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Improving the Accuracy of Parameter Estimation of 
Proportional Hazards Regression with Kernel Resampling 

Haiyan Bai 
University of Central Florida 

The accuracy of parameter estimation of proportional hazards regression (PHR) has been a concern. To 
improve the accuracy of the estimation, the bootstrap has been used; unfortunately, prior research 
revealed inconsistent findings. The current study applies a new resampling method, the kernel resampling 
technique (KRT), to PHR. Two empirical datasets were employed to cross-validate and compare the 
accuracy and stability of the estimation results through multiple replications from KRT with those from 
the naïve bootstrap as well as the maximum likelihood method. The study results revealed that KRT 
outperformed the bootstrap and maximum likelihood method in estimating parameters of PHR. The 
application of KRT to PHR improved the accuracy of the parameter estimation. 

roportional hazards regression (PHR) (or Cox model) is a method for investigating the effect of 
several variables upon the time-specified outcome for an event to occur. PHR is most commonly 
applied in time-to-event studies (Cox, 1972). It assumes that the effects of the predictor variables 

upon survival are constant over time and are additive in one scale. If the assumptions are met, the PHR 
model can provide better estimates of survival probabilities and cumulative hazard than those provided by 
the Kaplan-Meier function; a log-rank test method for comparing survival curves in two or more groups 
(Cox). The PHR model has been used widely in medical studies and increasingly employed in a variety of 
disciplines under various rubrics, for example, “event-history analysis” in sociology (Allison, 1984), or 
“teacher survivals” and “student retention” in Education (cf. Adams, 1996; Adams & Dial, 1993; Plank, 
DeLuca, & Estacion, 2008). However, the accuracy of the estimation of the PHR model parameters has 
been a concern because estimating density functions or hazard rate functions is complicated (Burr, 1994). 
To improve the estimation accuracy from PHR models, the bootstrap method was implemented. 
Unfortunately, the effectiveness of this method is questionable due to the inconsistent findings of the 
performance of the bootstrap in the PHR model in prior research (Burr; Hjort, 1985; Singh, 1981).  
 Studies on the PHR model using the bootstrap are classified into two types: one for PHR model 
selections and the other for parameter estimation. The following is a brief review of these studies. Chen 
and George (1985) conducted a primary study using the bootstrap to investigate the variable selection in 
PHR, but they neither considered the prognostic implications for individuals nor discussed the accuracy 
of the parameter estimation. Extending Chen and George’s study, Sauerbrei and Schumacher (1992) 
proposed a bootstrap-model selection procedure, but this study still focused on the model selection 
without considering the use of the bootstrap procedures directly in the parameter estimation. Altman and 
Andersen (1989) explored the confidence interval estimation of hazard ratios while conducting a 
bootstrap investigation of the stability of the PHR model, and the results revealed that the bootstrap 
intervals were graphically wider than those obtained from the original model. Hjort (1985) discussed 
using the bootstrap in the PHR model and found that the bootstrap procedure was first-order equivalent to 
the standard procedure. This was consistent with later research findings (e.g., Burr, 1994).  
Burr (1994) presented a comprehensive study focusing on the methodological discussion about using the 
bootstrap procedures in PHR parameter estimation. This study compared bootstrap confidence intervals 
for the following three types of parameters in PHR: the regression parameters, the survival function at 
fixed time points, and the median survival time at fixed values of a covariate. The study revealed that the 
bootstrap-t intervals consistently outperformed both bootstrap percentile and hybrid interval estimations. 
The results also showed that the bootstrap did not improve the quality of regression parameter estimation 
on the asymptotic method, but it did improve the estimation of the survival function. Burr provided useful 
information to employ the bootstrap for parameter estimation in PHR; however, as Burr ( p. 1301) stated, 
“We would like to be able to recommend a single method appropriate for all parameters, but currently this 
is not possible.” Therefore, further research in this area is desirable. The current study aims at exploring 
the potential improvement of parameter estimation in PHR using kernel resampling procedures. 
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PHR Model 
  PHR for hazard rate was first introduced by Cox (1972) and it is often expressed as: 
 
 

λ(t; X) = λ0(t) exp(Xβ), 
 
 

where λ(t; X) is the hazard (risk of event) at time t with respect to covariate matrix X. The parameter β is 
a log relative risk and exp(β) is a relative risk of response. PHR is sometimes called relative risk 
regression, Cox regression, or Cox model. λ0(t) represents a reference point that depends on time, which is 
the “baseline” hazard (when covariates X are zero) just as β0 denotes an arbitrary reference point in other 
types of regression analysis. PHR is a useful tool for studying patient survival time in medical studies, 
historical event in social science, company bankruptcy in economic investigations, and students’ 
departure and teachers’ survival in educational research.      
 

The Bootstrap and KRT 
  As a modern statistical technique, the bootstrap has been used in many procedures to improve the 
validity of studies through estimating more accurate standard errors (Efron & Tibshirani, 1993). The basic 
concept of the bootstrap is to construct empirical distributions of parameter estimates to assess the 
standard errors or confidence intervals to obtain improved statistical estimates. The bootstrap empirical 
distribution is usually constructed from bootstrap resamples, which are obtained through resampling from 
the original data with replacement. Existing studies have revealed the usefulness of the bootstrap in PHR 
(Gonzalez, Pena, & Delicado, 2010) 
  Kernel resampling technique (KRT) is an alternative resampling method which extends the bootstrap by 
sampling with random errors from Gaussian Kernels using a fixed bandwidth (Bai & Pan, 2009). KRT is 
a product of integrating the distribution theory into the smoothing technique. By design, KRT is 
fundamentally different from the bootstrap and its variant, the smoothed bootstrap, which requires 
researchers to find the optimal bandwidth to smooth the bootstrap distribution. KRT uses the Gaussian 
kernel technique to capture the covariance structure of multivariate data (Silverman, 1986; Simonoff, 
1996).  
  The multivariate Gaussian kernel is defined as 
 
 

K(x) ~ Nd(Xi, H2), 
 
 

where d is the number of variables, Xi (i = 1, …, n) are multivariate data or a vector from a d-dimensional 
space Rd, n is the number of cases, and H is the bandwidth matrix that can be chosen as an optimal one to 
minimize the mean integrated square error (MISE) (Silverman, 1986; Simonoff, 1996):  
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KRT has been successfully used in multiple regression models for increasing the accuracy of parameter 
estimation (Bai & Pan, 2009). 
 

Purpose of the Study 
  Considering the usefulness of the bootstrap in PHR (Gonzalez et al., 2010), the current study was 
proposed to use the KRT, an alternative to the bootstrap, to improve the accuracy of parameter estimation 
of PHR. The application of KRT to a multiple regression model has successfully provided more accurate 
parameter estimation than both naïve bootstrap and smoothed bootstrap (Bai, 2008; Bai & Pan, 2009); 
therefore, the purpose of the current study is to examine the performance of the application of KRT to 
PHR. Empirical data from education were employed for the methodological comparison through 
resampling at multiple numbers of replications to study the accuracy and stability of the estimation, while 
the medical data set was used to cross-validate the results. The findings from the applications of KRT to 
the PHR model using both data sets are compared with those from the bootstrap and the classical 
maximum likelihood (ML) method to determine which method is the most effective.  
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Studies with Empirical Data 
Study 1: Educational Data 
  The study data were collected from an urban public school district in the Southeast region of the United 
States after obtaining Institutional Review Board approval at the author’s university. This data set 
documented the departure records of 8462 students who departed from public schools between 2006 and 
2010 including regular graduations. There were conceivably seven ways of departure in the data set that 
are listed in Table 1. In the current study, the PHR model was used to study the hazard rate for students’ 
departure from public schools versus regular graduations.   
  For this study, two variables, student age 
and accumulated GPA, were used in the PHR 
as the covariates for the purpose of 
methodological evaluation of the 
performance of KRT application to PHR. The 
two variables were utilized as covariates (i.e., 
predictors in the PHR) because of their 
influential impacts on high school student 
departure based on the extant literature. 
Hauser, Simmons, and Pager (2000) stated 
that the likelihood of student departure 
increased with age in general; therefore, high 
school students tend to have a higher dropout rate than elementary and middle school students. The 
association between academic performance and dropout rates has been well studied (cf. Fagan & Pabon, 
1990; Krohn, Thornberry, Collins-Hall, & Lizotte, 1995; Rumberger, 1987).  Student academic 
performance is a major predictor of graduation rates and departure rates (Battin-Pearson et al., 2000). 
Prior studies examined and identified many influential factors or predictors for high school student 
departure including a variety of demographic, individual, family, and school characteristics (Neild, 
Stoner-Eby, & Furstenberg, 2008).  However, for the focus of the current study on methodological 
discussions, only two major factors were included, student age and cumulative GPA, in the model to 
compare the accuracy of the statistics from different statistical procedures with no intention of providing 
any statistical inferences from the empirical example.  The variables used in the model: 

• Departure and Graduation: Move to non-public schools, go nowhere, home school, adult program, 
move to other in-state public schools, or move to other states versus obtain a regular diploma. 

• Age: Student age was recorded at the time of departure.  
• Cumulative GPA: The student GPA measure was the accumulated GPA since the semester a 

student entered the public high school. 
• Survival Months: Months of staying in the public schools. 

 
PHR on Student Departure Data 
 A PHR model for the current study was defined as: 
 

Log[λ(t; X)] = log[λ0(t)] + βX, 
 

where X represents the predictors, age and Weighted Cumulative GPA, and β is the logarithm of the ratio 
of the hazard rate for students belonging to departure versus regular graduation in the hazard function.  
  The PHR model was fitted with age and Weighted Cumulative GPA to estimate the hazard ratio. No 
evidence was found that students’ departure in general depends on age (while adjusting only for Weighted 
Cumulative GPA) with χ2 = 0.13 (p = 0.98) (see Table 2); therefore, age was eliminated in the final 
model. 
 
Table 2. Estimates for Predictors 

Variable df β SE χ2 Pr > χ2 HazardRatio 95% CI 

AGE 1 0.02 0.06 0.13 0.72 0.980 0.88 1.09 
GPA 1 0.58 0.06 83.61 <0.001 0.562 0.50 0.63 

 

Table 1. The Numbers of Public High School  
Students’ Departure and Regular Graduation 
Type of Departure  Students Male/Female
Non-Public 277 156/121 
Nowhere 157 87/70 
Home School 255 128/127 
Adult Program 1770 1007/763 
Another District 1548 847/701 
Out of State 1257 638/619 
Regular Diploma 3398 1662/1736 
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Table 4. Localized Stage 
Status Patient N  
0:  Alive  2979 
1:  Dead: colon cancer 1734 
2:  Dead: other 1557 
3:  Lost to follow-up       4 

Table 3. Comparisons of Estimates, CIs, and Bias of PH Model with Asymptotic, Bootstrap, and KRT. 
 Estimates Replicates Estimate SE CI(2.5%) CI(97.5%) Bias 

H
az

ar
d 

R
at

io
 

ML  0.5660 0.0333 0.5030  0.6360  

Bootstrap 
200  0.5694 0.0404  0.4983  0.6541 0.0034 
500  0.5685 0.0421  0.4966  0.6604 0.0025 

1000  0.5678 0.0421  0.4925  0.6593 0.0018 

KRT 
200  0.5700 0.0167  0.5384  0.6048 0.0040 
500  0.5678 0.0155  0.5353  0.5993 0.0018 

1000  0.5672 0.0130  0.5426  0.5918 0.0012 

G
PA

 

ML -0.5693 0.0598 -0.6889 -0.4498  

Bootstrap 
200 -0.5656 0.0703 -0.6966 -0.4245 0.0038 
500 -0.5675 0.0736 -0.6999 -0.4149 0.0018 

1000 -0.5687 0.0737 -0.7082 -0.4166 0.0006 

KRT 
200 -0.5663 0.0289 -0.6210 -0.5073 0.0030 
500 -0.5686 0.0254 -0.6209 -0.5165 0.0007 

1000 -0.5680 0.0235 -0.6127 -0.5218 0.0014 
 
Results of Study 1 
  In order to conduct the methodological study, Weighted Cumulative GPA was selected to estimate the 
hazard ratio to examine the performance of KRT in PHR. Both KRT and the bootstrap procedures were 
used to obtain parameter estimates of Weighted Cumulative GPA and the estimate of hazard ratio for 
comparing the results. Two hundred, 500, and 1000 replications of both the bootstrap and KRT were 
conducted based on the original student departure data using the SAS macro (SAS Institute Inc., 2008) for 
parameter estimation and hazard ratio estimation of the PHR model. 
  From Table 3 we can see that the KRT estimates were comparable to the estimates for both hazard ratio 
and β for Weighted Cumulative GPA from the bootstrap and ML estimates; however, the standard errors 
from the KRT estimates for the hazard ratio and β for Weighted Cumulative GPA were systematically 
smaller than those from the bootstrap procedure and the Maximum Likelihood estimates across various 
numbers of replications with less biases in most cases. The confidence intervals (percentiles) for the 
estimates using the KRT procedure were narrower than those from both the bootstrap procedure and the 
Maximum Likelihood method.  
 

Study 2: Cross-Validating Data  
 To cross-validate the results of Study 1 for further evaluation on the performance of the application of 
KRT to PHR, a study was conducted using a large national medical data set, Localized colon carcinoma 
1975–1994, as the original input data collected by the Institute for Statistical and Epidemiological Cancer. 
Localized colon carcinoma 1975–1994 contains individual-level data of 6,274 patients diagnosed with 
localized tumors among 15,564 patients diagnosed with colon carcinoma in Finland 1975-1994 with 
follow-up to the end of 1995.  
  For the purpose of the methodological research focusing on 
comparison of the accuracy of the PHR model parameter 
estimations, the model selection is not discussed in the current 
study. With regard to the focus of the current study, the hazard 
ratio of mortality from colon cancer versus mortality due to 
other reasons was studied using the PHR model (i.e., mortality 
among the 6,274 patients diagnosed with localized tumors). 
 

Study Variables: 
 In the current study, four variables of interest were used: 

• Gender: Gender is defined as male or female. 
• Year of Diagnosis: The year diagnosed as having localized tumors. 
• Survival Months: Months survived since the time of diagnosed localized tumors.  
• Status: Vital status at last date of contact.  
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Table 5. Estimates for Predictors 
Variable df β SE χ2 Pr > χ2 Hazard Ratio             95% CI  

Gender 1 -0.002  0.049    0.020    0.966 0.998 0.907 1.098 
Year85--94  1 -0.232  0.049  22.258  <0.001 0.793 0.720 0.873 

 
PHR Model on Localized Colon Carcinoma Data 
  A PHR model for the current study was defined as: 
 

Log[λ(t; X)] = log[λ0(t)] + βX 
 

where X represents the predictors, gender and Year of Diagnosis, and β is the logarithm of the ratio of the 
hazard rate for patients belonging to the mortality from colon cancer group versus the mortality group 
because of other reasons in the hazard function. The PHR model was fitted with gender and Year of 
Diagnosis as predictors just for the purpose of the methodological discussion focus of this study. No 
evidence was found that mortality depends on gender while adjusting for year of diagnosis with χ2 = .02 
(p = .966) (see Table 5). Therefore, Year of Diagnosis was selected to estimate the parameters and the 
hazard ratio for examining the performance of KRT in the Cox model with respect to the preliminary 
model fitting information. The KRT, the bootstrap, and the Maximum Likelihood method were used to 
obtain parameter estimates of Year of Diagnosis and the estimate of hazard ratio for comparing the results 
for examining the performance of KRT in the PHR model.   
 

Cross-Validating Results from Study 2 
  Table 6 presents the parameter and hazard ratio estimation from the PHR model with 200, 500, and 
1000 replications of both the bootstrap and KRT and the results from the Maximum Likelihood applied to 
the original Localized Colon Carcinoma data. From Table 6 we can see that the KRT estimates were 
comparable to the estimates for both hazard ratio and β for Year of Diagnosis from the bootstrap and 
asymptotic estimates. With this in mind, it is evident that the standard errors from the KRT resamples 
were systematically smaller. The estimation biases were consistently less in most cases than those from 
both the bootstrap procedure and the conventional maximum likelihood method across of 200, 500, and 
1000 replications. The 95% confidence intervals (percentiles) for the estimates using the KRT procedure 
were narrower than those from both the bootstrap procedure and the conventional maximum likelihood 
estimates. Methodologically, the evaluation results from the cross-validating sample were consistent with 
the results from Study 1 from the educational data; therefore, the findings of the KRT application to PHR 
model were cross-validated and proved to be replicable. 
 

Table 6. Comparisons of Estimates, CIs, and Bias of Cox Model with the Conventional Asymptotic, 
Bootstrap, and KRT Methods 
 Estimates Replicates Estimate SE CI (2.5%) CI (97.5%) Bias 

H
az

ar
d 

R
at

io
 

ML  0.7930  0.0383 0.7200  0.8730  

Bootstrap 
200 0.7947  0.0401  0.7246  0.8748  0.0017  
500 0.7936  0.0389  0.7194  0.8704 -0.0012 
1000 0.7932  0.0386  0.7201  0.8728 -0.0004 

KRT 
200 0.7938  0.0165  0.7651  0.8278  0.0007  
500 0.7930  0.0154  0.7653  0.8240 -0.0008 
1000 0.7945  0.0153  0.7688  0.8243   0.0015  

Y
ea

r o
f D

ia
gn

os
is

 ML  -0.2310  0.0503  -0.3222  -0.1338    

Bootstrap 
200 -0.2321  0.0492  -0.3311  0.1334 -0.0011 
500 -0.2324  0.0490  -0.3293  -0.1388 -0.0003 
1000 -0.2329  0.0487  -0.3284  -0.1360 -0.0005 

KRT 
200 -0.2296  0.0205  -0.2683  -0.1920   0.0033  
500 -0.2322  0.0180  -0.2653  -0.1961 -0.0027 
1000 -0.2329  0.0202  -0.2718  -0.1919 -0.0007 
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Discussion and Further Study 
  Using data from different research areas, the findings from two studies provide strong evidence that the 
KRT outperformed both the bootstrap and the Maximum Likelihood method in the PHR parameter 
estimation. The application of KRT in PHR provided more accurate confidence interval estimation with 
narrower bands, smaller standard errors with less or comparable biases, and equivalent accurate point 
estimates. The KRT procedure produced stable estimation results across various replications. KRT 
application to PHR provides a solution for “a single method appropriate for all parameters” (Burr, 1994, 
p. 1301).  This study produced preliminary results of the KRT application in PHR models for parameter 
estimation. The findings suggest that applications of KRT to PHR models improve the accuracy of 
parameter estimation for more valid statistical inference in survival research.  
  Future studies are desired to compare the results of other types of confidence interval estimation. In the 
current study, only empirical datasets were used to study the performance of the application of the KRT 
in a PHR model. Even though the cross-validating study provided strong evidence of the current study 
findings, a simulation study is expected to provide more information and further confirmation of the study 
results in terms of the stability of the findings under other conditions. Future studies should engage in (1) 
comparison of the results of other types of confidence interval estimation and (2) simulation studies with 
different data conditions (e.g., sample sizes or distributions) to explore the stability of the application 
results. 

Significance of the Study 
  In education, teachers’ survival, students’ dropout, and on-time graduation are all important factors 
influencing the quality of education. Understanding these factors is crucial for educators and educational 
administrators to work on effective solutions. PHR is an appropriate and effective statistical analytical 
tool for studies in such areas, and applications of KRT to PHR will improve the accuracy of parameter 
estimation to provide more valid statistical inference in educational research.  
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Application of CART, Neural Networks,  
and Generalized Additive Models: A Case Study 

W. Holmes Finch               Mei Chang               Andrew S. Davis 
Ball State University 

Statistical prediction of an outcome variable using multiple independent variables is a common practice in 
the social and behavioral sciences. For example, neuropsychologists are sometimes called upon to provide 
predictions of pre-injury cognitive functioning for individuals who have suffered a traumatic brain injury. 
Typically these predictions are made using standard multiple linear regression models with several 
demographic variables (e.g., gender, ethnicity, education level) as predictors. Prior research has found 
conflicting evidence regarding the ability of such models to provide accurate predictions of outcome 
variables such as full-scale intelligence (FSIQ) test scores. The current study had two goals: 1) to 
demonstrate the utility of a set of alternative prediction methods that have been applied extensively in the 
natural sciences and business but which have not been frequently explored in the social sciences and 2) to 
develop models that can be used to predict premorbid cognitive functioning in preschool children.  
Prediction of Stanford Binet 5 FSIQ scores for preschool aged children is used to compare the 
performance of a multiple regression model with several of these alternative methods. Results 
demonstrate that classification and regression trees (CART) provided more accurate prediction of FSIQ 
scores than the more traditional regression approach.  Implications of these results are discussed. 

linical neuropsychologists are frequently required to determine if an individual has experienced 
changes in intellectual functioning resulting from a neurological insult such as a traumatic brain 
injury (TBI) or stroke. Accurate diagnosis and the determination of functional decline relies 

largely on a clinician’s ability to compare current test performance to an estimate of premorbid (i.e., prior 
to injury) performance. It is common in clinical practice for neuropsychologists to use a discrepancy 
between a predicted and an obtained test score to assist in the determination of whether organic 
impairment or a progressive disease is present. Thus, an accurate estimation of premorbid intelligence is 
necessary to prevent errors such as under or overestimation of a patient’s level of cognitive decline 
(Griffin, Mindt, Rankin, Ritchie, & Scott, 2002) and the availability of techniques demonstrating good 
validity and reliability for predicting premorbid intellectual functioning is a central concern of clinicians. 
When premorbid ability levels can be reasonably estimated, a diagnosis can be made with confidence and 
cognitive rehabilitation programs can be properly designed, monitored, and modified (Reynolds, 1997). 
 

Traditional Methods of Prediction 
  A variety of approaches have been proposed and developed for the estimation of premorbid ability 
estimation (PAE), including (a) historical achievement-based and standardized group assessment data 
(e.g., Baade & Schoenberg, 2004; Schinka & Vanderploeg, 2000); (b) “hold/don’t hold tests” estimates 
(Blair & Spreen, 1989; Lezak, Howieson, Loring, Hannay, & Fischer, 2004); (c) best current performance 
estimates (Lezak, 1995); (d) demographic-based regression formulas (e.g., Barona, Reynolds, & Chastain, 
1984); (e) combinations of demographic and actual performance data (e.g., Schoenberg, Lange, & 
Saklofske, 2007a; Schoenberg, Lange, & Saklofske, 2007b; Schoenberg, Lange, Saklofske, Suarez, & 
Brickell, 2008; Schoenberg, Scott, Duff, & Adams, 2002; Vanderploeg, Schinka, & Axelrod, 1996); and 
(f) current word reading ability tests (e.g., Blair & Spreen; Wechsler, 2003). However, each approach has 
been shown to have some limitations in application.  
 

Using Multiple Linear Regression to Predict Premorbid IQ 
  An alternative to these more ad hoc approaches to predicting premorbid IQ involves the use of multiple 
linear regression (MLR) to estimate IQ. Researchers in the field have developed models based on 
demographic variables in conjunction with performance on a task such as word reading or some 
comparable measure (Sellers, Burns, & Guyrke, 2002; Vanderploeg, Schinka, Baum, Tremont, & 
Mittenberg, 1998; Yeates & Taylor, 1997), while in other cases, only demographic variables were used. 
Crawford, Millar, and Milne (2001) found that for adults, the correlation between actual and predicted IQ, 
based on the demographic variables of education, socio-economic status and age, was 0.76, which was 
higher than that obtained through clinical judgment. A study focusing on predicting IQ for adolescents 
included variables such as gender, ethnicity, region of the U.S. in which the subject lived, age, and 
parental education level (Schoenberg et al., 2007a) and was found to provide predictions of FSIQ. Powell, 

C
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Brossart and Reynolds (2003) compared the performance of two regression models of the demographic 
information estimation formula index (DI) (Barona et al., 1984) and the Oklahoma Premorbid Intelligence 
Estimate (OPIE) (Krull, Sherer,  & Adams, 1995) for estimating premorbid cognitive functioning in 
adults.  Both models are based on linear equations that predict cognitive functioning using demographic 
variables (age, gender, race, education, occupation, urban/rural residence and current performance) on 
Wechsler Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1983) Vocabulary and Picture 
Completion subtests.  Their results demonstrated that the DI approach provided more accurate estimates 
of cognitive decline but were not as accurate when predicting FSIQ for individuals who did not suffer any 
brain injury. One issue with either of these approaches is that researchers must have access to all of the 
variables that serve as inputs to the standardized equations. Another issue is that regression-based 
estimates of premorbid IQ have been shown susceptible to error, particularly in outer ranges of 
intellectual function (Veiel & Koopman, 2001). In addition, the MLR model assumes a linear relationship 
exists between the outcome of interest and the predictors, unless the researcher explicitly includes a non-
linear term. However, in many instances, it may be unclear whether a non-linear term should be included, 
and more importantly what type would be most appropriate.   
  Much of the focus in the prediction of premorbid IQ has been on adults with relatively little research 
devoted to predicting cognitive functioning in school-aged and younger children (Schoenberg et al., 
2007a). However, some research has been conducted on the use of prediction equations based on only 
demographic variables with school-aged children (Pungello, Iruka, Dotterer, Koonce-Mills, & Reznick, 
2009; Schoenberg et al., 2008; Schoenberg, Lange, Brickell, & Saklofske, 2007; Roberts, Bornstein, 
Slater, & Barrett, 1999; Sellers, Burns, & Guyrke, 1996). These studies included variables such as 
parental level of education, ethnicity, gender, age, region of the U.S. in which the child resided and 
parental occupation, and generally found that they could achieve an R2 generally around 0.4 when 
predicting Full Scale IQ (FSIQ).  Despite the publication of several studies, the problem of accurately 
predicting premorbid IQ, particularly in young children, has not been completely solved (Schoenberg et 
al., 2007b).  Furthermore, prior work with adult populations has not definitively demonstrated linear 
models to be the universally most effective tool for predicting premorbid IQ scores, as was discussed 
previously.  Therefore, alternative methods for prediction should be investigated in order to find the 
optimal tool(s) for the important task of obtaining reliable estimates of premorbid intellectual functioning 
for young children who have undergone a neurological insult and suffered from cognitive impairment.   
  It should be noted that while the focus of this research was on predicting IQ scores for young children 
using demographic variables, other recent examples using prediction in the social science literature 
include predicting school counselor evaluations of student performance (Granello, 2010), college student 
dropout (Nistor & Neubauer, 2010), impact of character education on social competence (Cheung & Lee, 
2010) and parent training effectiveness (Lavigne, LeBailly, & Gouze, 2010) to name but a few.  In the 
vast majority of this research some variant of linear regression was used to obtain predictions.  However, 
because it is limited to linear or relatively simple non-linear forms, regression may not always be the 
optimal choice for this type of research (Berk, 2008). 
  The goals of this study were to describe some alternative methods of prediction that could be employed 
in the context of obtaining estimates of premorbid IQ in preschool-aged children.  These methods, 
including Classification and Regression Trees, Neural Networks and Generalized Additive Models, have 
all been shown to be effective tools for prediction in simulation research, particularly in the presence of 
non-linear relationships between outcome and predictor variables (Chang, Finch, & Davis, 2011; Finch & 
Holden, 2010).  Given their positive record of performance, and their relative novelty in the social science 
literature, it was hoped that a manuscript demonstrating how each could be used to solve a real world 
prediction problem would add to the quantitative methods literature. In addition, each of these alternative 
models presents the user with great flexibility in terms of model settings and the like, which can have 
tremendous impact on the final results of the analysis.  Thus, in addition to demonstrating how these tools 
can be used in practice, a second goal of this manuscript is to discuss these various model settings and 
provide some guidance for their implementation.  It should be noted that this paper is not intended to be a 
comprehensive review of these methods, but rather an introduction that should provide the interested 
researcher with the basic tools to conduct analyses with these modeling techniques. A number of more 
comprehensive works are referenced below for those who want to delve deeper (which we encourage 
wholeheartedly). 
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Alternative Methods of Prediction 
 The following is discussion of a number of alternative approaches for prediction that may prove useful 
when a relationship between variables is not strictly linear.  Given some of the problems discussed earlier 
in the traditional approach of using MLR for predicting premorbid IQ and because very little work has 
been done examining the prediction of IQ in very young children, these alternative methods may prove to 
be interesting tools for this task.  After a description of these approaches, the results of a study 
demonstrating how to use these techniques for the task of predicting IQ will be presented.   
 

Classification and Regression Trees (CART) 
  CART (Breiman, Friedman, Olshen & Stone, 1984) arrives at predicted values for an outcome variable, 
Y, given a set of predictors by iteratively dividing individual members of the sample into ever more 
homogeneous groups, or nodes, based on values of the predictor variables.  It can be thought of as a 
nonparametric approach because there are no assumptions regarding the underlying population from 
which the sample is drawn nor the form of the model linking the outcome and predictor variables.  CART 
begins by placing all subjects into one node, or group, and then searches the set of predictors to find the 
value of one of those by which it can divide the observations into two new nodes, whose values on Y are 
as homogeneous as possible.  For each of these new nodes, the predictors are once again searched for the 
optimal split by which the subjects can be further divided into ever more homogeneous nodes, where 
homogeneity is always based on the similarity of values of Y. This division of the data continues until a 
predetermined stopping point is reached, when further splits do not appreciably reduce the heterogeneity 
of the resulting nodes. At this point, the tree is complete and values of Y for new individuals can be 
obtained using the decision tree developed with this original training sample.  The data for the new 
subject are fed into the tree, following the branches from node to node based on the values of the 
predictor variables until the individual is placed in one of the final, or terminal nodes.  The predicted 
value for Y for each individual is then the mean for the training sample in this terminal node. 
  CART has a tendency to overfit the training data when developing the initial prediction tree (Berk, 
2008), meaning that the final model may be too closely associated with the training sample to generalize 
well to other samples from the same population.  In addition, trees produced by CART can sometimes 
contain terminal nodes with few individuals or terminal nodes that are very heterogeneous, which is 
characteristic of tree instability and an inability to generalize to the broader population (Hothorn, Hornik, 
& Zeileis, 2006).  One commonly used method for ameliorating overfitting is the practice of pruning 
trees.  This process, which is demonstrated in the results section below, involves the removal of terminal 
nodes that appear to provide little predictive power, and when included in the final model might lead to 
overfitting of the training sample.  Pruning is not an automated process, and requires the direct 
involvement of the researcher, typically through an examination of results for multiple pruned trees, as is 
discussed below. In order to ascertain how much pruning is necessary, the researcher typically refers to a 
plot of the number of nodes by total model deviance.  Total deviance for a tree corresponds to the sum of 
the sum of squared residuals within the terminal nodes (i.e., the sum of squared differences between the 
predicted and actual IQ scores in this example). The larger the deviance value, the greater the 
heterogeneity of scores within the terminal nodes, and the worse the CART solution.  As terminal nodes 
are removed from the tree, the deviance will increase because more heterogeneous individuals are 
grouped together in the new, larger terminal node. The decision regarding the number of terminal nodes 
to retain in the pruned tree is based upon balancing this increased heterogeneity with a desire to have a 
more parsimonious tree, and one that generalizes better to other samples. 
 

Neural Networks (NNET) 
  Another prediction method examined in this study is Neural Networks (NNET) (e.g., Marshall & 
English, 2000; see Garson, 1998 for a more technical description of the method). NNETs create a 
prediction model for Y by using a search algorithm that examines a large number of subsets of the 
predictors, as well as interactions among them.  Interactions and powers of the predictors (referred to as 
hidden layers) are computed in conjunction with weights that are akin to regression slopes.  Main effects 
and hidden layers to be included in the final model are selected by the algorithm so as to minimize the 
least squares criterion used in standard linear regression (i.e., minimizing the sum of squared differences 
between the observed and predicted values).  The hidden layers are generally much more complex than 
the two and three way interactions common in regression, involving several predictors and higher order 
versions of the predictors in a single interaction (Schumacher, Robner, & Vach, 1996).  In addition, they 
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are not specified a priori by the researcher, but instead are identified by the NNET algorithm based on 
their contribution to reducing the sum of squared residuals. In order to reduce the likelihood of finding 
locally optimal results that will not generalize beyond the training sample, random changes to the subset 
of predictors and interactions, not based on model fit, are also made.  This method of obtaining optimal 
model fit is known as back-propagation, where the difference between actual and predicted outputs is 
used to find optimal weights for main effects and hidden layers.  It is one of the most commonly used 
approaches in NNET applications (Garson, 1998).   
  A primary strength of NNET models is that they can identify complex interactions among the predictor 
variables in the hidden layer that other approaches may ignore (Marshall & English, 2000).  For example, 
whereas in regression it is common to express the interaction of two predictors as their product, or to 
square or cube a single variable if the relationship with the response is believed not to be linear, a NNET 
will create hidden layers as weighted products of perhaps several variables, thus allowing the model to be 
influenced by the predictors to varying degrees.  The result is that fairly obscure relationships between the 
outcome and predictors will be automatically identified without the researcher having to explicitly include 
them in the model.   
  Conversely, this ability to identify extremely specific models to fit the data presents a potential problem 
in that NNETs can substantially overfit the training data used to estimate the model (Schumacher et al., 
1996). In order to combat this problem, most NNET models apply what is called weight decay, which 
penalizes (i.e., reduces) the largest weights found in the original NNET analysis, in effect assuming that 
very large weights are at least partially driven by random variation unique to the training data. The 
researcher typically sets the value of the decay parameter, λ with larger values shrinking the weights for 
non-linear terms to a greater degree, and thus reducing their impact on the final model, hopefully 
ameliorating problems of overfitting.  Generally speaking, the value of λ for a given problem is selected 
by examining the ability of the model to correctly predict the outcome variable for a cross-validation 
sample (Hastie, Tibshirani, & Friedman, 2001). In other words, the decay parameter value associated with 
the most accurate prediction in the cross-validation sample is the one that is selected.  
  Another choice that the researcher must make when using NNETs is the number of hidden layers that 
will be allowed in the final model.  The larger the number of hidden layers that are permitted in the 
model, the more complex the model could become by incorporating higher order non-linear terms.  
Including more hidden layers has both positive and negative aspects.  On the one hand, such models are 
better able to identify complex relationships among the variables, but on the other, they may lead to 
overfitting of the training sample.  Thus, the researcher is advised to try multiple settings for the number 
of hidden layers and decide on the optimal setting for this parameter based on the accuracy of predictions 
for a cross-validation sample (Garson, 1998).   
  Researchers using NNETs also have control over the range of random starting values for the hidden 
layer weights that will be used in the model.  The algorithm selects initial weight values randomly within 
a predefined range.  The weights are then updated based upon the minimization of the least squares 
criterion.  When the weights are near 0, hidden layers are deemphasized and the model becomes 
essentially linear in form.  As these weights increase, the hidden layers play a greater role in determining 
predicted values for the outcome variable.  In the initial model setup, the randomly selected starting 
values are typically drawn from a fairly restricted range near 0; e.g. -0.5 to 0.5 in the case of R.  However, 
the researcher can change the range of these starting values and attempt to find the optimal setting based 
upon prediction accuracy for a cross-validation sample, if (s)he believes that hidden layers will play a 
more (or less) important role in the final model.  It is important to note that if starting values for the 
weights are too large, the final model performance may be compromised due to overfitting (Hastie et al., 
2001).  Examples of manipulation of each of these settings are provided in the results section. 
 

Generalized Additive Models (GAM) 

 GAMs are a class of very flexible models that allow for the linking of Y with one or more predictor 
variables, using a wide variety of smoothing functions common in statistics. Each function is fit using a 
smoothing technique such as a thin plate spline (default in R), cubic spline or a P spline, with the goal of 
minimizing the penalized sum of squares criterion (Simonoff, 1996). For an excellent discussion of 
smoothing and splines, the reader is encouraged to refer to Keele (2008), and the aforementioned 
Simonoff .  The penalized sum of squares (PSS) is based on the standard sum of squared residuals with a 
penalty applied for model complexity (i.e., the number of main effects and interactions included).  The 
GAM algorithm works in an iterative fashion, beginning with the setting of the model intercept to the 



Finch, Chang, & Davis 

 
12                                                                                           Multiple Linear Regression Viewpoints, 2011, Vol. 37(1) 

mean of Y.  Subsequently, the smoothing function of choice is applied to each of the independent 
variables in turn, selecting the smoothed predictor that minimizes the PSS.  This iterative process 
continues until the smoothing functions stabilize (i.e., the PSS cannot be appreciably reduced further), at 
which point final model parameter estimates are obtained.  The optimal model is typically selected so as 
to minimize the Generalized Cross Validation (GCV) score, which is based on an approximation of a 
jackknifed cross validation check of the training data. Essentially, the GCV score is a measure of 
prediction accuracy based on a sum of squares value when jackknifing (leave one out) is used.  However, 
it is constructed such that actual jackknifing, which can be quite laborious for large datasets, is not 
necessary.  Smaller values of GCV are associated with more accurate and generalizable models.  In 
addition to the GCV, selection of optimal GAMs is also aided by the popular Akaike Information 
Criterion (AIC), for which smaller values indicate better model fit. 
  As was the case for CART and NNET, overfitting of the data can also be a problem with GAMs.  In 
order to avoid overfitting, the researcher using GAM can change the smoothing parameter, γ, which 
appears in the equation for the GCV score. By default γ is set to 1, where larger values correspond to 
identifying a smoother model as optimal for the data.  Kim and Gu (2004) found that γ of approximately 
1.4 was effective at correcting the overfitting problem while not compromising model fit.  The researcher 
also has control over the actual smoothing spline to be used in developing the GAM, a selection of which 
was mentioned above.  Indeed, different smoothing splines could be used with different predictor 
variables, or combinations of these variables.  Finally, the researcher has the option of selecting what is 
essentially the complexity of the smoothing function through the dimension of the function used by the 
smoothing algorithm. Larger values of this parameter, k, allow for more degrees of freedom in the 
smoother, which corresponds to a potentially more complex smoothing function.  Typically, this value is 
not set extremely high in order to avoid the possibility of overfitting.  It should also be noted that in 
practice, the value of k frequently has a minor impact on the final performance of the model in terms of 
prediction accuracy (Wood, 2006).  
 

Current Study 
  As mentioned above, of particular interest in the current study is the investigation of how manipulating 
tuning parameters impacts each of the alternative methods (i.e., CART, NNET, and GAM).  In much prior 
work, these methods have been studied using either default or generally recommended settings for these 
parameters.  However, in actual practice analysis results can change with different values for these tuning 
parameters.  Given that the general recommendation for these methods is to, in fact, try several values for 
these settings in order to find the optimal model (Hastie et al., 2001), the current study seeks to add to the 
literature regarding the most effective use of each approach by demonstrating how these settings can be 
manipulated in a common software package (R).  It should be noted, however, that this work is not 
intended to represent a complete training in the use of these alternative prediction methods.  Indeed, for 
each of them complete books are available to walk the researcher through planning, conducting and 
interpreting analyses.  Rather, this study is intended to introduce interested readers to the basic sequence 
of using these methods for prediction, and to encourage further investigation of those methods that appear 
to be most appropriate for a given research scenario.  There are many fine texts available for each 
approach, several of which are included in the references to this manuscript, and we encourage the 
interested reader to peruse these for a more complete discussion of the fine details of conducting each 
analysis.  We are hopeful, however, that this paper will serve as a strong starting point from which a 
researcher interested in using one or more of these methods can begin their analysis with some 
confidence. 

Methodology 
Participants and Procedures 
  Participants for this study included 200 (n = 103 females; n = 97 males) preschool children. The sample 
was obtained from preschool facilities near a mid-sized city in the Midwest Demographic information for 
the total sample appears in Table 1. Only children who did not receive special education or related 
services, and whose parental consent was obtained, were included as participants.  Once a signed parental 
permission form was obtained, the children were administered the Stanford-Binet Intelligence Scales – 
Fifth Edition (SB5; Roid, 2003) under standardized conditions by trained examiners.  In addition, selected 
demographic data were also collected for all study participants. 
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Instrumentation 
  The SB5 (Roid, 2003) is 
an individually administered 
assessment of IQ ap-
propriate for people between 
the ages of 2 and 85 years.  
It is theoretically grounded 
in the Cattell-Horn-Cattell 
(CHC) theory and intends to 
represent 5 CHC factors, 
including Fluid Intelligence 
(Gf), Crystallized Know-
ledge (Gc), Quantitative 
Knowledge (Gq), Visual 
Processing (Gv), and Short-
Term Memory (Gsm). The 
entire SB5 (5 verbal and 5 
nonverbal subtests) was 
administered to the par-
ticipants, and generated a 
Full Scale IQ (FSIQ). In 
relation to this study, the 
SB5 FSIQ score was used to 
indicate the children’s 
comprehensive cognitive 
abilities.  The SB5 was 
selected for use in this study 
because it is strongly 
grounded in CHC theory, has been normed for children as young as those used in this study, and has been 
shown to be a valid and reliable tool for such assessments. 
 

Prediction Models 
 The outcome variable of interest was the FSIQ from the SB5, while the predictors included years of 
education each for mother and father, and the child’s age. These predictors were selected because they are 
typically available for any subject for who predicted IQ is required, and will not be impacted by a CNS 
injury. They have also been used in prior IQ prediction studies (Sellers et al., 1996).  The models used to 
predict FSIQ with these demographic variables included MLR as well as CART, NNET, and GAM. All 
analyses were carried out using the R software package (R Development Core Team, 2007).  These 
prediction methods were selected because they have been demonstrated in prior research to be effective 
tools in predicting continuous outcome variables (Chang et al., 2011; Finch &Holden, 2010).   
  In order to assess the predictive accuracy of the models, the original sample of 200 subjects was 
randomly divided into training (N=150) and cross-validation samples (N=50).  For each method, the 
training sample was used to estimate a predictive model, which was in turn applied to the cross-validation 
sample to obtain predicted values for FSIQ.  Prediction accuracy for the cross-validated sample was 
assessed through the bias of the predicted IQ: Bias = θActual – θPredicted and the Root Mean Square Error 
(RMSE) of the predictions for the cross-validation sample:  

RMSE = 
( )

n

2
PredictedActual∑ −θθ

. 

 
Bias serves as a measure of the estimation accuracy, while RMSE reflects both accuracy and precision of 
the predicted values.  In general, results with lower bias and lower RMSE can be viewed as better fitting. 

 

 Table 1. Descriptive Statistics for Total, Training and Cross-Validation Samples 
 

Variable 
 

Total Sample 
 

Training 
Cross-

Validation 
Gender    
Male   97 (48.5%) 73 (48.7%) 24 (48%) 
Female 103 (51.5%) 77 (51.3%) 26 (52%) 
Ethnicity    
Caucasian 124 (62%) 93 (62%) 31 (62%) 
African-American   49 (24.5%) 38 (25.3%) 11 (22%) 
Hispanic/Latino     2 (1%)   2 (1.3%)   0 (0%) 
Bi-racial   20 (10%) 15 (10%)   5 (10%) 
Other     3 (1.5%)   0 (0%)   3 (6%) 
No report     2 (1%)   2 (1.3%)   0 (0%) 
Father’s education    
Less than High school   30 (15%) 24 (16%)   6 (12%) 
High school/GED   78 (39%) 56 (37.3%) 22 (44%) 
1-3 years of college   44 (22%) 35 (23.3%)   9 (18%) 
4+ years of college   29 (14.5%) 21 (14%)   8 (16%) 
No report   19 (9.5%) 14 (9.4%)   5 (10%) 
Mother’s education    
Less than High school   16 (8%) 13 (8.7%)   3 (6%) 
High school/GED   48 (24%) 35 (23.3%) 13 (26%) 
1-3 years of college   89 (49.5%) 65 (43.3%) 24 (48%) 
4+ years of college   39 (19.5%) 31 (20.7%)   8 (16%) 
No report     8 (4%)   6 (4%)   2 (4%) 
Age (months) Mean   58.86 (5.38) 59.73 (5.50) 60.28 (5.04) 
FSIQ               (SD)   98.10 (11.81) 98.29 (11.17) 97.54 (13.67)
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Results 

 Following is a description of FSIQ prediction results for the cross-validation sample using CART, 
NNET, and GAM, along with ordinary least 
squares (OLS) regression, which will serve as the 
baseline for comparison with the alternative 
methods.  The R commands necessary to run these 
analyses appear in italics in the text. Table 2 
contains the bias and RMSE results for each 
model. 
 
CART 
 CART found a tree with 13 terminal nodes, and 
underestimated FSIQ in the model was 15.29.  In 
terms of conducting analysis in R, the library 
command loads the tree library (which we would 
have previously installed in our version of R), and 
the iq.cart<-tree(IQ~age+fathered+mothered) 
command creates the prediction tree and saves it in 
the R object iq.cart.  The descriptive output, 
produced by the summary command, appears 
below. This output shows us the deviance value 
for the tree (Residual mean deviance), where 
larger values indicate a greater difference in 
observed and predicted FSIQ for the training 
sample.  
 

   library(tree) 
  iq.cart<-tree(IQ~age+fathered+mothered) 
  summary(iq.cart) 
 
  Regression tree: 
  tree(formula = IQ ~ age + fathered + mothered) 
  Number of terminal nodes:  13  
  Residual mean deviance:  83.15 = 11390 / 137  
  Distribution of residuals: 
 
  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  -34.330  -6.375   1.255   0.000   6.176  20.860 
 

  In order to determine how much pruning should 
be done, we used the following set of commands 
to create the graph in Figure 1, showing the 
relationship between the deviance and the number 
of terminal nodes.   
 

  iq.cart.prune<-prune.tree(fsiqtrain.cart) 
  plot(iq.cart.prune) 
 
 

Moving right to left on the x-axis, we can see that 
the first big increase in deviance occurs between 
10 and 9 terminal nodes. Thus, we may elect to fit 
a tree with only 10 terminal nodes rather than the 
original 13, using the following commands in R.  
Note that the subcommand best=10 requests that 
the 10 terminal node tree with the smallest 
deviance be selected.  The deviance for this tree 

Table 2. RMSE and Bias Values for Cross-Validation  
Sample: OLS, CART, GAM and NNET Models 
Model RMSE Bias 
OLS 
 

15.0567 -6.13 

CART, 13 nodes 
 

15.2883 -6.24 

CART, 10 nodes 
 

15.46269 -6.43 

CART, 8 nodes 
 

15.19276 -6.51 

NNET, 2 hidden layers 
 

15.05665 -6.13 

NNET, 5 hidden layers 
 

15.05665 -6.13 

NNET, 10 hidden layers 
 

16.16655 -6.11 

NNET, 20 hidden layers 
 

14.71749 -5.2 

NNET, 2 hidden layers,  
decay=0.5 

16.43546 -6.08 

NNET, 5 hidden layers,  
decay=0.5 

15.48161 -6.35 

NNET, 10 hidden layers, 
decay=0.5 

15.08878 -5.18 

NNET, 20 hidden layers, 
decay=0.5 

15.31007 -7.06 

NNET, 2 hidden layers, 
decay=0.75 

16.16945 -6.34 

NNET, 5 hidden layers, 
decay=0.75 

15.27232 -4.96 

NNET, 10 hidden layers, 
decay=0.75 

15.67306 -5.88 

NNET, 20 hidden layers, 
decay=0.75 

15.67511 -6.67 

NNET, 2 hidden layers,  
range=-1 to 1 

15.05665 -6.13 

NNET, 5 hidden layers, 
 range=-1 to 1 

15.05665 -6.13 

NNET, 10 hidden layers,  
range=-1 to 1 

15.27986 -6.59 

NNET, 20 hidden layers,  
range=-1 to 1 

15.05665 -6.13 

GAM, thin plate 
 

15.06799 -5.49 

GAM, cubic  
 

15.87559 -5.95 

GAM, thin plate, g=1.4 
 

15.06799 -5.49 

GAM, cubic, g=1.4 15.56384 -6.53 
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was 85.08, which is not much larger than the 83.15 for the original 13 node tree, suggesting that losing 
the three weakest terminal nodes did not substantially damage model fit for the training sample.  In 
addition, the mean bias and RMSE values in Table 2 for the 10 node tree were very similar to those for 
the full tree. 
 

  iq.cart.prune10<-prune.tree(iq.cart,best=10) 
  summary(iq.cart.prune10) 
 
  Regression tree: 
  snip.tree(tree = iq.cart, nodes = c(4, 22, 15)) 
  Number of terminal nodes:  10  
  Residual mean deviance:  85.08 = 11910/140  
  Distribution of residuals: 
 
  Min. 1st Qu.  Median    Mean 3rd Qu.   Max.  
 -34.330  -6.000   1.160   0.000   5.784  24.150 
 
Likewise, we produced a tree with 8 terminal 
nodes, which also had very similar bias and 
RMSE values to the other two trees.  
 

  iq.cart.prune8<-prune.tree(iq.cart,best=8) 
  summary(iq.cart.prune8) 
 
  Regression tree: 
  snip.tree(tree = iq.cart, nodes = c(4, 15, 11)) 
  Number of terminal nodes:  8  
  Residual mean deviance:  88.59 = 12580/142  
  Distribution of residuals: 
  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-34.330  -6.281   1.465   0.000   5.899  20.380 
 
Taken together, these results would suggest that for the purposes of predicting FSIQ for the cross-
validation sample, the 8 terminal node tree was just as effective as the full 13 node tree. Furthermore, all 
of the tree models produced generally comparable results to those for the other alternative models 
included in this study. 
 
 

NNET 
 Of the three alternative modeling techniques examined 
here, NNET has the largest number of potential settings that 
a researcher can change.  In this study, we estimated a large 
number of NNET models, results of which are presented in 
Table 2 with regard to prediction accuracy for the cross-
validation sample.  In addition, compared to the other two 
approaches featured here, the output from a NNET analysis 
is not particularly informative regarding either model fit or 
the actual nature of the model itself.  Indeed, the most 
useful information regarding the fit of a NNET model 
comes from its ability to accurately predict the outcome 
variable for the cross-validation sample. As an initial 
example, the following are the commands for running a 
basic NNET with 2 hidden layers, and default weight decay 
of 0 and range of random weight starting values from -0.5 
to 0.5. 
 

  
Figure 1.Total tree deviance by number of terminal nodes 

library(nnet) 
iq.nnet2<-
nnet(IQ~age+fathered+mothered,size=2,
linout=T,skip=T) 
 
# weights:  14 
initial  value 3088737.481193  
iter  10 value 28190.551478 
iter  20 value 21395.190892 
iter  30 value 21354.815727 
iter  40 value 21298.496237 
iter  50 value 21296.878978 
iter  50 value 21296.878961 
iter  50 value 21296.878961 
final  value 21296.878961  
converged 
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The library to be used in this case is nnet, which was previously installed in our version of R.  The 
linout=T command is necessary when the outcome variable is continuous, as is the case for FSIQ.  The 
default setting for NNET in R is a categorical outcome, leading to a model corresponding to logistic 
regression. The skip=T subcommand allows for the inclusion of main effects as well as hidden layers in 
the final model.  If this command is set to F, there 
will be no weights directly linking each of the main 
effects to the outcome variable. We can view the 
weights by typing the command to the right. 
In this table, b is the intercept, i1, i2, and i3 are the 
three independent variables, h1 and h2 are the 
hidden layers, and o is the outcome variable.  Thus, 
we can see that the weight for variable i1, age, to the 
first hidden layer is -0.52, while the weight of 
father’s education (i2) to this hidden layer is 0.55, 
and so on. Finally, looking at the last line, we can 
see that the variable with the largest direct weight to the outcome variable is mother’s education (i3), with 
a value of 1.69.  At the same time, neither age nor father’s education had a strong direct relationship with 
FSIQ. In addition, hidden layer 1 (h1), which was dominated primarily by an interaction of age and 
father’s education, had a somewhat stronger impact on FSIQ than did hidden layer 2. It should be noted 
that from this output, we do not have an indication of which of these weights could be statistically 
significant in the classic hypothesis testing sense, nor do we know how well this particular model fits the 
training data. We can, however, examine its fit to the cross-validation data in Table 2, and see that it 
performs similarly to the CART models described earlier. Finally, we can set the number of hidden layers 
with the size subcommand, as below for a NNET with 10 hidden layers. 

iq.nnet10<-nnet(IQ~age+fathered+mothered,size=10,linout=T,skip=T) 
 

  In order to change the value of the weight decay (λ) parameter to 0.5, we would use the following 
command in R. Remember that larger values of λ tend to shrink the size of the weights for the hidden 
layers.  To select the optimal λ value various values would be tried and their relative impact determined 
through an examination of the accuracy of results for the cross-validation sample (see Table 2). 
 

iq.nnet2.decay<-nnet(IQ~age+fathered+mothered,size=2,decay=.5,linout=T,skip=T) 
 

 In addition to manipulating the number of hidden nodes and the weight decay parameter, the researcher 
also has the option of changing the range of random starting values for the weights.  By default, R draws 
these weights randomly from between -0.5 and 0.5.  However, as discussed above, the range of starting 
values can be changed in order to reflect a priori beliefs regarding the importance of the hidden layers.  A 
larger range of starting values for the weights allows for the possibility that the hidden layers are more 
important than if the range of starting values is tightly clustered near 0.  As an example, the following R 
commands include 2 hidden layers, a λvalue of 0 and the range of starting values between -1 and 1. 
 

        iq.nnet2.range1<-nnet(IQ~age+fathered+mothered,size=2,linout=T,skip=T,rang=1) 
 

            # weights:  14 
            initial  value 2588587.290328  
            iter  10 value 15631.624853 
            final  value 15597.617140  
            converged 
 

      summary(iq.nnet2.range1) 
 

            a 3-2-1 network with 14 weights 
            options were - skip-layer connections  linear output units  
              b->h1  i1->h1  i2->h1  i3->h1  
              -0.36    0.40    0.68    0.81  
              b->h2  i1->h2  i2->h2  i3->h2  
              -2.38 -142.77   -6.38  -11.60  
               b->o   h1->o   h2->o   i1->o   i2->o   i3->o  
              47.02   46.02  -86.92   -0.01    0.12    1.69 

summary(iq.nnet2) 
a 3-2-1 network with 14 weights 
options were - skip-layer connections  linear output units 
 b->h1 i1->h1 i2->h1 i3->h1  
  0.55  -0.52   0.55  -0.26  
 b->h2 i1->h2 i2->h2 i3->h2  
 -0.69  -0.57  -0.61  -0.29  
 b->o h1->o h2->o i1->o i2->o i3->o  
93.04  0.37 -0.21 -0.01  0.12  1.69 
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We can see that the weights for the hidden layers in this model are generally larger those of the 2 hidden 
node with starting value range from -0.5 to 0.5 above.  Bias and RMSE results for a number of NNET 
models with the cross-validation data appear in Table 2.  It appears that the NNET model with 20 hidden 
layers provided the best fit to the cross-validation sample, across all of the models examined in this study. 
 
GAM 
 In order to build a GAM with the thin plate smoothing spline (the default in R), we would use the 
following command sequence.  GAM is included in the mgcv library of R functions that we would have 
previously installed in our version of R.  The actual gam command used here sets the dimensions of the 
basis function, k, equal to 6 for both mother’s and father’s education.  The reason for this is that the 
number of observed values for these variables was only 6, and there cannot be more dimensions to the 
basis function than there are values of the variable.  The default value in R is 10.  We will note the GCV 
score of 111.6503 and compare it with the GCV scores for alternative GAMs below. 
 
      library(mgcv) 
      iq.gam.tp<-gam(IQ~s(age, bs="tp")+s(fathered, k=6, bs="tp") 
      +s(mothered, k=6, bs="tp"),family=gaussian) 
      iq.gam.tp 
 
            Family: gaussian  
            Link function: identity  
 
            Formula: 
            IQ ~ s(age, bs = "tp") + s(fathered, k = 6, bs = "tp")  
            + s(mothered,     k = 6, bs = "tp") 
 
            Estimated degrees of freedom: 
            1 1 1  total = 6  
 
            GCV score: 111.6503 
  
 In order to use an alternative smoother, such as the cubic spline, we would change the previous 
commands as follows, replacing tp with cs.   
 
       iq.gam.cs<-gam(IQ~s(age, bs="cs")+s(fathered, k=6, bs="cs")+s(mothered,  
      k=6, bs="cs"),family=gaussian) 
      iq.gam.cs 
 
            Family: gaussian  
            Link function: identity  
 
            Formula: 
            IQ ~ s(age, bs = "cs") + s(fathered, k = 6, bs = "cs") + s(mothered,  
                k = 6, bs = "cs") 
 
            Estimated degrees of freedom: 
            4.4562e+00 3.0283e+00 6.7655e-10  total = 10.48453  
 
            GCV score: 105.3774 
 
Note that the GCV score for the cubic spline GAM is somewhat lower than that of the thin plate spline 
model, indicating that it provides a better fit to the data. 
 We can change the degree of smoothing itself by setting γ=1.4, for example here with the cubic spline 
smoother.  In this instance, the GCV actually increased from the cubic spline model with the default γ=1, 
suggesting that this latter model does not provide as good a fit to the data. 
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        iq.gam.cs.gamma14<-gam(IQ~s(age, bs="cs")+s(fathered, k=6, bs="cs") 
             +s(mothered, k=6, bs="cs"),family=gaussian,gamma=1.4) 
       iq.gam.cs.gamma14 
 
              Family: gaussian  
              Link function: identity  
 
              Formula: 
              IQ ~ s(age, bs = "cs") + s(fathered, k = 6, bs = "cs")  
                 + s(mothered,     k = 6, bs = "cs")  
 
              Estimated degrees of freedom: 
              4.8614e-03 6.6852e-03 7.6595e-06  total = 3.011554  
 
              GCV score: 107.4748 
 
 In addition to the GCV, it is also possible to compare the fit of GAMs 
using the AIC, which can be obtained with the R commands to the right. 
Remember that using this criterion, the optimal model is the one with the 
smallest AIC value, which in this case is the cubic spline model with γ =1, 
which was also the best fitting model based on the GCV score. 
 We estimated models for GAMs with cubic and thin plate splines and for 
both γ=1 and γ=1.4.  Results for these in terms of prediction of the cross-
validation sample appear in Table 2.  The GAMs with a thin plate spline and γ=1 or γ=1.4 provided the 
lowest bias and RMSE values of the GAMs, despite the fact that based on the GCV and AIC values, the 
cubic splines appeared to be slightly better.  In addition, the GAMs had slightly better RMSE and bias 
values than both OLS and the CART models, and performed comparably to the NNETs, though as noted 
above the NNET model with 20 hidden layers provided the best fit for the cross-validation sample.  While 
not at all dramatic, the small discrepancy in terms of which model appears to be best fitting for the 
training and cross-validation samples does suggest the need for extra care with regard to the problem of 
overfitting when using these complex modeling techniques.  In short, it appears that the cubic spline 
models may have overfit the training data somewhat, when compared with the thin plate splines. 
 

Discussion 
 Prediction is an important aspect of statistical practice in psychology and the other social sciences, 
which had traditionally been done using standard MLR.  For example, prior studies in the area of 
premorbid IQ prediction have generally been based on MLR models with adolescent and older 
populations.  However, it has been argued that the regression based approach may not always be optimal 
(Veiel & Koopman, 2001), nor has it been shown that such predictions can be accurately made for 
preschool age children. Problems with relying too completely on strictly linear model forms are not 
limited to the prediction of premorbid IQ.  In recent years, a number of alternative prediction modeling 
methods have become more widely available in popular software packages such as R. While offering the 
promise of greater prediction accuracy, however, these more complex models also present the researcher 
with a sometimes bewildering array of tuning parameters that must be set in order for them to perform 
optimally.  Thus, a primary goal of this study was to demonstrate how one might use these modern 
methods of prediction in practice with a real prediction problem. The methods featured here were selected 
because they have been shown to be effective in both simulation and applied research, as noted above.   
 To briefly summarize the results of this study, it appears that in terms of the outcome variables included 
here, bias and RMSE all of the methods provided generally comparable predictions of FSIQ, with the 
NNET model with 20 hidden nodes being somewhat more accurate than the others.  This approach 
demonstrated both the least bias and the lowest RMSE value. MLR, CART and GAM performed very 
similarly to one another. Given that prior Monte Carlo simulation work has shown that linear models such 
as MLR perform poorly for prediction when there are a number of interactions among predictor variables 
in the population (Garson, 1998), we may be able to infer from the relative success of MLR in this case 
that the relationships among these predictors and FSIQ are largely linear. 

AIC(iq.gam.tp) 
[1] 1129.699 
AIC(iq.gam.cs) 
[1] 1125.545 
AIC(iq.gam.cs.gamma14) 
[1] 1126.74 
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 In conclusion, we hope that this manuscript contributes to research practice by demonstrating three 
proven and effective methods of prediction that are available in situations where it is known or believed 
that the relationships between predictor and outcome variables is not linear in nature.  Furthermore, we 
have attempted to demonstrate how one can optimize these models through the judicious use of tuning 
parameters and/or pruning, in the case of CART. In the final analysis, the selection of optimal models and 
settings should be based on their accuracy with respect to a cross-validation sample.  In all three cases, 
there is a distinct risk of overfitting the training data, which results in models that are not generalizable to 
the broader population.  Therefore, simply assessing model fit for the training sample will likely leave the 
researcher with a less than optimal model for practice.  However, systematically altering the tuning 
parameters and examining their impact on prediction for the cross-validation sample can result in 
selection of a model that provides the most accurate predictions possible for samples from across the 
population.  
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Unbalanced Sampling Effect on the Power  
at Level-1 in the Random Coefficient Model 

       Bonnie J. Steele            Daniel J. Mundfrom             Jamis Perrett 
  Colorado Mountain College      Eastern Kentucky University        Texas A & M University 
Researchers often disregard the potentially negative effects of unbalanced sampling on power estimates 
when using multilevel models. The purpose of this study was to investigate the effects that unbalanced 
sampling had on the estimated level-one power in multilevel random coefficient models. Twelve 
combinations of three effect sizes (0.5, 0.8, and 1.0) and four intraclass correlations (0.2, 0.1, 0.05, and 
0.01) were investigated with each of three sampling ratios (0.25:0.75, 0.20:0.80, and 0.15:0.85) and three 
sample sizes (200, 500, and 800) to compare the effects that the different sampling ratios had on the level-
1 power in the random coefficient model. Results indicated that as sampling ratios changed from 
0.25:0.75, to incrementally a larger unbalanced sampling ratio of 0.15:0.85, the estimated power was 
lower in almost every case. This effect was more pronounced for the smaller sample sizes. Fourteen cases 
displayed differences larger than 5% in aggregate power estimates. 

ierarchical Linear Modeling (HLM) is a derivative or extension of the standard regression model 
adapted to address the problem of multilevel data, which allows the researcher to confront 
restrictions previously imposed by single-level analyses (Heck & Thomas, 2000). As a widely 

utilized technique, HLM has a rich literature containing recommendations regarding the appropriate 
balanced sample sizes necessary to ensure adequate power in simultaneous variation testing for both 
within-groups and between-group(s) comparisons (Kreft & De Leeuw, 1998; Raudenbush & Bryk, 2002; 
Raudenbush & Liu, 2000). For example, the use of HLM with balanced sample sizes is cited in mental 
health research (Bond, Miller, Krumweid, & Ward, 1988), education (Finn & Achilles, 1990; Mosteller, 
1995), and medicine (Haddow, 1991). However, the literature pertaining to unbalanced sample size 
recommendations in HLM is meager (Raudenbush & Liu). This study builds on the work from previous 
balanced research perspectives by providing insight into the effect that unbalanced sampling has on the 
power estimates at level-1 in the random coefficient model with three dissimilar conditions of effect size 
and four intraclass correlations. 
  Kraemer and Thiemann (1987) broadly summarized and discussed the effects of sampling in a number 
of single level models. They found that small differences in sample sizes across groups for single-level 
analyses may not lower the estimated power of a test, but larger differences become problematic, 
indicating that unbalanced sampling tends to lower the model’s expected power. Larger differences are 
those with proportional sampling differences that can incrementally differ by as much as 75% or as little 
as 25%. Such unbalanced sampling occurs as the rule rather than the exception in many educational 
settings where, for example, several classes are sampled to obtain a sample size of 200. Suppose that, in a 
particular school, each of 5  sampled classes have 10 students and each of 10 other sampled classes have 
15 students. With sampling that is unbalanced to this extent, it would not be unreasonable to expect the 
same decreasing effect on power in multilevel models as is seen in single-level models.  
  Raudenbush and Liu (2000) provided a comprehensive summary of expected power estimate 
calculations based upon parameter estimates, balanced sample sizes, and overall resource expense. 
Unbalanced sampling, on the other hand, was only minimally addressed as a focus of suggested further 
research. Likewise, Reise and Duan (2003) suggested that the unbalanced nature of educational data 
produced design flaws in need of further research to investigate its effects on model efficiency.   
 

Method 
  Building on the work of Kraemer and Thiemann (1987) and Raudenbush and Liu (2000), three different 
overall sample sizes (as suggested by Raudenbush and Bryk, 2002) with three unbalanced sampling ratios 
(as suggested by Kraemer and Thiemann) were investigated in this study, with the focus on the 
differences in the amount of unbalanced sampling being used to determine if there was a recognizable 
effect on model power. Other model conditions that were varied included effect size and intraclass 
correlations (ICC) as possible contributors to decreases in power with multilevel models. The overall 
resource expense ratio was held to 1. 
 

H
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Sampling Schemes 
  Three levels of proportionally unbalanced data (75% to 25%, 80% to 20%, and 85% to 15%) were 
calculated for three different sample sizes of 200, 500, and 800 with each of 12 combinations of effect 
size and intraclass correlation. Design 
conditions were limited by the restriction 
that the number of classes (C1) times the 
number of students in each of those 
classes (S1) at the first sampling 
proportion (e.g., 25%) plus the number 
of classes (C2) times the number of 
students in each of those classes (S2) at 
the second sampling proportion (e.g., 
75%) must equal the desired sample size 
(N), i.e., (C1S1) + (C2S2) = N, where in 
the 25%-75% sampling ratio, (C2S2) 
must be 3 times larger than (C1S1).  This 
algebraic equation was used to generate 
312 possible sampling ratios that would 
reflect possible classroom scenarios, 
where in each case the C1, S1, C2, and S2 
values were integers. To be specific, 84 
possible sampling combinations were 
used that corresponded to a total sample 
size of 200, another 84 possible sampling 
combinations were used with a total 
sample size of 500, and 144 possible 
sampling combinations were used with a 
total sample size of 800. Whereas 
Schumacker and Lomax (1996) (as cited 
in Heck & Thomas, 2000) provided a 
rule of thumb suggestion that a minimum 
of 100-150 subjects be included in a 
study, Heck and Thomas considered 
anything with N < 400 to be a small 
sample. Sample sizes, sampling schemes, 
and sampling ratio differences used in 
this study are displayed in Table 1 where 
a sample size of N = 200 is used as a 
representative of a small sample, N = 500 
to represent a moderate sample size, and 
N = 800 to represent a large sample.  
 

Data Simulation 
  After the unbalanced sampling schemes with corresponding sample sizes were determined, Step 1 of the 
simulation began. Ten thousand outcome variables were simulated for each of the 312 different sampling 
schemes using the SAS PROC IML (see the Appendix). These outcome variables were mechanically 
constrained to fit within given values for effect size, intraclass correlations, sample sizes, and proportions 
of unbalanced data. Step 2, performing an HLM analysis on each of the 10,000 iterations of the 312 
sampling schemes using SAS PROC MIXED, produced the partitioned level-1 and level-2 power 
parameters. The 312 possible sampling combinations were grouped and aggregated according to sampling 
schema to generate 108 estimated level-1 power values. 
  Upon completion of the simulations, a comparison table was created where the effect of each level of 
each design characteristic (i.e., sample size, proportion of unbalanced data, effect size, and intraclass 
correlation) on model power could be investigated on the resultant dependent variable (the calculated 
estimate of level-1 power) for the simulated unbalanced random coefficient model. Visual comparisons 
were made.  
 

 Table 1. Possible Sampling Combinations Equal to 
Unbalanced Samples of 200, 500, and 800.  

Ratio 
Classes 

Trt 1 
Subjects 

Trt 1 
Classes 

Trt 2 
Subjects 

Trt 2 
N = 200 

.25-.75 5 10 10 15 
5 10 5 30 

.20-.80 2 20 10 16 
  4 10 10 16 
  2 20 5 32 
  4 10 5 32 

.15-.85 2 15 10 17 
N = 500 

.25-.75 5 25 15 25 

.20-.80 4 25 20 20 
  10 10 20 20 
  4 25 16 25 
  10 10 16 25 

.15-.85 3 25 17 25 
  5 15 17 25 

N = 800 
.25-.75 8 25 24 25 

  10 20 24 25 
  8 25 30 20 
  10 20 30 20 

.20-.80 10 16 20 32 
  10 16 40 16 

  5 32 20 32 
  5 32 40 16 

.15-.85 4 30 17 40 
  4 30 20 34 

  5 24 17 40 
  5 24 20 34 
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Results and Conclusions 
Simulated data were created following the recommendations of Raudenbush and Liu (2000) for relative 
magnitudes of effect size, intraclass correlation, total sample size, and proportions of unbalanced data. 
The 312 possible sampling ratios and 108 level-1 aggregate power estimates from Step 2 are presented in 
Tables 2A – 4C. Power estimates when N = 200 are in Tables 2A – 2B, with N = 500 in Tables 3A – 3C, 
and for N = 800 in Tables 4A – 4C. 
 
Table 2A. Aggregate Power for Sample Size of 200 for Sampling Ratios 0.25:0.75 and 0.20:0.80  
by Four ICCs & Three Effect Sizes         

Ratio ICC ES C1 S1 C2 S2 Power Average 

0.25:0.75 

0.2 

1.0 5 10 10 15 0.9639 
0.9663 5 10 5 30 0.9686 

0.8 5 10 10 15 0.8977 
0.8684 5 10 5 30 0.8391 

0.5 5 10 10 15 0.6643 
0.6266 5 10 5 30 0.5889 

0.1 

1.0 5 10 10 15 0.9945 
0.9942 5 10 5 30 0.9939 

0.8 5 10 10 15 0.9612 
0.9602 5 10 5 30 0.9591 

0.5 5 10 10 15 0.7322 
0.7370 5 10 5 30 0.7417 

0.05 

1.0 5 10 10 15 0.9986 
0.9937 5 10 5 30 0.9887 

0.8 5 10 10 15 0.9838 
0.9829 5 10 5 30 0.9819 

0.5 5 10 10 15 0.7837 
0.7100 5 10 5 30 0.6363 

0.01 

1.0 5 10 10 15 0.9999 
0.9985 5 10 5 30 0.9970 

0.8 5 10 10 15 0.9612 
0.9620 5 10 5 30 0.9627 

0.5 5 10 10 15 0.8483 
0.7544 5 10 5 30 0.6604 

0.20:0.80 0.2 

1.0 

2 20 10 16 0.8577 

0.9066 
 

4 10 10 16 0.9381 
2 20 5 32 0.8823 
4 10 5 32 0.9484 

0.8 

2 20 10 16 0.7725 

0.8246 
 

4 10 10 16 0.8614 
2 20 5 32 0.7950 
4 10 5 32 0.8693 

0.5 

2 20 10 16 0.5803 

0.6181 
 

4 10 10 16 0.6239 
2 20 5 32 0.6200 
4 10 5 32 0.6482 
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Table 2B. Aggregate Power for Sample Size of 200, 0.20:0.80 and 0.15:0.85  
Sampling Ratios by Four ICCs & Three Effect Sizes      

Ratio ICC ES C1 S1 C2 S2 Power Average 

0.20:0.80 

0.1 

1.0 

2 20 10 16 0.9545 

0.9704 
 

4 10 10 16 0.9826 
2 20 5 32 0.9576 
4 10 5 32 0.9867 

0.8 

2 20 10 16 0.8526 

0.9007 
 

4 10 10 16 0.9299 
2 20 5 32 0.8767 
4 10 5 32 0.9437 

0.5 

2 20 10 16 0.6001 

0.6475 
 

4 10 10 16 0.6669 
2 20 5 32 0.6317 
4 10 5 32 0.6912 

0.05 

1.0 

2 20 10 16 0.9821 

0.9913 
 

4 10 10 16 0.9969 
2 20 5 32 0.9899 
4 10 5 32 0.9962 

0.8 

2 20 10 16 0.9304 

0.9503 
 

4 10 10 16 0.9668 
2 20 5 32 0.9355 
4 10 5 32 0.9686 

0.5 

2 20 10 16 0.6585 

0.6974 
 

4 10 10 16 0.7138 
2 20 5 32 0.6813 
4 10 5 32 0.7358 

0.01 

1.0 

2 20 10 16 0.9982 

0.9991 
 

4 10 10 16 0.9997 
2 20 5 32 0.9991 
4 10 5 32 0.9992 

0.8 

2 20 10 16 0.9824 

0.9871 
 

4 10 10 16 0.9905 
2 20 5 32 0.9854 
4 10 5 32 0.9902 

0.5 

2 20 10 16 0.7453 

0.7680 
 

4 10 10 16 0.7784 
2 20 5 32 0.7585 
4 10 5 32 0.7896 

0.15:0.85 

0.2 
1.0 2 15 10 17 0.8522 0.8522 
0.8 2 15 10 17 0.7469 0.7469 
0.5 2 15 10 17 0.5471 0.5471 

0.1 
1.0 2 15 10 17 0.9357 0.9357 
0.8 2 15 10 17 0.8274 0.8274 
0.5 2 15 10 17 0.5561 0.5561 

0.05 
1.0 2 15 10 17 0.9697 0.9697 
0.8 2 15 10 17 0.9063 0.9063 
0.5 2 15 10 17 0.6086 0.6086 

0.01 
1.0 2 15 10 17 0.9958 0.9958 
0.8 2 15 10 17 0.9658 0.9658 
0.5 2 15 10 17 0.6737 0.6737 
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  In general, with N = 200, adequate average power was achieved with effect sizes equal to 1.0 and 0.8 for 
all three sampling ratios and all four ICC values (with 3 exceptions—sampling ratio of 0.20:0.80, ICC = 
0.2, ES = 0.8; sampling ratio of 0.15:0.85, ICC = 0.2, ES = 0.8; and sampling ratio of 0.15:0.85, ICC = 
0.1, ES = 0.8). None of the scenarios with effect size = 0.5 showed adequate average power. 
 With N = 500, adequate average power was achieved for all three ratios of unbalanced sampling, all four 
ICC values, and all three effect sizes with four exceptions each with effect size = 0.5: sampling ratio of 
0.25:0.75, ICC = 0.2; sampling ratio of 0.20:0.80, ICC = 0.2; sampling ratio of 0.15:0.85, ICC = 0.2; and 
sampling ratio of 0.15:0.85, ICC = 0.1. 
 
Table 3A. Aggregate Power for Sample Size of 500, 0.25:0.75 and 0.20:0.80 Sampling Ratios by Four 
ICCs & Three Effect Sizes 

Ratio ICC ES C1 S1 C2 S2 Power Average 

0.25:0.75 

0.2 
1.0 

5 25 15 25 
0.9943 0.9943 

0.8 0.9598 0.9598 
0.5 0.7886 0.7886 

0.1 
1.0 

5 25 15 25 
0.9998 0.9998 

0.8 0.9967 0.9967 
0.5 0.8733 0.8733 

0.05 
1.0 

5 25 15 25 
1.0 1.0 

0.8 0.9996 0.9996 
0.5 0.9522 0.9522 

0.01 
1.0 

5 25 15 25 
1.0 1.0 

0.8 1.0 1.0 
0.5 0.9929 0.9929 

0.20:0.80 

0.2 

1.0 

4 25 20 20 0.9745 

0.9885 10 10 20 20 0.9997 
4 25 16 25 0.9804 

10 10 16 25 0.9994 

0.8 

4 25 20 20 0.9193 

0.9569 10 10 20 20 0.9884 
4 25 16 25 0.9338 

10 10 16 25 0.9861 

0.5 

4 25 20 20 0.7351 

0.8016 10 10 20 20 0.8619 
4 25 16 25 0.7512 

10 10 16 25 0.8581 

0.1 

1.0 

4 25 20 20 0.9985 

0.9991 10 10 20 20 1.0 
4 25 16 25 0.9979 

10 10 16 25 1.0 

0.8 

4 25 20 20 0.9802 

0.9910 10 10 20 20 0.9997 
4 25 16 25 0.9854 

10 10 16 25 0.9985 

0.5 

4 25 20 20 0.8234 

0.8840 10 10 20 20 0.9346 
4 25 16 25 0.8427 

10 10 16 25 0.9351 
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Table 3B. Aggregate Power for N = 500, 0.20:0.80 Sampling Ratio by 2 ICCs & 3 Effect Sizes 
Ratio ICC ES C1 S1 C2 S2 Power Average 

0.20:0.80 

0.05 

1.0 

4 25 20 20 1.0 

1.0 10 10 20 20 1.0 
4 25 16 25 0.9999 

10 10 16 25 1.0 

0.8 

4 25 20 20 0.9988 

0.9991 10 10 20 20 0.9999 
4 25 16 25 0.9980 

10 10 16 25 0.9998 

0.5 

4 25 20 20 0.9051 

0.9388 10 10 20 20 0.9663 
4 25 16 25 0.9144 

10 10 16 25 0.9694 

0.01 

1.0 

4 25 20 20 1.0 

1.0 10 10 20 20 1.0 
4 25 16 25 1.0 

10 10 16 25 1.0 

0.8 

4 25 20 20 0.9999 

1.0 10 10 20 20 1.0 
4 25 16 25 1.0 

10 10 16 25 1.0 

0.5 

4 25 20 20 0.9803 

0.9859 10 10 20 20 0.9892 
4 25 16 25 0.9835 

10 10 16 25 0.9904 
 

Table 3C. Aggregate Power for N =  500, 0.15:0.85 Sampling Ratio by 4 ICCs & 3 Effect Sizes 
Ratio ICC ES C1 S1 C2 S2 Power Average 

0.15:0.85 

0.2 

1.0 3 25 17 25 0.9510 0.9660 5 15 17 25 0.9810 

0.8 3 25 17 25 0.8891 0.9328 5 15 17 25 0.9764 

0.5 3 25 17 25 0.6901 0.7154 5 15 17 25 0.7406 

0.1 

1.0 3 25 17 25 0.9920 0.9956 5 15 17 25 0.9992 

0.8 3 25 17 25 0.9565 0.9725 5 15 17 25 0.9884 

0.5 3 25 17 25 0.7529 0.7878 5 15 17 25 0.8227 

0.05 

1.0 3 25 17 25 0.9999 1.0 5 15 17 25 1.0 

0.8 3 25 17 25 0.9930 0.9957 5 15 17 25 0.9984 

0.5 3 25 17 25 0.8474 0.8725 5 15 17 25 0.8975 

0.01 

1.0 3 25 17 25 1.0 1.0 5 15 17 25 1.0 

0.8 3 25 17 25 0.9999 1.0 5 15 17 25 1.0 
0.5 3 25 17 25 0.9470 0.9557 



Steele, Mundfrom, & Perrett 

 
28                                                                                           Multiple Linear Regression Viewpoints, 2011, Vol. 37(1) 

  Table 4A. Aggregate Power for N = 800, 0.25:0.75 Sampling Ratio by 4 ICCs and 3Effect Sizes. 
Ratio ICC ES C1 S1 C2 S2 Power Average 

0.25:0.75 

0.2 

1.0 

8 25 24 25 0.9997 

0.9994 10 20 24 25 0.9993 
8 25 30 20 0.9986 

10 20 30 20 1.0 

0.8 

8 25 24 25 0.9922 

0.9932 10 20 24 25 0.9936 
8 25 30 20 0.9898 

10 20 30 20 0.9973 

0.5 

8 25 24 25 0.8927 

0.9017 10 20 24 25 0.9134 
8 25 30 20 0.8880 

10 20 30 20 0.9125 

0.1 

1.0 

8 25 24 25 1.0 

1.0 10 20 24 25 1.0 
8 25 30 20 1.0 

10 20 30 20 1.0 

0.8 

8 25 24 25 1.0 

0.9999 10 20 24 25 1.0 
8 25 30 20 0.9997 

10 20 30 20 1.0 

0.5 

8 25 24 25 0.9679 

0.9703 10 20 24 25 0.9733 
8 25 30 20 0.9593 

10 20 30 20 0.9807 

0.05 

1.0 

8 25 24 25 1.0 

1.0 10 20 24 25 1.0 
8 25 30 20 1.0 

10 20 30 20 1.0 

0.8 

8 25 24 25 1.0 

1.0 10 20 24 25 1.0 
8 25 30 20 1.0 

10 20 30 20 1.0 

0.5 

8 25 24 25 0.9929 

0.9938 10 20 24 25 0.9959 
8 25 30 20 0.9904 

10 20 30 20 0.9961 

0.01 

1.0 

8 25 24 25 1.0 

1.0 10 20 24 25 1.0 
8 25 30 20 1.0 

10 20 30 20 1.0 

0.8 

8 25 24 25 1.0 

1.0 10 20 24 25 1.0 
8 25 30 20 1.0 

10 20 30 20 1.0 

0.5 

8 25 24 25 1.0 

0.9999 10 20 24 25 0.9999 
8 25 30 20 0.9998 

10 20 30 20 1.0 
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Table 4B. Aggregate Power for N = 800, 0.20:0.80 Sampling Ratio by 4 ICCs and 3 Effect Sizes 
Ratio ICC ES C1 S1 C2 S2 Power Average 

0.20:0.80 

0.2 

1.0 

10 16 20 32 0.9990 

0.9964 10 16 40 16 1.0 
5 32 20 32 0.9948 
5 32 40 16 0.9917 

0.8 

10 16 20 32 0.9945 

0.9762 10 16 40 16 0.9930 
5 32 20 32 0.9633 
5 32 40 16 0.9541 

0.5 

10 16 20 32 0.9046 

0.8555 10 16 40 16 0.8914 
5 32 20 32 0.8260 
5 32 40 16 0.8000 

0.1 

1.0 

10 16 20 32 1.0 

0.9999 10 16 40 16 1.0 
5 32 20 32 0.9997 
5 32 40 16 0.9999 

0.8 

10 16 20 32 0.9996 

0.9983 10 16 40 16 0.9997 
5 32 20 32 0.9975 
5 32 40 16 0.9962 

0.5 

10 16 20 32 0.9677 

0.9294 10 16 40 16 0.9650 
5 32 20 32 0.8983 
5 32 40 16 0.8867 

0.05 

1.0 

10 16 20 32 1.0 

1.0 10 16 40 16 1.0 
5 32 20 32 1.0 
5 32 40 16 1.0 

0.8 

10 16 20 32 1.0 

1.0 10 16 40 16 1.0 
5 32 20 32 0.9999 
5 32 40 16 0.9999 

0.5 

10 16 20 32 0.9926 

0.9787 10 16 40 16 0.9904 
5 32 20 32 0.9666 
5 32 40 16 0.9651 

0.01 

1 

10 16 20 32 1.0 

1.0 10 16 40 16 1.0 
5 32 20 32 1.0 
5 32 40 16 1.0 

0.8 

10 16 20 32 1.0 

1.0 10 16 40 16 1.0 
5 32 20 32 1.0 
5 32 40 16 1.0 

0.5 

10 16 20 32 0.9996 

0.9989 10 16 40 16 0.9994 
5 32 20 32 0.9983 
5 32 40 16 0.9984 
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Table 4C. Aggregate Power for N = 800, 0.15:0.85 Sampling Ratio by 4 ICCs and 3 Effect Sizes 
Ratio ICC ES C1 S1 C2 S2 Power Average 

0.15:0.85 

0.2 

1.0 

4 30 17 40 0.9839 

0.9886 4 30 20 34 0.9899 
5 24 17 40 0.9903 
5 24 20 34 0.9903 

0.8 

4 30 17 40 0.9474 

0.9539 4 30 20 34 0.9424 
5 24 17 40 0.9618 
5 24 20 34 0.9640 

0.5 

4 30 17 40 0.7846 

0.7969 4 30 20 34 0.7814 
5 24 17 40 0.8150 
5 24 20 34 0.8064 

0.1 

1.0 

4 30 17 40 0.9988 

0.9992 4 30 20 34 0.9987 
5 24 17 40 0.9999 
5 24 20 34 0.9993 

0.8 

4 30 17 40 0.9888 

0.9919 4 30 20 34 0.9923 
5 24 17 40 0.9920 
5 24 20 34 0.9946 

0.5 

4 30 17 40 0.8621 

0.8799 4 30 20 34 0.8689 
5 24 17 40 0.8919 
5 24 20 34 0.8966 

0.05 

1.0 

4 30 17 40 1.0 

1.0 4 30 20 34 1.0 
5 24 17 40 1.0 
5 24 20 34 1.0 

0.8 

4 30 17 40 0.9994 

0.9996 4 30 20 34 0.9997 
5 24 17 40 0.9996 
5 24 20 34 0.9998 

0.5 

4 30 17 40 0.9370 

0.9472 4 30 20 34 0.9401 
5 24 17 40 0.9582 
5 24 20 34 0.9536 

0.01 

1.0 

4 30 17 40 1.0 

1.0 4 30 20 34 1.0 
5 24 17 40 1.0 
5 24 20 34 1.0 

0.8 

4 30 17 40 1.0 

1.0 4 30 20 34 1.0 
5 24 17 40 1.0 
5 24 20 34 1.0 

0.5 

4 30 17 40 0.9913 

0.9941 4 30 20 34 0.9936 
5 24 17 40 0.9959 
5 24 20 34 0.9954 
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  With N = 800, adequate average power was achieved for all three ratios of unbalanced sampling, all four 
ICC values, and all three effect sizes with only one exception: sampling ratio of 0.15:0.85, ICC = 0.2 and 
ES = 0.5. Overall, with effect size set at 1.0 or 0.8, the only scenarios for which adequate average power 
was not achieved was with the small sample size of N = 200. With N = 500 or 800, the only scenarios for 
which adequate average power was not achieved all had effect size = 0.5 and ICC values equal to 0.2 or 
0.1. 
  Aggregate data in Table 5 represent summaries for sample sizes of N =  200, 500, and 800 by each of 
the three sampling ratios, the four ICC values, and the three effect sizes for a total of 108 average power 
estimates. These results indicate that increasing the width of the sampling ratios has the effect of lowering 
the estimated power in most cases. For each sample size in each column, the aggregate estimated power 
decreased as the width of the sampling ratio increased. This effect is more pronounced for the smaller 
sample size of N = 200. 
  Five of these 108 aggregated power estimates (4.6%) exhibited an exception to the decreasing pattern, 
where contrary to every other estimate, power showed a slight increase. In every case, this exception 
occurs in the sampling ratio of 0.20:0.80 three times with N = 200 and twice with N = 500. These 
exceptions are shaded in Table 5. 
  Plausible explanations for these differences come from the work of Kreft and De Leeuw (1998) and 
Raudenbush and Liu (2000) where each researcher determined that using a larger number of groups have 
a greater positive effect on estimated power than having more subjects within groups. The five aggregate 
power estimates that are exceptions come from samples in which the group size is small. It also appears to 
generally be the case that even when intraclass correlations and effect sizes are high, power estimates are 
not compromised at the lower sample size. A wider sampling ratio, or greater unbalanced sampling, has 
the most pronounced effect on power and presents the greatest threat to research results.  
  

 
    Table 5. Comparisons of Aggregate Power Estimates for All Variables 

Comparison of Power for ICC = 0.2 and Effect Size = 1.0, 0.8, & 0.5 
  ICC = 0.2 & ES = 1.0 ICC = 0.2 & ES = 0.8 ICC = 0.2 & ES = 0.5 

Ratio 200 500 800 200 500 800 200 500 800 
0.25 : 0.75 0.9663 0.9943 0.9994 0.8684 0.9598 0.9932 0.6266 0.7886 0.9017
0.20 : 0.80 0.9066 0.9885 0.9964 0.8246 0.9569 0.9762 0.6181 0.8016 0.8555
0.15 : 0.85 0.8522 0.9660 0.9886 0.7469 0.9328 0.9539 0.5471 0.7154 0.7969

Comparison of Power for ICC = 0.1 and Effect Size = 1, 0.8, & 0.5 
  ICC = 0.1 & ES 1.0 ICC = 0.1 & ES = 0.8 ICC = 0.1 & ES = 0.5 

Ratio 200 500 800 200 500 800 200 500 800 
0.25 : 0.75 0.9942 0.9998 1.0000 0.9602 0.9967 0.9999 0.7370 0.8733 0.9703
0.20 : 0.80 0.9704 0.9991 0.9999 0.9007 0.9910 0.9983 0.6475 0.8840 0.9294
0.15 : 0.85 0.9357 0.9956 0.9992 0.8274 0.9725 0.9919 0.5561 0.7878 0.8799

Comparison of Power for ICC = 0.05 and Effect Size = 1, 0.8, & 0.5 
  ICC = 0.05 & ES = 1.0 ICC = 0.05 & ES = 0.8 ICC = 0.05 & ES = 0.5 

Ratio 200 500 800 200 500 800 200 500 800 
0.25 : 0.75 0.9937 1.0000 1.0000 0.9829 0.9996 1.0000 0.7100 0.9522 0.9938
0.20 : 0.80 0.9913 1.0000 1.0000 0.9503 0.9991 1.0000 0.6974 0.9388 0.9787
0.15 : 0.85 0.9697 1.0000 1.0000 0.9063 0.9957 0.9996 0.6086 0.8725 0.9472

Comparison of Power for ICC = 0.01 and Effect Size = 1, 0.8, & 0.5 
  ICC = 0.01 & ES = 1.0 ICC = 0.01 & ES = 0.8 ICC = 0.01 & ES = 0.5 

Ratio 200 500 800 200 500 800 200 500 800 
0.25 : 0.75 0.9984 1.0000 1.0000 0.9620 1.0000 1.0000 0.7544 0.9929 0.9999
0.20 : 0.80 0.9990 1.0000 1.0000 0.9871 1.0000 1.0000 0.7680 0.9859 0.9989
0.15 : 0.85 0.9958 1.0000 1.0000 0.9658 1.0000 1.0000 0.6737 0.9557 0.9941
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 Aggregate data presented in Table 6 exhibits level-1 power estimates for sample sizes of 200, 500, and 
800 with three sampling ratios, four intraclass correlations, and three effect sizes for a total of 108 mean 
power estimates. Cohen (1988) suggests aggregate power estimates at or above .80 that possess adequate 
magnitude to ensure research integrity. Being slightly more conservative, this study considered power 
estimates that were less than .85 to possess inadequate magnitude to ensure research integrity.  
  Counting the number of estimates that fell below the selected value, the results indicated that increasing 
the width of the three sampling ratios has the effect of lowering the estimated power in most cases. For 
each sample size in the last three columns of Table 6, the aggregate estimated power reduced as the 
breadth of the three sample ratios increased. For example, within the column of sample sizes = 200, 42% 
of the power estimates were below .85. 
 

Table 6. Aggregated Estimated Power 
Levels of 

Proportionally 
Unbalanced 

Data 

Intraclass 
Correlations of 
Level 2 Units 

Effect 
Size 

Aggregate  
Level-1 Power  

N = 200 

Aggregate  
Level-1 Power  

N = 500 

Aggregate  
Level-1 Power  

N = 800 

0.25 : 0.75 

0.2 
 

1 0.9663 0.9943 0.9994 
0.8 0.8684 0.9598 0.9932 
0.5 0.6266 0.7886 0.9017 

0.1 
 

1 0.9942 0.9998 1.0 
0.8 0.9602 0.9967 0.9999 
0.5 0.7370 0.8733 0.9703 

0.05 
 

1 0.9937 1.0 1.0 
0.8 0.9829 0.9996 1.0 
0.5 0.7100 0.9522 0.9938 

0.01 
 

1 0.9985 1.0 1.0 
0.8 0.9620 1.0 1.0 
0.5 0.7544 0.9929 0.9999 

0.20 : 0.80 

0.2 
 

1 0.9066 0.9885 0.9964 
0.8 0.8246 0.9569 0.9762 
0.5 0.6181 0.8016 0.8555 

0.1 
 

1 0.9704 0.9991 0.9999 
0.8 0.9007 0.9910 0.9983 
0.5 0.6475 0.8840 0.9294 

0.05 
 

1 0.9913 1.0 1.0 
0.8 0.9503 0.9991 1.0 
0.5 0.6974 0.9388 0.9787 

0.01 
 

1 0.9991 1.0 1.0 
0.8 0.9871 1.0 1.0 
0.5 0.7680 0.9859 0.9989 

0.15 : 0.85 

0.2 
 

1 0.8522 0.9660 0.9886 
0.8 0.7469 0.9328 0.9539 
0.5 0.5471 0.7154 0.7969 

0.1 
 

1 0.9357 0.9956 0.9992 
0.8 0.8274 0.9725 0.9919 
0.5 0.5561 0.7878 0.8799 

0.05 
 

1 0.9697 1.0 1.0 
0.8 0.9063 0.9957 0.9996 
0.5 0.6086 0.8725 0.9472 

0.01 
 

1 0.9958 1.0 1.0 
0.8 0.9658 1.0 1.0 
0.5 0.6737 0.9557 0.9941 
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Additionally, comparing samples of 200, where the 
unbalanced levels are measured at 0.25:0.75, 33% of 
the power estimates fell below .85. At 0.20:0.80, 
42% of the power estimates fell below .85 and at 
0.15:0.85, 50% of the power estimates fell below 
.85. This effect is more pronounced for the smaller 
sample size of 200. The majority of the scenarios 
with sample sizes equal to 500 and 800 produced 

smaller comparative power differences (see Table 7). In the 108 possible power estimates, five (4.6%) 
exceptions to the decreasing pattern are seen where contrary to every other estimate, the power increases 
slightly.  
 

Implications 
  The cost of utilizing larger sampling techniques to ensure model adequacy may not meet the challenges 
of today’s dwindling budgets. “Doing more with less” would be the preferred method despite the mixed 
messages inferred from previous research. For example, Bassari (1988) estimates detection of cross-level 
effects with sufficient power needed at least 30 groups with 30 participants per group or a total sample of 
900. Kreft and De Leeuw (1998) (as cited in Heck & Thomas, 2000) found groups as low as 20 were 
sufficient to determine cross-level effects (i.e., with a total sample size of 600). The results of the present 
study can help to update educational researchers concerning the recommended sample sizes needed to 
achieve adequate power when utilizing unbalanced sampling in multilevel models.  
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Table 7. Number & Percentage of Power  
Estimates < 0.85 for Unbalanced Sample Schemes 

Levels N = 200 N = 500 N = 800 
0.25 : 0.75 4 (33%) 1(8%) 0 (0%) 
0.20 : 0.80 5 (42%) 1(8%) 0 (0%) 
0.15 : 0.85 6 (50%) 2 (17%) 1 (8%) 
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APPENDIX 
SAS Program for Simulating Outcome Variables and Estimating Power 

The following is the SAS code for running the simulation that produces 10,000 outcome variables for 
each designated case then takes these outcome variables through SAS PROC MIXED procedure to 
estimate power for each set of sampling ratios. Note: Intraclass correlations and effect sizes must be 
defined as fractions, not decimals or the program will cease to run. 
 

/** Generate unbalanced two-level data **/ 
%let icc=1/100; *intraclass correlation coefficient; 
%let g1=2; *number of classes in treatment group 1; 
%let g2=10; *number of classes in treatment group 2; 
%let n1=20; *number of subjects/class in treatment group 1; 
%let n2=16; *number of subjects/class in treatment group 2; 
%let ti=2; *number of treatments.  DO NOT CHANGE THIS VALUE.; 
%let es=1; *effect size; 
%let se=1; *standard deviation of individuals (level 2); 
%let iter=10000; *this is the number of times you want the simulation to 
iterate; 
 
*Note: standard deviation of classes is determined computationally by  
 the standard deviation of individuals as well as the effect size.; 
 
title; 
data tests; 
probf=1; 
delete; 
run; 
 
/** Generate Data **/ 
%macro datagen; 
   ods select none; 
   proc iml;  
   icc=&icc; g1=&g1; n1=&n1; g2=&g2; n2=&n2; ti=&ti; se=&se; es=&es; 
   mu=j(ti,1,1); 
   mu[ti]=mu[ti]+es*se; 
   se=1; 
   sd=sqrt((icc/(1-icc))*se*se); 
   y={0 0 0 0}; 
   CREATE datagen From y [colname={trt,class,student,y}]; 
   j=1; 
      do k=1 to g1; 
         z=normal(0); 
         do i=1 to n1; 
            w=rannor(0); 
            y[1]=j;y[2]=k;y[3]=i; 
            y[4]=mu[j]+sd*z+se*w; 
            APPEND FROM y; 
         end; 
      end; 
   j=2; 
      do k=1 to g2; 
         z=normal(0); 
         do i=1 to n2; 
            w=normal(0); 
            y[1]=j;y[2]=k;y[3]=i; 
            y[4]=mu[j]+sd*z+se*w; 
            APPEND FROM y; 
         end; 
      end; 
    
   close datagen; 
   quit; 
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   proc mixed data=datagen; 
      class class; 
      model y=trt; 
      random class; 
   ods output tests3=tests3; 
   run;quit; 
 
   data tests; 
   set tests tests3; 
   run; 
 
   ods select all; 
%mend datagen; 
%macro iterate; 
   options nonotes nodate nonumber;ods results off; 
   %do i=1 %to &iter; 
   %datagen; 
   %end; 
   options notes;ods results on; 
 
   %if &es+0=0 %then %do; 
      title 'This is the simulated value of alpha.'; 
   %end; 
   %if &es+0^=0 %then %do; 
      title 'This is the simulated value of power.'; 
   %end; 
 
data prop; 
   set tests; 
   rejects=probf<.05; 
run; 
 
proc means data=prop mean; 
   var rejects; 
run; 
title; 
%mend iterate; 
%iterate; 
 

 



Lieberman & Morris 

 
36                                                                                           Multiple Linear Regression Viewpoints, 2011, Vol. 37(1) 

Comparing Cross Validated Classification Accuracies  
for Alternate Predictor Variable Weighting Algorithms 

Mary G. Lieberman                         John D. Morris 
Florida Atlantic University 

The present research contrasts the effectiveness of four predictor variable weighting algorithms with 
respect to cross-validated accuracies in classification problems. Ordinary Least Squares Regression 
(OLS), Ridge Regression (RR), Principle Components (PC), and Logistic Regression (LR), are the 
techniques that were contrasted on 24 real data sets in terms of optimizing cross-validated classification 
accuracies. LR was best in only 1 data set, PC was best overall in 16%, RR was best in 8%, and OLS was 
best in 8% of the data sets. 

his investigation contrasts four weighting algorithms for classifying subjects into a priori groups 
based upon classification accuracy. Ordinary Least Squares Regression (OLS), also the same as 
classification using a linear predictive discriminant analysis or in the case of two groups, Fisher’s 

(LDF); Ridge Regression (RR); Principle Components (PC); and Logistic Regression (LR), are the 
techniques that were compared with respect to their cross-validated classification accuracies in real data. 
  In a regression context, Darlington (1978) posited that cross validation accuracy is a function of R2, N, 
VC, where R2 represents the squared multiple correlation, N is the sample size, and VC is defined as the 
validity concentration. In Darlington’s formulation, validity concentration was used to describe a data 
condition in which the principal components of the predictors with large eigenvalues also have large 
correlations with the criterion. Thus, validity concentration requires some degree of collinearity. 
Darlington suggested that the most useful statistical techniques for practical prediction problems, as in 
personnel selection, may be ridge regression and Stein-type regression. These combine the sensitivity of 
multiple regression with the resistance to sampling error of other techniques—notably rational (clinical) 
weights and weights determined by simple correlations. Darlington stated that the new techniques are not 
recommended for theoretical modeling work because they yield biased estimates of the true least squares 
weights, typically have higher expected squared errors for estimating some weights, and do not allow the 
use of ordinary confidence bands or significance tests. Nevertheless, he recommended the use of ridge 
regression as best for most classification problems. 
  Morris (1982) re-examined the performance of ridge regression from a different methodological 
perspective using the same data structures on which Darlington (1978) demonstrated the technique's 
superiority. Contrary to Darlington's suggestions, Morris (1982) found that ridge regression was never the 
most accurate prediction technique, although least squares weights, as well as all of the other non-least-
squares techniques, were most accurate in some data configurations.  
  Further, Morris (1983) examined Darlington's (1978) suggestion to utilize a “shrunken inter-correlation 
matrix” as the input to an ordinary stepwise regression program to accomplish a stepwise ridge regression 
solution. The algorithm that Darlington suggested calculates the portions of predictable criterion variance 
attributable to ridge weighted variable subsets incorrectly, causing inappropriate predictor variable 
subsets to be selected. An alternate stepwise ridge regression procedure is suggested by Morris (1983).  
  Through simulation, Morris (1982) showed that as R2 decreases, N decreases, and the VC increases, 
Ridge Regression becomes better than Ordinary Least Squares but, as well, Reduced Rank, Equal 
Weighting, and other techniques become better than Ridge. In several studies, Morris (1982) and Morris 
and Huberty (1987) found that the performance of Ridge Regression was inferior to that of Ordinary 
Least Squares, Principal Components, Reduced Rank, and Equal Weighting in all but a few data 
structures. 
 In fact, there is some evidence that cross-validated R2 becomes better with increased VC, even better 
than the R2 of OLS at low VC. Because Validity Concentration requires collinearity, the interest might be 
in examining whether collinearity can, under some circumstances, be helpful to prediction. The present 
research seeks to contrast Logistic Regression, as a popular classification technique frequently proffered 
in the literature, with the prior three methods examined in Morris and Huberty (1987). 
 

T
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Method 
  A similar comparison (Morris & Huberty, 1987) examined only the OLS, RR, and PC methods. Logistic 
Regression will expand that coverage. Twenty four real data sets with varying degrees of group 
separation were analyzed using these four methods to ascertain differences in classification accuracies. 
All predictor weighting algorithms were cross validated using the Leave-One-Out technique. This 
algorithm is executed by alternately predicting each subject’s group membership from the equation 
generated from the predictor and criterion scores of all other subjects. The resulting hit-rate over all 
subjects serves as a criterion for cross-validation accuracy.  
 

Results 
  The present research seeks to expand upon prior work investigating the effects of three weighting 
algorithms on classification accuracies: OLS, Ridge, and PC. In those simulation studies, all methods 
performed better with increasing sample size, larger population multiple correlations, and large degrees of 
group separation. OLS performed better with smaller levels of validity concentration. As VC increased, 
the performance of Ridge Regression was superior, and, at very high levels of VC, Principal Components 
Regression was superior. It is salient to note that in larger samples, this trend was delayed (Morris & 
Huberty, 1987). Overall, non-OLS methods performed best, or with increased accuracy, in small samples. 
It should also be noted, however, that even at high levels of VC, and with significant differences in 
classification accuracies, the differences were often small (Morris & Huberty).  
  The finding with real data mirrored the simulation results, but with the focus on contrasting results for 
specific data sets; not a general contrast of methods. Table 1 reflects the results of the contrast in cross-
validated hit rates for 24 real data sets with varying degrees of group separation, numbers of subjects, 
variables, and data co-variance matrices. As can be seen, LR, the additional method being contrasted, is 
not present in the first 3 data sets. Overall, LR is best in only 1 data set (i.e., # 15 Block 3 & 4). It is tied 
with other methods in 6 (29%) of the data sets. It is second best in 7 (29%) of the data sets, third in 2 
(13%) of the data sets, and worst in 5 (21%) of the data sets. In two of these data sets (i.e., #6 Bisbey 1 & 
2 and # 10 Rulon 1 & 3), LR performed the worst of all four of the methods. All methods performed 
equally well at a 79% hit rate in the #9 Demographics #2 data set. PC was best overall in 4 (16%) of the 
data sets and tied for best in 3 (13%) of the data sets. RR was best overall in 2 data sets (8%) and tied for 
best in 8 (33%) of the data sets. Finally, OLS was best overall in 2 (8%) and tied for best in 8 (33%) of 
the data sets.  
 

Discussion 
 To summarize, the present research contrasted four predictor weighting algorithms: Ordinary Least 
Squares Regression, Ridge Regression, Principle Components, and Logistic Regression. The purpose of 
the study was to enhance researchers’ methodological toolbox with the most accurate methods for 
selecting predictor variable weights in a cross-validated context. Subsequently, the weights chosen should 
yield greater classification accuracy for specific real data sets under investigation.  
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Table 1. Prediction Methods' PRESS Performance: Proportion of Hits 
# Data Set Source    Method 
    D k N/p OLS Ridge PC LR 
1 Fisher 1 & 3 13.97 0.001 100/4 1.00 1.00 1.00  
2 Fisher 1 & 2 10.16 0.002 100/4 1.00 1.00 1.00  
3 Bisbey 1 & 3 5.12 0.033 72/13 0.97 0.97 0.92  
4 Fisher 2 & 3 3.77 0.012 100/4 0.97 0.97 0.81 0.97 
5 Rulon 1 & 3 2,93 0.010 152/3 0.93 0.93 0.91 0.91 
6 Bisbey 1 & 2 2.89 0.071 116/13 0.89 0.89 0.87 0.88 
7 Bisbey 2 & 3 2.41 0.099 118/13 0.89 0.87 0.87 0.89 
8 Talent 3 & 5 1.97 0.164 127/14 0.79 0.79 0.79 0.80 
9 Demographics #2  1.88 0.034 279/8 0.79 0.79 0.79 0.79 

10 Rulon 2 & 3 1.87 0.023 159/3 0.83 0.84 0.84 0.82 
11 Rulon 1 & 2 1.74 0.022 179/3 0.81 0.81 0.80 0.80 
12 Talent 1 & 5 1.72 0.116 177/14 0.75 0.75 0.72 0.73 
13 Demographics #3 1.36 0.064 279/8 0.73 0.72 0.66 0.74 
14 Talent 1 & 3 0.89 0.839 116/14 0.62 0.70 0.70 0.62 
15 Block 3 & 4 0.85 0.307 76/4 0.67 0.67 0.58 0.69 
16 Block 1 & 2 0.84 0.308 77/4 0.66 0.67 0.69 0.66 
17 Block 1 & 4 0.81 0.325 78/4 0.58 0.59 0.55 0.58 
18 Block 1 & 3 0.74 0.387 78/4 0.62 0.60 0.58 0.60 
19 Warncke 1 & 3 0.69 0.950 105/10 0.61 0.58 0.59 0.61 
20 Block 2 & 3 0.64 0.550 75/4 0.55 0.55 0.59 0.55 
21 Block 2 & 4 0.52 0.814 75/4 0.59 0.59 0.64 0.59 
22 Demographics #1 0.50 0.477 279/8 0.59 0.58 0.57 0.58 
23 Warncke 1 & 2 0.48 1.749 112/10 0.47 0.54 0.58 0.48 
24 Warncke 2 & 3 0.45 2.635 87/10 0.41 0.46 0.43 0.42 

 
 


