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Testing Interactions in Classification Problems 
  Bernadine Beard                     Valerie Bryan  
   John D. Morris                Mary G. Lieberman 

Florida Atlantic University 
 The purpose is to demonstrate a procedure for testing the increment to classification accuracy 
afforded by an interaction term using predictive discriminant analysis (PDA) and logistic regression (LR). 
The PSAT (Math) and ethnicity were employed to predict students at risk of passing or failing the Florida 
Comprehensive Assessment Test (FCAT) Math. Results favored PDA over LR for the failure group. For 
PDA, at an a priori alpha of .05, the moderation of ethnicity was not significant for the failure group, but 
was for both passing and the total sample, as were hit-rates for total sample and separate groups by 
Ethnicity. 

esearchers employing multiple linear regression frequently use the well-known technique of 
hypothesis testing through contrasting the predictive variance attributable to full versus restricted 
models. This method’s power, generality, and applicability to a very wide range of questions in 
science form a theoretical umbrella under which most univariate inferential statistical tests can be 

viewed. 
  In multivariate statistics, a test of the so-called additional information hypothesis (AIH) was 
suggested by C. R. Rao over 50 years ago (see Hand, 1981, p. 149).  The context of this hypothesis is that 
of one-factor multivariate analysis of variance. The research question associated with this hypothesis 
pertains to an assessment of the difference between the intergroup distance when all response variables 
are analyzed and the intergroup distance for a subset of response variables.  The hypothesis, then, is that 
the omitted set of variables adds no information (in the sense of intergroup distance) to that yielded by the 
subset included. The research question considered in this situation is different from that which occurs in a 
predictive context because the same criteria are not appropriate. For Rao’s AIH, the criterion is intergroup 
difference, whereas, for the prediction problem, the criterion is classification accuracy (see Huberty & 
Wisenbaker, 1992) – total, or that obtained within each of the separate groups. 
  The same type of model contrast explanatory increment question can be asked, and seems to be of at 
least as much potential interest, in classification questions. Specifically, the question arises in studies 
using predictive discriminant analysis (i.e., classification), logistic regression, as well as other methods of 
classification.  In this case, the criterion for model accuracy is some form of classification accuracy.  The 
test concerns the difference in proportion of correct classifications (hit-rate) between full and restricted 
models, just as is done using the R2 in multiple regression. The appropriate test statistic is McNemar’s 
(1947) contrast between correlated proportions, and was introduced by Morris and Huberty (1991; 1995) 
for the purpose of full versus restricted model testing in predictive discriminant analysis for specific 
planned contrasts using the total group hit-rate as the criterion. 
  One of the difficulties with the application of the McNemar statistic to full versus restricted model 
classification questions is that it requires tallying the number of subjects classified correctly and 
incorrectly and summarizing the results in a fourfold table corresponding to the full and restricted models.  
To obtain the entries for that table, one needs more than a knowledge of hit-rates for each model; one 
must count the number of subjects who were correctly and incorrectly classified in both the full and 
restricted models in turn. Thus, the total and separate-group hit-rates that are available from standard 
discriminant analysis and logistic regression package programs are not sufficient information to complete 
the comparison between full and restricted models. For each individual case, one must tally whether the 
subject was classified correctly or incorrectly jointly for the full and reduced models. Moreover, if one 
considers cross-validated classification to be the appropriate metric of model accuracy, then these 
classifications/misclassifications that are to be tallied must be cross-validation estimates. A computer 
program to accomplish this otherwise difficult task has been made available in the case of discriminant 
analysis (Morris & Huberty, 1991; 1995) and logistic regression (Lieberman, Morris & Huberty, 2000).  
  One typical use of a full vs. restricted model test in multiple regression is in the consideration of an 
interaction, tested in multiple regression by considering the contribution of a standard multiplicative term 
(often with variables centered to avoid collinearity problems). Our purpose in this paper is to extend this 
procedure and illustrate an example thereof in a classification model. Note that these variable importance 
tests are based on the increment to classification accuracy and are quite different than tests of an 
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interaction term β available in standard computer packages. Those tests are appropriate when considering 
partial influence on group separation, but not on hit-rate – the criterion of importance in a classification 
analysis. As this is simply an extension of the full vs. restricted model testing paradigm to the interaction 
question, the same aforementioned FORTRAN computer program is applicable. 
  One may argue, however, that because of the positive bias of estimation of hit-rate classification of 
the calibration sample, a cross-validated estimate of accuracy should be used.  A nonparametric approach 
to estimating cross-validated hit-rate, which has a wide following in the discriminant analysis literature, is 
the leave-one-out procedure (Huberty & Olejnik, 2006; Huberty & Mourad, 1980; Lachenbruch & 
Mickey, 1968; Mosteller & Tukey, 1968).  In this method, a subject is classified by applying the rule 
derived from all subjects except the one being classified.  This process is repeated round-robin for each 
subject, with a count of the overall classification accuracy used to estimate the cross-validated accuracy. 
We show how interaction tests using full versus restricted model testing, parallel to that used in multiple 
regression, can be extended to classification studies. We illustrate the interaction test for total as well as 
separate-group Leave-One-Out classification accuracies for both predictive discriminant analysis (PDA) 
and Logistic Regression (LR).   
 

Method 
  An example provided herein regards predicting a high-stakes state mandated, “pass or fail,” test from 
a prior low-stakes test hoped to be diagnostic thus aiding in remediation. Specifically the Florida “FCAT” 
is predicted from the PSAT.  Specifically, the question examined is whether the accuracy with which the 
PSAT Math can classify subjects correctly in regard to passing or failing the FCAT Math is moderated by 
ethnicity.  In this case both the PDA and LR model were created using PSAT (centered on its mean), 
Ethnicity, and their product predicting FCAT success. The contrast of interest was that between the hit-
rate for all three variables and that afforded by excluding the cross-product term, thus testing the 
increment to classification accuracy afforded by the moderator variable.   
 

Results and Discussion 
 Table 1 illustrates the cross-validated (leave-one-out) hit-rates from a linear discriminant function 
with equal priors for the total sample (N=533), as well as by ethnicity. First, for both ethnicities 
prediction is most accurate for those who fail, which, if there is to be a separate group accuracy difference 
is in the desirable direction.  Also, hit-rate is more accurate for the total sample as well as for separate 
groups for Ethnicity 1 than Ethnicity 2.  The question of interest is whether hit-rate is significantly 
moderated by ethnicity.  
  Table 1 shows the results.  Although not of primary interest in this study, the difference in cross-
validated hit-rate for LR than PDA is of interest. Because of the poor predictive performance of the LR 
model (using both ethnicities) for the “Failed” group, a better choice would be the PDA model.  As 
primary interest was in correct classification of the subjects who fail the high stakes FCAT, only the 
interaction tests for the PDA model will be discussed herein. 
 For the PDA results, if the researcher posited an alpha of .05, the aforementioned moderation tests 
would lead the researcher to conclude that the moderation of ethnicity on hit-rate was not significant for 
the FCAT failure group (p > .05), but was for both the Passing group (McNemar z = 3.32, p < .01) and 
Total sample ( McNemar z = 2.89, p < .05).  Thus one could assert that the model was significantly more 
accurate at predicting group membership for subjects who passed, and for the combination of subjects 
passing and failing, for the Majority ethnicity than for the corresponding Minority.  As well, as the hit-
rates are simple ratio statistics, their simple difference (e.g. 82.4% - .66.7%=  15.7%, and 83.3%-69.9= 
13.4%) or a proportional increment [e.g. (82.4%/66.7% -1) = 23.5%, and (83.3%/69.9% -1) = 19.2%], 
depending on notions of purpose and whether group size is a good estimate of the corresponding 
parameter, might serve as effect size estimators. 
 Of course, as in multiple regression, the procedure is not limited to categorical moderators. The 
relevant computer program is available from the authors.   
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Table 1. PDA and (LR) hit-rate predicting FCAT from PSAT for all Subjects and by two Ethnicities 
 Hit-Rate for: 

    Failed FCAT    Passed FCAT   Total (of row) 

All Subjects 88.9%    (44.4%) 79.4%    (97.1%) 80.9%    (89.1%) 

Majority 91.9%    (56.8%) 82.4%    (97.5%) 83.3%    (93.3%) 

Minority 79.5%    (47.7%) 66.7%    (93.0%) 69.9%    (81.5%) 
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A Method for Choosing Weights to Predict  
College Grades for Admission Decisions and 

to Assess their Fairness by Race/Ethnicity 
Steven Andrew Culpepper   Ernest C. Davenport   Mark L. Davison 

   University of Colorado Denver   University of Minnesota        University of Minnesota 

Previous research suggests that equal weights tend to outperform statistically optimal weights in cross-
validation studies. This paper argues that the findings from the equal weights literature are relevant for 
researchers that predict college grades and/or assess differential prediction of college grades by student 
characteristics. An application of the criterion profile methodology (CPM) is presented to demonstrate 
how to examine individual criterion profiles. This study showed how to use the CPM to determine the 
extent to which equal and statistically optimal coefficients differentially predicted college grades for 
minority and majority students. The results support previous findings, in that, 92.5% of the explained 
variance in college grades was attributed to equal weights, where standardized test scores and high 
school rank were weighted equally, and 7.5% of the explained variance was accounted for by statistically 
optimal coefficients that weighted ACT Math scores less than ACT English and high school rank. 
Additionally, equally weighting admission information was more accurate for predicting Asian 
Americans’ future academic performance than European Americans. 

rediction is an important aspect of scientific endeavors. For instance, educators predict student ach-
ievement, psychologists classify clients into different diagnoses, university personnel place 
students into developmentally appropriate courses, and economists forecast stock prices and 

economic conditions. Multiple regression is an important statistical tool for making these types of 
predictions. 
  One classic application of multiple regression is the prediction of college grades with standardized 
test scores and measures of high school academic success (Hills, 1964; McKelpin, 1965; Munday, 1965; 
Richards & Lutz, 1968; Sassenrath & Pugh, 1965; Stanley & Porter, 1967). Many applications of 
multiple regression for predicting college grades are designed to create an equation (which is later 
referred to as a selection equation) for admission officers to objectively select or sort applicants based 
upon predicted academic performance. However, practitioners interested in prediction should be cautious 
about using regression equations to predict applicants’ grades. Specifically, using an estimated regression 
equation to select or sort applicants assumes the intercept and slope coefficients are statistically equal 
(i.e., invariant) across different demographic groups (Dorans, 2004). 
  Differential prediction, which occurs when the intercept and/or slope coefficients differ between two 
or more groups (Cleary, 1968; Humphreys, 1952), can impact admissions decisions that use quantitative 
information and multiple regression predictions. For instance, intercept differences indicate that one 
group’s academic performance is over-predicted and another group’s performance is under-predicted. 
Previous research suggests that racial/ethnic minority group performance is consistently over-predicted 
with a common regression equation (Breland, 1979; Burton & Ramist, 2001; Cleary, Humphreys, 
Kendrick, & Wesman, 1975; Duran, 1983; Linn, 1973; Stanley & Porter, 1967; Wilson, 1983; Young, 
2001). In this case, admission decisions are biased in favor of minorities; using one equation to predict 
academic performance will tend to over-predict minorities’ actual performance. In contrast, female’s 
performance is consistently under-predicted (Bridgeman, McCamley-Jenkins, & Ervin, 2000; Chou & 
Huberty, 1990; Elliott & Strenta, 1988; Noble, 2003; Pennock-Román, 1994; Ramist, Lewis, & 
McCamley-Jenkins, 1993; Young, 1994). 
  Slope differences provide evidence about the accuracy of different variables for predicting group 
outcomes. For example, Young’s (2001) review of differential prediction studies suggests that minority 
students tend to have smaller slope coefficients for academic predictors, such as test scores and high 
school grades, than their European American counterparts. Slope differences by race/ethnicity are often 
evidence that test scores and/or high school grades are less valuable indicators of minority students’ 
future academic performance and should be considered differently and perhaps with less value in 
admissions decisions. 
 Researchers and practitioners need to assess the presence of differential prediction to ensure 

P 



Predicting College Grades 

Multiple Linear Regression Viewpoints, 2008, Vol. 34(2)                                                                                      5 

responsible multiple regression-based predictions. While multiple regression is used to assess differential 
prediction (the application of regression to assessing differential prediction is also referred to as 
moderated multiple regression, or MMR, see for example Saunders, 1956), research suggests that it is not 
a perfect tool for uncovering differential prediction. Aguinis and Stone-Romero (1997) note that the 
power to detect slope coefficient differences is smaller when certain artifacts are present (e.g., small 
sample sizes, relatively low representation of minorities in the sample, measurement error in the 
predictor and criterion, and range restriction in the predictor). That is, the likelihood of uncovering true 
differences in slope coefficients is less likely when the aforementioned artifacts are present. This 
translates into researchers being less likely to conclude that test scores and/or high school academic 
achievement are less valuable indicators for a given minority group (e.g., comparisons by race/ethnicity, 
gender, first-generation status, etc.) even when such an inference is true in the population. 
  Dana and Dawes (2004) offer an additional caution for statisticians and practitioners who make 
predictions with multiple regression. Through the use of statistical simulations, Dana and Dawes (2004) 
contributed evidence to an existing body of research (Davis & Sauser, 1991; Dawes, 1979; Dawes & 
Corrigan, 1974; Dawes, Faust, & Meehl, 1989) that equal weights (i.e., slope coefficients that are equal 
for every predictor) tend to outperform statistically optimal weights (i.e., standardized slope coefficients 
derived with ordinary least squares, or OLS) in cross-validation samples. Dana and Dawes (2004) boldly 
conclude that multiple regression should not be used for prediction purposes when the total variance 
explained is small (i.e., R

2
 is less than 0.25). Similarity, Einhorn and Hogarth (1975) suggest that 

regression should not be used when R
2
 < 0.50. 

  High school grades and standardized test scores tend to account for less than 50% of the total 
variation in college grades (and sometimes less than 25% of variation). This poses a challenge for 
researchers who wish to predict college grades and/or conduct differential prediction studies. In 
particular, differential prediction studies use MMR to test the extent to which subgroups’ differ in 
statistically optimal slope coefficients. Dana and Dawes’ (2004) findings provide evidence that 
comparing the equivalence of statistically optimal weights may be inadvisable when R2 is small. Indeed, 
if equal weights account for the majority of variance in college grades rather than statistically optimal 
weights, it may be more appropriate to determine the extent to which equal weights differentially predict 
college grades for different subgroups. 
 The goal of this paper is to show how an external profile analysis technique can be used to assess 
differential prediction by race, while concurrently examining the value of equal and statistically optimal 
weights. A simple application of a criterion profile methodology (CPM; Davison & Davenport, 2002) is 
presented to test the extent to which statistically optimal and equal weights differentially predict the 
college grades of two minority groups (African; Asian Americans) when compared to European 
Americans. 
  One goal of this study was to assess differential prediction in a way that accommodates Dana and 
Dawes’ (2004) concerns. Accordingly, the first section of this paper introduces the mathematical 
formulation of the CPM and describes how the CPM can address Dana and Dawes’ (2004) concerns.  
  The CPM is an external profile analysis technique (Davison & Davenport, 2002) that yields a 
predictor profile that differentiates between subjects with high and low scores on a criterion, such as 
college grades. So, another goal of this study was to introduce researchers to the CPM, since it is 
applicable to other research endeavors. The profile analysis feature of the CPM was described to clearly 
articulate the model. In this study, high school grades and ACT test scores were used to demonstrate 
individual and sub-group profile differences. The third section discusses the results of the differential 
prediction analysis as it relates to using the CPM and the last section provides concluding remarks. 
 

Description of the Criterion Profile Methodology 
 Profiles patterns identified with cluster analysis or multidimensional scaling have been criticized for 
not exhibiting criterion-related validity evidence (Watkins, 2000). The advantage of the CPM is that the 
identified profiles are explicitly related to a criterion, such as college grades in this study, and exhibit 
some degree of validity as determined by the strength of the relationship between the predictors and the 
criterion (Davison & Davenport, 2002). That is, the identified predictor patterns distinguish those low 
and high on the criterion variable. 
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  The CPM parses the variation in a criterion variable explained by a set of independent variables into 
two components: a level effect, which is characterized by an equally weighted linear composite of the 
predictors, and a pattern effect, which is the covariance between a subject’s predictor profile and the 
regression coefficients. The relationship between the level effect and equal weights versus the pattern 
effect and optimal weights is discussed below.  
  To formally define these two effects we start with the usual regression model in Equation 1 below: 

           pe
V

v
apvXvpY +∑

=
+=

1
β          (1) 

where Yp represents the criterion score for person p, βv represents the regression coefficient for variable v 

(v = 1 to V where V is the number of predictors and V ≥  2), and Xpv is the score for subject p on predictor 
v. Finally, a is the intercept of the regression equation and ep is a random error term. The criterion profile 
is defined as the set of slope coefficients, β1, β2, … , and βv, for the p predictors. 
  Davison and Davenport (2002) prove that the regression model in equation 1 is equivalent to the 
following model: 

         peapXpCovpY +++=
21
γγ

         (2)
 

where, pX  is referred to as level, Covp is referred to as pattern, and γ1 and γ2 are their respective slope 

coefficients (these coefficients are standardized if Covp and pX  represent z-scores). The first term on the 

right of Equation 2 constitutes the pattern effect, and the second term is the level effect. Regardless of the 
original number of predictors, the original regression equation can be reduced to three terms, a, Covp, and 

pX . It is important to note that Yp and ep are the same in Equations 1 and 2, so that the level and pattern 

variables together account for the same proportion of variation in the criterion as the original variables. 
  The equations for level and pattern are presented below in Equations 3 and 4: 

            V

X

X

V

v

pv

p

∑
== 1

 ;          (3)
 

         V
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Cov

V

v

ppvv

p

∑
=

−−

= 1

))(( ββ

 ;         (4)
 

 

where the only new variable, β , in Equation 4 represents the average of the regression coefficients. 

Equation 3 shows that level, pX , is person p’s unweighted average on the independent variables, which 

suggests that individuals who tend to have larger (smaller) standardized values on the V predictors will 
also tend to have larger (smaller) values for level. 
 Pattern (Covp) is the covariance between person p’s predictor scores and the weights from the 
original regression, and it is a measure of the match between the observed score profile of person p and 
the pattern that distinguishes people with high scores on the criterion. Individuals with predictor scores 
whose pattern matches the configuration of the regression weights will have larger profile match 
statistics Covp and therefore higher predicted values.  
  Because it is a covariance measure, pattern is positive for subjects whose scores are consistent with 
the criterion profile (i.e., the configuration of the slope coefficients, βv) and negative for subjects whose 
scores are consistent with the mirror image of the criterion profile. The mirror image profile is defined by 
slope coefficients with the exact opposite configuration as the criterion profile. The coefficients for the 

mirror image profile (ψv) can be found with the following expression: ( )
vvv βββββψ −=−−= 2 . 

Subjects with predictor profiles corresponding to the mirror image pattern tend to have lower predicted 
values after controlling for level. The criterion and mirror image profiles are discussed later during the 
application of the CPM with admissions data. 
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Value of the CPM for Differential Prediction Studies 
 The CPM is useful for identifying profiles that differentiate between individuals with high and low 
criterion values, such as first year cumulative grade point average in our case. However, the criterion 
profile is only useful for differentiating between high and low CGPA scorers when the pattern effect is 
statistically significant after controlling for level, which occurs when the statistically optimal weights add 
predictive value in addition to equal weights. In fact, pattern is generally statistically significant when 
variability exists among the standardized regression weights. In cases where pattern provides no 
additional prediction in the criterion over that of level, the equal weight profile differentiates between 
low and high scoring subjects, subjects with larger criterion scores tend to have high values on all the 
predictors rather than a configuration of predictor scores.   
 The pattern variable is also important, since it represents the extent to which practitioners should 
employ statistically optimal weights in decisions. Referring to Equation 4 again, we see that pattern is 
particularly important for assessing differential prediction.  The relative size of the regression weights 
vary along two extremes: the weights are either close to being equal or they differ substantially in 
magnitude.  Pattern will account for less variation in a criterion when the regression weights are similar 
or equal to each other, which would lead to equal weights outperforming statistically optimal weights. 
Conversely, statistically optimal weights are important for prediction purposes when pattern accounts for 
relatively more variation in a criterion than level, or equal weights. Pattern is useful to the extent that the 
optimal weights (betas) vary and this variance in weights accounts for differences in the criterion.   
  This study assesses the value of using equal vs. statistically optimal weights by estimating the 
amount of variation that is accounted for by level and pattern. More formally, the hypothesis is:  

H0: R
2

Level = R
2

Level + Pattern and H1: R
2

Level ≠ R
2

Level + Pattern; 
which is testable with the traditional F-test comparing parametric regression models with V-1 and N-V-1 
degrees of freedom where V is the number of independent variables and N is the sample size (Davison & 
Davenport, 2002).  Substantively, this test will provide evidence for whether or not statistically optimal 
weights provide predictive value above and beyond equal weights. 
 

Methods 
Sample 
 This study used data from the entering class of 2000 at a public research university. The data was 
collected from each student during the pre-college admissions process and provided to the researchers by 
the Office for Institutional Research. The sample consisted of 2,035 students who enrolled in the College 
of Liberal Arts (CLA) fall 2000 and persisted through one year of academic study. These 2,035 students 
were disaggregated by self-reported race/ethnicity. Of the 2,035 students, 68 were African American 
(AFA), 11 were American Indian, 186 were Asian American (ASA), 1,683 were European American 
(EA), 38 were Hispanic, 5 were International, and 44 were unidentified. Only the AFA, ASA and EA 
groups were included in the analyses, since there were small numbers of American Indians, Hispanics, 
International, and unidentified students in the sample. The final sample size included 1,933 students (four 
students had missing scores on at least one of the predictors).  
 

Variables 
 In this application of the CPM, the predictors of interest were students’ ACT English sub-score 
(ACTE), ACT math test sub-score (ACTM), and high school percentile rank (HSR) and the criterion was 
first-year cumulative grade point average (CGPA). The regression and CPM analyses were conducted by 
standardizing the predictors and criterion across racial subgroups onto a z-score scale with a mean of 
zero and variance of one. Table 1 reports descriptive statistics of the variables. Certainly, one could argue 
that ACTE, ACTM, and HSR predict first-year grades differently depending upon the type of coursework 
or degree program in which a student engages. It is important to note that the students in the CLA were 
chosen to reduce the potential heterogeneity in regression equations across different colleges within the 
university. 
 

Point of Caution 

  With respect to the CPM, there are no limitations of formulating the general linear model in 

terms of level and pattern. In fact, the reconfiguration of the general linear model into the CPM 

accounts for the same proportion of variance in the criterion. However, it is important to consider  
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Table 1. Multiple Regression and Criterion Profile Methodology Summary. 

  Std. Weight Sig. Part Corr. M SD 

Regression Model
a
      

ACT English 0.306 *** 0.261 24.3 4.30 

ACT Math 0.087 *** 0.074 24.6 4.08 

High School Rank 0.306 *** 0.302 80.8 11.50 

CPM Model
a
      

Level 0.496 *** 0.493 -0.0004 0.71 

Pattern 0.138 *** 0.137 -0.00003 0.05 

Cross-Validation Summary Sample 1 Sample 2   

R
2
, Level Only 0.233 0.229   

R
2
, Level + Pattern 0.259 0.242   

Note: Std Weight = Standardized slope coefficient, Sig. = Level of significance,  
Part Corr. = Part Correlation, M = average, SD = standard deviation.   
The average CGPA was 3.01 with a standard deviation equal to 0.59. 
a
The model R

2
 = 0.250 for both the regression and CPM models. 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 1. Pooled, within race/ethnicity, and equal weight criterion profiles. 

Note. R
2
 = 0.250 for the criterion profile and R

2
 = 0.231 for the equal weight profile. 

 

one issue to ensure meaningful CPM analyses, which is that the independent variables need to be on 

either a substantively meaningful scale, such as the number of credit hours in various mathematics 
courses (Davison & Davenport, 2002), or the same scale, such as z-scores, to yield regression 
coefficients that are comparable in the criterion profile. Failure to address the scaling of the predictors 
may produce misleading or substantively uninformative results (Davison & Davenport, 2002). 
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Results 
 The results section consists of two subsections. In an effort to further articulate and demonstrate the 
CPM, the first section applies the CPM to identify a profile pattern that distinguishes those high and low 
on the criterion variable. The second section uses the CPM to assess the extent to which equal and 
statistically optimal weights differentially predict CGPA.  
 

Profile Application of the Criterion Profile Methodology: Understanding Individual Differences.  
  Table 1 presents the regression summary of ACTE, ACTM, and HSR as predictors of CGPA. The 
regression model accounted for approximately 25.0% of the variation in CGPA. Furthermore, all the 
predictors were positively related to CGPA and were statistically significant at the 0.001 level. The 
standardized slope coefficients equaled 0.306, 0.087, and 0.306, for ACTE, ACTM, and HSR, 
respectively. The standardized slope coefficients define the criterion profile, which was characterized by 
larger weights for ACTE and HSR than for ACTM. The mirror image profile consisted of weights with 
an exact opposite configuration of the criterion profile. Figure 1 plots the criterion and mirror image 
profiles, in addition to the equal weight profile. 
 Figure 2 plots three subjects’ standardized predictor profiles to demonstrate how the CPM can be 
used to describe individual differences. Figure 2 shows that subject 261 more closely matched the 
criterion profile and subject 144 matched the mirror image profile. The average pattern was 
approximately zero with a corresponding standard deviation of 0.05. Subject 144 had a pattern value 
about two standard deviations below the mean (Cov 144 = -0.13) and subject 261 had a pattern value about 

two standard deviations above the mean (Cov 261 = 0.12). Subject 122’s standardized predictor profile 
resembled the equal weight profile, since the profile was nearly flat and the values for the three 
predictors were within one standard deviation of each other. Additionally, subject 122’s profile did not 
match either the criterion or mirror image profiles, as indicated by Cov 122 = -0.001. Moreover, subject 
122 had the largest level value and subject 261 had the smallest value for level.  
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Figure 2. Three subjects’ predictor profiles. 
 

 Figure 2 also includes information pertaining to the subjects’ CGPA, which were standardized to z-
scores. Of these three subjects, 122 performed the best academically (1.68) followed by Subject 144 (-
0.05), and Subject 261 (-0.63). It is important to determine the extent to which higher academic 
performance was associated with individual differences in level, individual differences in pattern, or  
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Figure 3. Average predictor profiles by race. 
 

individual differences in both level and pattern. To answer this question we need to understand the 
amount of variation that was captured by level and pattern independently (note that the bivariate 
correlation between level and pattern equaled -0.11, so the effects were nearly orthogonal). Table 1 
presents the standardized slope coefficients (later denoted as β), p-values, and part-correlations for level 
(β = 0.496; p < 0.001) and pattern (β = 0.138; p < 0.001). A significant F-test (F(2, 1,929) = 23.6; p < 
0.001) provided evidence that pattern accounted for variation in college grades after controlling for level.  
  The F-test results suggest that statistically optimal weights provided some predictive value that was 
not captured by equal weights. Still, the results suggest that the vast majority of variance accounted for in 
CGPA was attributed to level, or an equal weighting scheme. Squaring the part correlations in Table 1 
yields the change in R

2
 effect-size. Level alone accounted for 23.1% of the total variance in CGPA or 

92.5% of the explained variance in CGPA (e.g., 0.231/0.250 = 0.925). Pattern accounted for 1.9% 
additional variance in CGPA or 7.5% of the explained variance in CGPA. This evidence suggests that 
individual differences in CGPA were more associated with differences in level than with pattern. From a 
prediction perspective, equal weights captured most of the variance in CGPA when compared to 
statistically optimal weights. 
  Davison and Davenport (2002) note that it is also important to cross-validate CPM findings to assess 
the value of level and pattern in a different sample. The total sample was randomly divided into two 
groups. Standardized test scores and high school rank were regressed onto CGPA and the resulting 
standardized slope coefficients were used to create pattern variables in the omitted sample. The bottom 
portion of Table 1 summarizes the cross-validation findings. In particular, level accounted for 23.3% and 
22.9% of the total variance in CGPA within each sample. Pattern accounted for an additional 2.6% and 
1.3% after controlling for level. The cross-validation results provide additional evidence that level 
accounted for the vast majority of variance in CGPA. Note that this cross-validation is especially 
important given sample fluctuations of regression weights and the fact that practitioners may use them as 
if they are stable.  
  This finding suggests that the differences among CGPA scores for the three subjects in Figure 2 were 
largely due to individual differences in level rather than pattern; i.e., subjects with higher academic 
performance in college tended to have higher scores on all of the predictors rather than a configuration of 
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predictor values that matched the criterion profile. For instance, Figure 2 shows that the subject who had 
the highest values on all of the predictors (Subject 122) also had the largest CGPA. Conversely, the two 
subjects that exhibited variability in their standardized predictor values had lower level values and lower 
academic performance. 
 
Differential Prediction Application of the Criterion Profile Methodology 
 The previous section presented a profile application of the CPM. This section focuses upon the use 
of the CPM as a means of comparing the predictive value of statistically optimal weights and/or equal 
weights in differential prediction studies. Previous research suggests that an equally weighted linear 
composite of the independent variables provides predictive power comparable to or better than 
statistically optimal weights (Dana & Dawes, 2004; Davis & Sauser, 1991; Dawes, 1979; Dawes & 
Corrigan, 1974; Dawes et al., 1989). The use of the CPM for differential prediction studies offers a way 
to examine whether equal weights and/or statistically optimal weights are differentially valid for different 
groups simultaneously.  
 The CPM statistical results in Table 1 provided evidence that equally weighting the independent 
variables accounted for nearly all of the variation in CGPA. Thus, the value in using statistically optimal 
weights after controlling for an equally weighted linear composite was limited. In this instance, where 
level accounts for the majority of variation in CGPA, it may not be appropriate to assess differential 
prediction of subgroups by comparing the statistically optimal regression equations. Instead, a more 
meaningful differential prediction study should independently compare the extent to which level, a 
composite that equally weights the independent predictors, and pattern differentially predicts CGPA for 
students of different races/ethnicities. 
Given the relative value of equal and statistically optimal weights in this study, it may be statistically 
appropriate to exclude pattern from the MMR model and only estimate whether level differential predicts 
college grades. Instead, pattern was included in the differential prediction model to demonstrate how 
researchers can use the CPM to address situations where level and pattern each account for a significant 
amount of variation in the criterion. 
  Table 2 presents CPM results for comparing the equivalence of subgroup regression equations. The 
estimated CPM-MMR model is shown below in Equation 5: 
 

     

( ) ( )
( ) ( ) ( ) ( ) pepCovpbpCovpbpXpbpXpb

pCovbpXbpbpbbpFYCGPA

++++

+++++=
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2
AFA

10

   (5)

 

 
where the dummy variables: AFAp and ASAp, equal one for 
African American and Asian American students, 
respectively, and zero otherwise. Additionally, CGPA, level, 
and pattern were standardized. b0 represents the average EA 
CGPA in standard deviation units, since EA was the 
reference group. b1 and b2 represent the average difference 
in CGPA between AFA and EA and ASA and EA, 
respectively. In other words, these two parameters represent 
necessary intercept adjustments to better predict these two 
minority groups relative to the majority group. Furthermore, 
the EA coefficient for level was b3 and b5 and b6 denote the 
amount that the slope coefficient for level differed between 
AFA and EA and ASA and EA, respectively. Just as b1 and 
b2 represented adjustments, so does b5 and b6. b4 represents 
the contribution of pattern to the prediction equation for EA. 
b7 and b8 represent the corresponding adjustments to pattern 
for AFA and ASA, respectively.  

Table 2. Criterion Profile Methodology  
Moderated Multiple Regression Summary 

         Slope Sig. 

Intercept       0.031  
African American    -0.040  
Asian American    -0.181 * 
Level        0.459 *** 
African American * Level   0.066  
Asian American * Level   0.182 * 
Pattern       0.140 *** 
African American * Pattern -0.015  
Asian American * Pattern   0.043   

Note. The model R
2
 = 0.259.   

Level and Pattern were standardized. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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  The extent to which all adjustments are non-significant indicates the degree to which one regression 
equation would be equally predictive for the three racial/ethnic groups. Statistically significant b5 and/or 
b6 parameters would indicate group differences in the accuracy of equal weights for predicting college 
grades. Similarly, statistically significant b7 and/or b8 parameters would suggest that the ethnic groups 
were not equal relative to using optimal weights as represented by the beta coefficients. 
 The evidence in Table 2 suggests that AFA and EA did not statistically differ in regression equations. 
None of the adjustments for the AFA group were significant which indicates that the estimates provided 
by the referent group, EA, were sufficient for AFA. That is, level (b5 = 0.066; p > 0.05) and pattern (b7 = 
-0.015; p > 0.05) predicted the same for AFA and EA and there were no intercept differences (b1 = -
0.040; p > 0.05), which indicated that the AFA and EA groups performed similarly academically after 
controlling for the three measures of pre-collegiate academic success. Conversely, ASA exhibited a 
statistically lower intercept than EA (b2 = -0.18; p < 0.05) and a larger slope coefficient for level (b6 = 
0.18; p < 0.05). The former finding suggests that the ASA group tended to earn lower CGPA than the EA 
group. The slope coefficients in equation 5 represent partial correlations, so the latter finding suggests 
that equal weights demonstrated more criterion-related validity for ASA students than for their EA 
counterparts. Moreover, in additional analyses, level accounted for 22.6% and 21.0% of the variance in 
CGPA for ASA and EA, respectively, which suggests that equal weights may have been slightly more 
accurate for ASA students. EA and ASA did not differ in the extent to which using statistically optimal 
weights related to the subsequent quality of the prediction. 
 
 

Conclusion 
 This paper used the CPM to: 1) conduct profile analysis to differentiate between individuals and 
groups who earn high and low college grades; and 2) explore differential predictability in the use of 
equal and statistically optimal weights. The results provided evidence that equal weights, or level, 
accounted for more variance in CGPA than statistically optimal weights, pattern. The criterion profile, or 
statistically optimal weights, provided little additional predictive ability for differentiating between 
students with high and low CGPA scores. Therefore, the best weighting scheme was one that treated test 
scores and high school rank equally rather than the statistically optimal weighting scheme that gave more 
weight to ACT English and high school rank than to ACT Math. Perhaps intuition or research would 
suggest that ACT Math is not as good of a predictor of academic performance for students in liberal arts, 
since their coursework may include less mathematics. The findings of this study suggest that using equal 
weights for all applicants will capture most of the variability in first-year grades; approximately 90% of 
the accounted for variance. From a practitioner’s perspective, the evidence suggests that ACT Math 
scores should be treated with the same weight or importance as ACT English scores, and high school 
rank in decisions for admitting applicants to the College of Liberal Arts.  
 This finding had direct relevance for assessing differential prediction. That is, statistically optimal 
weights accounted for very little variance in addition to equal weights. Thus, it was more appropriate to 
test the extent to which equal and statistically optimal weights differentially predicted grades for 
different racial groups. In fact, an equal weighting scheme was more valid for ASA than for EA. There 
was no evidence to suggest that AFA and EA equations differed, so the equal and statistically optimal 
weighting schemes provided similar predictive accuracy.  
 The use of equal or statistically optimal weights poses another methodological challenge for 
assessing differential prediction. Future differential prediction studies should determine the value of 
equal and statistically optimal weights by computing the variance accounted for by level and pattern in 
college grades in the full sample and in cross-validation samples. Failure to determine the relative value 
of equal and statistically optimal weights may result in researchers comparing the equivalence of groups 
in statistically optimal coefficients when equal weights account for the vast majority of variance in a 
criterion. This study demonstrated that the CPM is an appropriate method for addressing this 
methodological issue. 
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A Monte Carlo Program for Multiple Linear Regression 
Gordon P. Brooks 

Ohio University 

 The primary purpose of this presentation is to demonstrate a new computer program that statistics instructors can 

use to help teach certain regression topics in their courses. In particular, a computer program was written in Borland 

Delphi 2007 and will run under most recent versions of the Microsoft Windows operating system, including XP and Vista. 

The program may be downloaded free of charge. 

he MCMR: Monte Carlo for Multiple Regression program performs Monte Carlo simulations of ordinary least 

squares multiple linear regression with up to 6 predictors. The program runs single sample analyses in addition to 

Monte Carlo simulations. For single samples, data can be saved and imported in comma-delimited text format. For 

Monte Carlo analyses, sampling distribution data can be saved for several regression statistics for further analyses 

elsewhere. The on-screen results from any analysis can be saved to a file and printed. The summary results provided from 

the Monte Carlo simulations include R-squared statistics, shrinkage statistics, regression coefficients, standard errors, and 

other relevant statistical results. Suggestions for use will be provided to help users understand how the program can be 

used effectively in intermediate statistics courses. 

 The MCMR Program is available at: http://oak.cats.ohiou.edu/~brooksg/software.htm 

 
This is the Opening Screen 

that appears when the program 

is started (or after the “Reset 

(F4)” menu option is chosen). 

3 sections require user input 

This is where we describe the population from which 

samples will be drawn in the Monte Carlo process. That 

is, the Monte Carlo process randomly generates samples 

of data that could come from the particular population 

described (using means, standard deviations, and 

correlations). 

 

Click “Run” (bottom right) or press F9 to begin the Monte 

Carlo analysis. 

 
 

Set sample size, alpha, number of simulations, and maybe 

a seed for the random number generator (if you use the 

same seed, you get the same results). 

T 
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Choose the number of predictors and Set the population 

means and standard deviations (Y is the dependent 

variable, X1 is predictor 1, etc.) 

 
 

Set the population correlations (rho). You can get a 

random matrix that meets certain criteria (described later). 

Some matrices will not work as proper CORRELATION 

MATRICES. If one is entered, and error message will pop 

up, saying that the matrix is not Positive Definite (see Get 

Matrix section below). 

After an analysis 

 

 

4 boxes contain results after an analysis, but not all are immediately obvious. Each section is described in greater detail 

below.  This analysis was done with a seed of 1932. All population correlations were 0.0. 
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The average ACTUAL means and standard deviations are 

reported in aqua. 

 

 
 

If you hit the “Show Actual Correlations” button, you can 

see the average ACTUAL correlations. (You must hit 

“Show Pop. Correlations” to run another analysis) 

 

 
 

The average ACTUAL regression coefficient information is reported in this box — except for the “Rejected” and 

“Proportion” columns, which report the number (and proportion) of samples in which the particular regression 

coefficient (represented by X1, X2, etc.) was statistically significant. 

 

“# samples w/at least 1 significant X” reports how many samples had at least one significant predictor. 

 

“after SIG model” reports how many samples had at least one significant predictor following a significant overall 

regression model (the idea being that we don’t usually examine the statistical significance of regression coefficients 

unless the model was first significant—but that doesn’t mean that some predictors weren’t significant anyway). 

 

B0 represents the CONSTANT in the regression equation. By default, B0 is not included in the 2 counts (above), but 

there is a menu option that will allow it to be included. 
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Model summary information is provided here. Again, these are AVERAGE results except for the “Rejections” and 

“Proportion Significant” columns, which report how many (and the proportion of) samples that had statistically 

significant overall regression models. 

 

 
 

While the Monte Carlo simulations are running, the bottom panel (progress bar) looks like this. You can stop the Monte 

Carlo analyses if you need to by clicking the “Stop Running” button. 

 
 

After the analysis is finished, the bottom panel will look like this. If you have aborted the process by pressing the “Stop 

Running” button, the number actually finished will appear in the panel. 

 
 

If you review the ACTUAL correlations by clicking on the “Show Actual Correlations” button, you will not be able to 

continue with additional Monte Carlo analyses until you press the “Show Pop. Correlations” button (which is actually 

the same button as the “Show Actual Correlations” button. 

 
 

Although not done in this example, when you run multiple SINGLE SAMPLE analyses, you will have the option of 

going backwards by one sample. Often, you get to clicking the “Run” button too quickly and you aren’t able to stop on 

a sample with interesting results. This “Back Up” button will allow you to go back 1 sample (but only 1). 

 

Another difference for SINGLE SAMPLE analyses is that 

statistically significant pairwise correlations are marked with 

asterisks when you click “Show Actual Correlations.” 
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For SINGLE SAMPLE analyses, the “Rejected” and “Proportion” columns change to the actual t statistics and p values 

(“Sig”) for each regression coefficient. 

 

By the way, “B” is the unstandardized regression coefficient, “SEB” is the standard error for the unstandardized 

regression coefficient, “Beta” is the standardized regression coefficient, “Zero-order” is the Pearson correlation 

between each predictor and Y, “Part Corr” is the part (or semi-partial) correlation between each predictor and Y 

GIVEN the other predictors in the model, and “VIF” is the variance inflation factor (1/Tolerance) used for diagnosing 

multicollinearity. 

 

The “At least 1 significant predictor (X) ?” box shows whether any of the regression coefficients was statistically 

significant (but not which one). 

 

Both bottom boxes turn from white to GREEN if “YES” 

 

 
 

For SINGLE SAMPLE analyses, the “Rejections” and “Proportion Significant” columns change to the actual F statistic 

and the actual p value significance of the regression model (“Sig”). 
 

If the model is statistically significant, the “F” and “Sig” boxes turn from yellow to GREEN. If Adjusted R
2
 or Cross-

validity R
2
 are negative they are set to 0.0 (theoretically, neither they nor R

2
 can be negative). 

 

By the way, the “Expected R
2
 if Null True” box uses the calculation presented by Herzberg (1969), k/(n-1), to show the 

bias of the R
2
 statistic. The “Options” menu allows you to change the information reported here to a few other things. 
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Menus 

 

“File,” “Options,” and “Help” show sub-menus (below), but “Reset (F4)” and “Run Analysis (F9)” just perform the 

given action. “Reset (F4)” will return the program to the main opening screen and “Run Analysis (F9)” will run the 

analysis, just like clicking the “Run (F9)” button or pressing the F9 key. 

 
 

“View and Save Analysis” will show a text version of the results in another window (below), which will also allow you 

to save and print the results of the analysis. 
 

 “View & Save Simulation Data for Models” will save the Model Summary statistics (e.g., R
2
, Standard Error of the 

Estimate) from all the Monte Carlo simulated samples (up to a maximum of 10,000) for analysis in any program that 

accepts Comma-Delimited text files. Variable names ARE included on the first line of the file. 
 

 “View & Save Simulation Data for Predictors” will save the Regression Coefficient statistics (e.g., B, SEB, Beta) from 

all the Monte Carlo simulated samples (up to a maximum of 10,000) for analysis in any program that accepts Comma-

Delimited text files. Variable names ARE included on the first line of the file. 
 

If you are running a SINGLE SAMPLE analysis, there is also an option to save SINGLE SAMPLE data. The data from 

the current single sample analysis is saved WITHOUT variable names on the first line. 
 

 “Import Comma Delimited Data” will allow you to read in data that you have previously saved with MCMR, or will 

allow you to import data saved in appropriate format from any other program (e.g., a spreadsheet or statistics program). 

The MCMR program assumes that NO variable names are listed on the first line—that is, the data begin on line 1. 
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All “View and Save” options will open this window. From here, you can “Save” or “Print” the information in the 

window (using the appropriate menu option).  

 

Currently, only analyses with the Constant 

Included in the Equation are permitted. 

 

There are 4 types of information that can be 

reported in the box that by default is labeled 

“Expected R
2
 if Null true” — 2 for expected R

2
 and 

2 for shrinkage. 

 

Precision Efficacy (Brooks, 1998) is calculated 

using Cross-Validity R
2
 by default, but could be 

calculated using Adjusted R
2
. (see help menu for 

additional information about Precision Efficacy) 

Different formulas can be used to calculate Cross-

Validity R
2
 — 6 are available here. 

 

You can choose to have significant B0 included in 

the counts reported (by default it is not). 
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The “Precision Efficacy (PEAR) Information” option will open a window that contains an except from a paper written 

in 1998 (see below). 

 

“Show Population Regression Equation” will show the STANDARDIZED regression model based on the Population 

Correlation matrix used to generate data for the analysis. 

 

“User Agreement” opens a window with LICENSE information (important). 

 

“About” provides some basic information about the MCMR program. 
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At any point, the user can 

request this pop-up window that 

shows the Population 

Standardized Regression model 

for comparison to current 

results. 

 

 
The User Agreement window, with important information about the legal use of the software. 

 
The ABOUT window with the full name of the program, copyright and contact information, and the web site from 

which this and other software programs may be obtained. 
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Secondary Window: Get a Population Matrix with certain Given Characteristics 

If you click the “Get Matrix for a Given R2" button, the following window 

will open — allowing you to get a correlation matrix that meets certain 

criteria. 

 
 

Each section is described more below. When you click “OK” a correlation matrix will be found with the given criteria 

(if possible) AND that correlation matrix will be transferred to the main MCMR program screen into the “Population 

Correlations (rho)” section. 
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You can choose any R
2
 for your POPULATION correlation matrix (so really this is a rho

2
 or ρ

2
 value), but buttons are 

provided for some common values (these are based on tables from Park & Dudycha, 1974). 

 

Remember, however, that this will derive a POPULATION correlation matrix, from which samples will be drawn 

during the Monte Carlo process. This value says nothing specific about any of the R
2
 values calculated in the samples 

(other than they should be from the population with the derived population correlation matrix). 

 

 
 

You can choose how close you want to approximate the population R
2
 set in the previous box. While it is indeed 

possible to approximate some matrices very closely, anything smaller than 0.001 will likely take a good deal of time. 

The values 0.01, or even 0.005, seem to work pretty well if you really want to get exact. 

 

Remember, however, that this is how closely you approximate the desired population R
2
 in the POPULATION 

correlation matrix, and says nothing about the samples drawn during the Monte Carlo process. 

 

 
 

You can set any value above 1.0 for the critical VIF threshold value. Most scholars choose 5.0 or 10.0, depending on 

how much MULTICOLLINEARITY(also called COLLINEARITY) you’re willing to tolerate. 

 

Recall that VIF = 1/Tolerance, where Tolerance = 1 – Rj
2
, where  Rj

2
 is the squared correlation when the j

th
 predictor 

acts as a temporary dependent variable being predicted by all the other predictors. 

 

 
 

This option will allow you to create a population correlation matrix with some (or many) negative correlations. 
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This box will allow you to request a certain level of multicollinearity in your population correlation matrix. 

$ “Absolutely None” requires that all intercorrelations among predictors are 0.0, but the correlations between the 

predictors and Y will be set randomly to provide the R
2
 given above. 

$ “No Worrisome Collinearity” will produce a population correlation matrix where all predictor intercorrelations 

will be non-zero, but will be probably smaller than the critical VIF set above. 

$ “1 or 2 predictors with VIF” will produce a population correlation matrix such that predictor intercorrelations 

will probably result in at least 1, but not more than 2, VIF values over the critical value 

$ “2 or 3 predictors with VIF” will produce a population correlation matrix such that predictor intercorrelations 

will probably result in at least 2, but not more than 3, VIF values over the critical value 

$ “4 or more predictors with VIF” will produce a population correlation matrix such that predictor 

intercorrelations will probably result in at least 4 VIF values over the critical value 

 

Note that “probably” was included in these descriptions. There are rare occasions, given certain starting correlations 

used in the algorithm, where the resulting correlation matrix does not match the criteria exactly. You can either go 

ahead and use the derived matrix, or simply try another. Different seeds used in each run of this sub-program result in 

different matrices being created. 

 
If the little pie ever fills in all GREEN during this process, you probably have a matrix that cannot be created. You can 

try a few more times, if you’d like, because sometimes different seeds do produce workable results. You can also allow 

the program to continue running for a while, which sometimes will produce a workable result (the algorithm continues 

to adjust itself a little as it runs, which sometimes allows results to work). 

 
This error message will be shown whenever the “Stop” button is pushed (above), whenever the user has entered an 

inappropriate matrix, or on very rare occasions where rounding the derived correlations to 3 decimal places impacts the 

matrix enough to make it unusable. 
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Secondary Window: Get a Sample Size using the PEAR Method 

 

The user can change the parameters of the PEAR 

method (Brooks, 1998). By default, this window will 

provide the information for the analysis in the main 

window, if possible. For example, once the number of 

predictors is determined, it will be filled in here. Note 

that any number of predictors can be inserted. 

 

More information about Precision Efficacy (PE) and 

the Precision Efficacy Analysis for Regression (PEAR) 

sample size method can be found by clicking the 

“Click here for more information” button (see below).  

 

Briefly, however, Precision Efficacy is a complement 

to Proportional Shrinkage based on an appropriate 

Cross-validity R
2
 (RC

2
) formula. Shrinkage itself (ε, or 

epsilon) can be written as 

 

ε = R
2
 – RC

2
 

 

whereas Proportional Shrinkage (PS) might be written 

as  PS = (R
2
 – RC

2
) / R

2
 

 

 

Precision Efficacy would therefore be PE = 1 - PS, or 

 

PE = RC
2
 / R

2
 

 

Solving PE = 1 – ε/R² for ε, and replacing R² with an expected, a priori Re², results in the formula 

 

ε = RE
2
 – (PE)(RE

2
)  

 

where RE
2
 is often just set at the expected population ρ

2
. Because Precision Efficacy (PE) is usually set at .75 or .80, 

shrinkage would usually be .25ρ
2
 or .2ρ

2
, respectively. Note that shrinkage may also be set absolutely as something like 

ε = .05 or ε = .10. 

 

Once parameters are set, “Calculate” will determine the required sample size. The recommended sample size will 

appear in the YELLOW box underneath the "Calculate" button. 

 

“Close and Record N” will move this sample size to the main screen. 

 

“Cancel” (on the menu bar) will close the dialog window without making any changes to the main screen. 
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Although the PEAR method was derived using Cross-Validity R
2
 (Brooks, 1998), it is theoretically reasonable to apply 

the same idea to Precision Efficacy calculated using Adjusted R
2
  instead. Algina and Olejnik (2000) have discussed a 

similar idea, but different approach, to sample sizes for Adjusted R
2
. 

 

In this case, sample sizes would be determined such that the SHRINKAGE from R
2
 to Adjusted R

2
 would be 

maintained within a certain range. For example, if R
2
 is .25, then Adjusted R

2
 would be at least .20 when Precision 

Efficacy of .80 was used as the criterion. The formula for sample sizes to be used with such an approach would be 

 

N = (k + 1)(1 – RE
2
 + ε) / ε 

 

Where 

 

RE
2
 = expected population ρ

2
 

k = number of predictors 

ε = (R
2
 – RA

2
) 

 

as compared to 

 

N = (k + 1)(2 – 2RE
2
 + ε) / ε 

 

where  ε = (R
2
 – RC

2
) 

 

for Cross-Validity (see Brooks, 1998). Shrinkage tolerance can also be calculated as 

 

ε = (1 – PE) R
2
 

 

where, for PE = .80, it would simplify to (just like it would also for the Cross-Validity approach) 

 

ε = .2R
2
 

 

Recall that one of the options on the “Options” menu is to use Adjusted R
2
 in the Precision Efficacy formula instead of 

Cross-Validity R
2
.  

 

The key difference is that for Cross-validity Precision Efficacy, the idea is to INCREASE Cross-validity R
2
; however, 

for Adjusted R
2
, the idea is more to DECREASE R

2
, making it closer to the true population parameter (since Adjusted 

R
2
 is usually a good estimate of rho

2
).  

 

Either method helps make the model more generalizable by decreasing the standard errors for the regression 

coefficients. The Corss-validity approach is more stringent because it accounts for error not only in the regression 

model derivation sample, but also for the error in future samples to which the regression model is applied. 
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An Example: Multicollinearity and Inflation of Standard Errors 

 

 

Let’s assume that all predictor intercorrelations are 0.0, 

while predictor correlations with Y are non-zero such that 

rho
2
 = .25. 

 

The seed is set to 1932, with N = 37, alpha = .05, and 

10,000 simulated samples are drawn. 
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In this case, the standard errors for the regression coefficients (“SEB”) are each approximately 0.153. Note that the 

Variance Inflation Factors (“VIF”) are all roughly 1.096—since there is no correlation among the predictors we would 

expect this to be near 1.0, but since each of the 10,000 samples drawn probably ad some minor correlation among the 

predictors, it will not be exactly 1.0. 

If we arbitrarily add some correlation among the predictors, BUT 

LEAVE THE CORRELATIONS BETWEEN THE PREDICTORS 

AND Y THE SAME, we introduce multicollinearity. 
 

Note that in this matrix, the rho
2
 is not exactly .250 any more. This 

is arbitrary, but will have some minor impact on our results. 
 

In particular, if you examine the model summary results (we won’t 

here), you would see some minor differences — especially in R
2
 and 

the Sum of Squares due to the regression (which impacts other 

things as well). This is not a REAL difference, but rather due to the 

different population conditions set by the slightly larger rho
2
. 

 

 
The most important differences in the results FOR THIS EXAMPLE are the “SEB” and “VIF” results. Note that all 

SEB values (except for B0) have increased due to the multicollinearity, as have the VIF values. 
 

Other important results, of course, include the regression coefficients (“B” and “Beta”) themselves, along with the 

number of times they were significant. Indeed, different predictors are significant more frequently before (X2 and X4) 

and after (X2 and X3) due to the multicollinearity introduced into the population, even though the pairwise 

relationships (zero-order correlations) between the predictors and the dependent variable have not changed. 



Monte Carlo Regression Program 

 

Multiple Linear Regression Viewpoints, 2008, Vol. 34(2)                                                                                                                       31 

An Example: Shrinkage and Sample Size 

 
 

Note that in this example, with a sample size of N = 42 (which provided statistical power for the model of 

approximately .80), shrinkage occurs from R
2
 = .32 down to Adjusted R

2
 = .25 

or down to Cross-Validity R
2
 = .16. 

 

Recall that Adjusted R
2
 represents the proportion of variance expected to be accounted for (explained) in the population 

if this particular regression model is used to predict scores in the population. It is generally considered a better 

SHRINKAGE estimate when explanation is the key purpose for the regression analysis. 

 

Cross-validity R
2
 represents the proportion of variance expected to be accounted for if this particular regression model 

is used in another sample of cases from the same population. It is generally considered a better SHRINKAGE estimate 

when prediction is the key purpose for the regression analysis. 
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If we use N = 60 (based on 15 cases per predictor), 

shrinkage is less, but perhaps still too much. 

 

 

 

  

 

If we use, N = 70, which gives us some comfort that 

Precision Efficacy (using Adjusted R2) will be at least 

.80, shrinkage is even less. 

 

 

  

 

If we use N = 150, which gives us comfort that Precision 

Efficacy (using Cross-validity R2) will be at least .80, 

reduces shrinkage even further. 

 

 

  

 

While there is no agreed-upon criterion for SHRINKAGE, several authors have recommended CROSS-VALIDATION 

as more appropriate methods for determining sample sizes than using statistical power (e.g., Algina & Keselman, 2000; 

Brooks & Barcikowski, 1999; Park & Dudycha, 1974; Stevens, 1996). 

 

Note that there are also other methods that exist for calculating sample sizes in regression, including statistical power 

for the t tests of the regression coefficients and size of the confidence intervals for the regression coefficients (and 

therefore size of the standard errors of the regression coefficients). 

 

There are many conventional rules (“rules of thumb”) that scholars have recommended over the years as well.  These 

can all be tested and compared using the Monte Carlo method with the MCMR program. 

 

Much more on the topic can be found in Brooks (1998). 
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An Example: Type I errors (and/or Statistical Power analyses) 

 

We can run SINGLE SAMPLE analyses to show all the 

possible combinations of Type I errors that occur in 

multiple regression.  

 

In this first example where all correlations are 0.0, one 

predictor (X3) is statistically significant, but the model 

is NOT statistically significant. Therefore, the count 

boxes show a GREEN YES for “At least 1 significant 

predictor (X)?” but a white NO for “after SIG model?” 
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In this second example where all correlations are 0.0, nothing was statistically significant. This is what we would 

expect most frequently when the Null Hypothesis is true. 

 
 

In this third example where all correlations are 0.0, the overall regression model was statistically significant and at least 

one (here, exactly one, X2) predictor was statistically significant. 

 

Note that different predictors are usually significant in different samples for Robustness (Type I error rate) analyses. 
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NOTE: This screen comes from an analysis 

with non-zero correlations, and therefore not a 

Type I error rate analysis. 

 

In this fourth example, the overall regression 

model was statistically significant, but NONE 

of the predictors was statistically significant. 

While this appears to be very rare when all 

correlations are 0.0 (a Type I error rate 

analysis), it occurs occasionally when the null 

hypothesis is not true. 

 

Finally, after running through 

several samples to show 

students what a Type I error 

analysis is like, we can tell 

them that instead of us going 

one-by-one through these 

single samples and keeping 

track, we can just have the 

computer do it for us and run 

10,000 samples all at once. 

 

This screen shows the Monte 

Carlo results for 10,000 

simulated samples. One can 

easily see the approximately 

.05 Type I error rate expected 

for all tests. 

 

 

 

We can also discuss the idea 

of a “Protected F” test by 

reviewing the count boxes. 

Here, the proportion of simulated samples that had at least one statistically significant predictor FOLLOWING a 

statistically significant overall regression model is about .049 (5%). However, the proportion of samples that had any 

number of predictors that were statistically significant was about .14 (14%). 
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An Example: Suppressor Variables 

 
 

If we arbitrarily set a population correlation matrix in which one predictor has zero (0.0) correlation with the dependent 

variable (DV) but has non-zero correlation with the other predictors, we can examine suppressor relationships. 

You can see a little better the correlations here. 

 

Note the population multiple rho
2
 for this correlation matrix is 

.279 
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We have an R2 value of .38 for this analysis. 

 

 
 

Note the VIF is high for X3, not the variable with 0.0 correlation with the dependent variable (which is X5). However, 

there is a strong correlation between X3 and X5. 

 

If we remove X5 from the analysis in an effort to remove the 

multicollinearity (because among the predictors, it has very 

little correlation with Y), we would have this correlation 

matrix. 

 

Note that rho
2
 is lower without X5 EVEN THOUGH it had no 

correlation with the Dependent Variable !! 
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Note that multicollinearity has been removed (as evidenced by all VIF < 10). 

 

 
 

However, the relationship in terms of R
2
 is not as high as it was with the apparently useless predictor (.38 then versus 

.30 now). 
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An Example: Impact of Means and Standard Deviations on Regression Results 

 

The important thing to notice as 

we change from all standardized 

data (above), to a Dependent 

Variable Mean of 50 (while 

standard deviation remains 1.0) 

is that only the CONSTANT B0 

and its statistical significance 

changed. 

 

NOTHING ELSE changed !! 
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However, when the 

Dependent Variable 

Mean is 0.0, but the 

Standard Deviation 

changes to 10.0, 

several things change, 

most notably the 

regression coefficients 

and their significance 

and the SUMS OF 

SQUARES. 

 

But none of the other 

important model 

information changed 

(e.g., R
2
, F, rejections, 

Beta, VIF). 

 

Changing both the 

Mean and the 

Standard Deviation 

combines these 

previous two results. 

That is, all the 

information EXCEPT 

B0 remains the same 

as the previous 

example. But now 

with the Y mean at 50, 

B0 changed to match 

(and is significant 

more often). 
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If we change the 

predictor Means and 

Standard Deviations, 

but leave the 

Dependent Variable Y 

standardized, you can 

see several differences 

— most notably in the  

regression 

coefficients. 

 

The “Sum of Squares” 

values have returned 

to what they were in 

the first example. 

Finally, if everything 

changes, the regression 

coefficients all change, 

but note that all the 

MODEL summary 

information and the 

CORRELATION 

information remains the 

same. 

 

Means and Standard 

Deviations have not 

impact on the decisions 

regarding the Null 

Hypotheses for either 

coefficients or the 

model, nor on the 

interpretations of the 

value of the predictors 

or the model. 
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