis for Regression*. Paper presented at the meeting of the Mid-Western Educational Research Association, Chicago, IL.
- Brooks, G. P. (1998b). *Precision efficacy analysis for regression: Development and justification of a new sample size method for multiple linear regression*. Unpublished dissertation, Ohio University, Athens.
- Brooks, G. P., & Barcikowski, R. S. (1996). Precision power and its application to the selection of regression sample sizes. *Mid-Western Educational Researcher*, 9(4), 10-17.
- Browne, M. W. (1975). Predictive validity of a linear regression equation. British Journal of Mathematical and Statistical Psychology, 28, 79-87.
- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Darlington, R. B. (1968). Multiple regression in psychological research and practice. *Psychological Bulletin*, 69, 161-182.
- Gatsonis, C., & Sampson, A. R. (1989). Multiple correlation: Exact power and sample size calculations. *Psychological Bulletin*, *106*, 516-524.
- Herzberg, P. A. (1969). The parameters of cross-validation. *Psychometrika Monograph Supplement*, 34 (2, Pt. 2).
- Kraemer, H. C., & Thiemann, S. (1987). *How many subjects? Statistical power analysis in research*. Newbury Park, CA: Sage.
- L'Ecuyer, P. (1988). Efficient and portable combined random number generators. *Communications of the* ACM, 31, 742-749, 774.
- Lord, F. M. (1950). *Efficiency of prediction when a regression equation from one sample is used in a new sample* (Research Bulletin No. 50-40). Princeton, NJ: Educational Testing Service.
- Nash, J. C. (1990). *Compact numerical methods for computers: Linear algebra and function minimisation* (2nd ed.). New York: Adam Hilger.
- Nicholson, G. E. (1960). Prediction in future samples. In I. Olkin et al. (Eds.), *Contributions to probability and statistics: Essays in honor of Harold Hotelling* (pp. 322-330). Palo Alto, CA: Stanford.
- Park, C. N., & Dudycha, A. L. (1974). A cross-validation approach to sample size determination for regression models. *Journal of the American Statistical Association*, 69, 214-218.
- Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1989). *Numerical recipes in Pascal: The art of scientific computing*. New York: Cambridge University.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in FORTRAN: The art of scientific computing (2nd ed.). New York: Cambridge University.
- Rozeboom, W. W. (1978). Estimation of cross-validated multiple correlations: A clarification. *Psychological Bulletin*, 85, 1348-1351.
- Rozeboom, W. W. (1981). The cross-validational accuracy of sample regressions. *Journal of Educational Statistics*, *6*, 179-198.
- Sawyer, R. (1982). Sample size and the accuracy of predictions made from multiple regression equations. *Journal of Educational Statistics*, 7, 91-104.
- Stein, C. (1960). Multiple regression. In I. Olkin et al. (Eds.), *Contributions to probability and statistics: Essays in honor of Harold Hotelling* (pp.425-443). Palo Alto, CA: Stanford University.
- Stevens, J. (1996). *Applied multivariate statistics for the social sciences* (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
- Uhl, N., & Eisenberg, T. (1970). Predicting shrinkage in the multiple correlation coefficient. *Educational* and Psychological Measurement, 30, 487-489.

Send correspondence to: Gordon P. Brooks Ohio University Email: <u>brooksg@ohio.edu</u>

MCMR: Monte Carlo for Multiple Regression 43

Multiple Linear Regression Viewpoints Information for Contributors

Multiple Linear Regression Viewpoints (MLRV) is a publication sponsored by the American Educational Research Association's Special Interest Group on Multiple Linear Regression: The General Linear Model (MLR/GLM SIG). It is published twice a year to facilitate communication among professionals who focus their research on the theory, application, or teaching of multiple linear regression models and/or the general linear model. Manuscripts submitted to *MLRV* should conform to the language, style, and format of the Publication Manual of the American Psychological Association (5th ed., 2001). Three copies (two blind) of a doubled spaced manuscript (including equations, footnotes, quotes, and references) of approximately 25 pages in length, a 100 word abstract, and an IBM formatted diskette with the manuscript formatted in WordPerfect or Word should be submitted to one of the editors listed below.

Mathematical and Greek symbols should be clear and concise. All figures and diagrams must be photocopy-ready for publication. Manuscripts will be anonymously peer reviewed by two editorial board members. Author identifying information should appear on the title page of only one submitted manuscript. The review process will take approximately 3 months. A letter acknowledging receipt of the manuscript will be sent to the first author, and upon review, a letter indicating the peer review decision will be sent to the first author. Potential authors are encouraged to contact the editors to discuss ideas for contributions or determine if their manuscript is suitable for publication in *MLRV*.

EDITOR INFORMATION

Randall E. Schumacker, Editor MLRV	T. Mark Beasley, Associate Editor
College of Education	Department of Biostatistics
P.O. Box 870231	School of Public Health
Carmichael Hall 316	309E Ryals Public Health Bldg.
The University of Alabama	University of Alabama, Birmingham
Tuscaloosa, AL 35487-0231	Birmingham, AL 35294
(205) 348-6062	(205) 975-4957
rschumacker@ua.edu	mbeasley@uab.edu

ORDER INFORMATION

Cynthia Campbell, MLR/GLM SIG Executive Secretary Department of Educational Technology, Research & Assessment Northern Illinois University DeKalb, IL 60115-2854 ccampbell@niu.edu

Check out our website at: http://mlrv.ua.edu/

POSTMASTER: Send address changes to: Cynthia Campbell, MLR/GLM SIG Executive Secretary Department of Educational Technology, Research & Assessment Northern Illinois University DeKalb, IL 60115-2854

Multiple Linear Regression Viewpoints (ISSN 0195-7171) is published by the AERA Special Interest Group on Multiple Linear Regression: General Linear Model through the University of Alabama at Birmingham and Northern Illinois University.