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IMPORTANT NOTICE

The meeting times for the SIG in Multiple Linear Regression at the AERA

Convention in Chicago have been changed to Friday, April 7. (They have

been incorrectly listed as being on Wednesday in the AERA announcements).

The two letters following this notice will give more details on the SIG

activities.
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Memo from Koplyay and Bottenberg, AFHRL/PH 8 Mar~ch 1972
John D. Williams, University of North Dakota
Earl Jennings, University of Texas
Samuel R. Houston, University of Northern Colorado
Keith A. McNeil, Southern Illinois University

SUBJECT: SIG/Multiple Linear Regression

1 . The SIG/MLR meetings have been rescheduled. Even though I had
made careful arrangements to have the meetings on Friday, 7 April,
they have been erroneously scheduled into the program for Wednesday,
5 April.

2. The correct meeting information is as follows:

Friday, April 7, 9:00 - 10:30 Session #27.5
Boardroom (La Salle)
Multiple Linear Regression Applied to
Automatic Interaction Detection and
to the Analysis of Covariance, Residual
Gains and Gain Scores

Friday, April 7, 10:45 - 12:15 #28.21
Boardroom (La Salle)
Business Meeting

3. I assume that all participants will be available on Friday
morning, 7 April. I will contact everyone on Thursday for last
minute details. Try to have hard copy handouts for your
presentation rather than just talk. If you need other equipment,
let me know.

JOE H. WARD, JR.
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SouthernIllinois
University at Carbondale

CARBONDALE, ILLINOiS 62901

Department of Guidance and Educational Psychology

March 8, 1972

Dear SIG:MLR Members:

Block out 9:00-12:15 on Friday, April 7, for SIG:MLR activities.
AERA Sessions 27.5 and 28.21 will both be held in the Boardroom of the
La Salle Hotel. In our Business Meeting at 10:45 we will be electing
a new President and a new Secretary/Treasurer. Discussion of the format
of VIEWPOINTS and the paper sessions will also be in order. Frankly, I
feel that we haven’t made optimal use of the inexpensive communications
of ideas afforded by VIEWPOINTS and John Williams’ editorial contributions.

Your treasurer, Bill Connett, has become burdened with an excess
balance. We have decided to solve his problem by liquidating some of
the funds in a Social Hour immediately following the Business Meeting.

Several other sessions may be of interest to SIG:MLR members:
5.10; 5.11; 7.09; and 21.12. See you at AERA.

Keep regressing,

A.Keith A. McNeil



A Suaested Format for the presentation

of ~ulticie Linear Reuression

Isadore Newman

University of Akron

An arguement that has been nresented by researchers who prefer

to use analysis of variance (AyoV) over multiple r earession analysis

is that AMCV is easy to nrcsent and has established a standard Sum

of Squares table. This table is familiar to anyone who has read the

educational and psycholo~iccl llterature end because of its common

use there has been less arnbiauityrep~ardine the symbols used and

interpretation of the table0

On the other hand, multiple regression, when presented in the

literature, has always been formated in cc idiosyncratic manner0

In addition0 the format rarely precents all the relevant information

in a concise, easy to inspect manner, Instead, one tends to find

himself t}-iurnhin~ through paaes of the article to find the relevant

information,

Table is an examcle of a format T~Thicb I would like to suR~est

as a somewhat standard form for the presentatton of multiple reCressic?n

models and the Information required. for their interpretation. The

example chosen is from an unpublished dissertation by 1~ Newman (i971)

This example may be somewhat lon~er than one someone would ceneraily

find, it therefore required cc additional teble, as stated in the

table footnote0 to explain the variables, In a smaller table, the

variable explaination can he presented in a footnote at the bottom

of the table0

1 first saw somethinc very similar to this in a dittoed paper

by Somirers0 et a?, ~P, L~i t~ero Yllinoi q v~ ~v
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I would apiwec’.ate any con:ients rrrcardtng the sugitested format

fo~ the presentation of multiple r~wvesston and T would also

ap~eciate any sus’peste4modification tnat would enhance our

ability to communicate multiple re~’rez’sion output in the most concise

and easily interpretable form.

References

NeWman, I. A multivartate aDnroach to the constriction of an attitude
battery. Unpublished doctoral dissertation, Southern Illinois
Universtty, 1Q71.
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THE USE OF FACTOR REGRESSIONIN DATA ANALYSIS

William E. Connett, Samuel R. Houston, and Dale G. Shaw

The educational researcher is often faced with preliminary sample data in which
well—defined models or reasonably clear hypotheses dealing with interrelations between
variables are lacking. His purpose at this point in time is to suggest interpretations
that may be put to the test in later studies. Hence, the problem is exploratory, as
opposed to descriptive or cause-effect, research; it is particularly associated with
massive input-output research efforts in educational settings.

This paper describes a strategy for analyzing the relation between a dependent
variable and a set of independent variables when the latter are not necessarily amenable
to standard statistical treatment. This problem arises, for example, when our full
regression model contains in the set of independent variables several variables which
are highly intercorrelated. This is usually addressed as the problem of multicollin-
earity. Rather than give up on estimation procedures by classical regression methods,
the educational researcher is encouraged to explore the possibilities of a principal
components regression analysis or what we choose to call factor regression.

THE FACTORREGRESSIONPROCEDURE

The problem is to express the criterion variable as a function of a set of
independent variables in which the intercorrelations between the various independent
variables is near zero. The procedure involves restructuring the full regression
model in such a way that the criterion variable is expressed as a function of several
mutually orthogonal factor variables. This principal components-regression approach
permits one then to investigate the unique contribution of each of the factor variables
to explaining the dependent variable. For a detailed discussion of generating the
restructured full regression model, see Massy (1965).

Obtaining factor scores

The procedure begins with the complete orthogonal factoring of the set of m
predictors into an m X m factor matrix. For the sake of interpretation, this factor
matrix may be rotated, but only with a rotation, such as Varimax, which preserves
orthogonality. The next step is to standardize the predk~4or scores for each predictor
variable. This matrix of standard scores is then postmultiplied by the factor matrix
to obtain the factor scores.

The factor score matrix is orthogonal which means that the matrix of intercorrel-
ations among the factor scores should be the identity matrix. Also, since the original
predictor set was converted to z-scores, the means for the factor scores are all zero
and the standard deviations are equal to the indices of factorization for the factors.

The regression model

If a regression model is cast, regressing some criterion variable onto the set
of factor score predictors, several interesting properties are note9. The beta weight
for a predictor is equal to the validity for that predictor. The R value for any
model is equal to the sum of the squares of the beta weights for the model. The ex-2
clusion of a factor score variable from the predictor set will result in a drop in R
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equal to the square of the beta weight for the variable dropped. And, perhaps most
ijnportant, the dropping of any predictor variable from the predictor set will not affect
the beta weights (predictive contribution in this case) of any of the other variables.
These properties are demonstrated in the following example. Slight discrepancies are
attributed to rounding errors.

THE EXAMPLE

For each of the 120 college students 8 measures were obtained from their high
school. and college records. These 8 variables are described below.

Criterion variable (Y)

Fhe last recorded college cumulative grade point average computed on a 4.0
scale was used as each student’s criterion score.

The Predictors were:

L. A fluctuation score indicative of the variance of a student’s high school grades.

2. The actual variance of high school grades computed as the average of the sum
of the squares of deviations about the mean.

3. An adjusted variance score based on the actual variance score.

4. The student’s high school GPA based on all high school courses.

5. The CPA based on only high school English, Social Science, Natural Science,
and Mathematics grades.

6. The score made on the ACT test before admission to college.

7. The high school rank of each student within his graduating class.

Table 1 contains the varimax factor solution for the predictor set of 7 variables
with the associated indices of factorization. Communalities were set equal to 1.00
and 7 factors were extracted to provide a complete factoring of the predictor set.

The varimax solution provided a simple structure which was easily interpreted.
Factor 1 loaded highly on CPA measures, factor 2 on variance measures, and factor 3
on the ACT score. The remaining factors were interpreted as decomposition factors
which broke down previous groupings of predictors.
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TABLE 1

VkRIMAX FACTOR SOLUTION

VAR. NO, 1 2 3 4 5 6 7

1 -.08 .43 -.05 .90 -.01 .00 .00
2 - .28 .86 -.13 .35 .01 .22 .00
3 .10 .96 -.08 .20 -.01 -.13 .00
4 .98 -.04 .09 -.07 .04 -.03 .11
5 .98 - .07 .13 - .06 .04 - .01 - .11
6 .15 - .12 .98 - .04 .02 -.01 .00
7 .78 -.01 .07 -.03 .62 .00 .00

INDEX 2.66 1.87 1.02 .98 .38 .07 .03

TABLE 2
SUMMARYSTATISTICS FOR THE FACTOR SCORES

FACTORNUMBER MEAN STD. DEV. VALIDITY

1 0.00 2.66 0.52
2 0.00 1.87 0.11
3 0.00 1.02 -0.11
4 0.00 0.98 -0.10
5 0.00 0.38 0.03
6 0.00 0.07 0.10
7 0.00 0.03 0.07

The factor scores were then computed by post-multiplying the standardized raw
predictor scores by the factor matrix. Table 2 contains the means, standard deviations,
and validities for the 7 factor scores. Note that the standard deviations are
identical to the indices of factorization reported in Table 1 and also that the
largest validity is of course for the first factor since both the criterion and first
factor score are CPA measures.

TABLE 3
INTERCORRELATIONSBETWEEN FACTOR SCORE VARIABLES

VAR.NO. 1 2 3 4 5 6 7

1 1.00
2 - .01 1.00
3 .00 - .01 1.00
4 .00 .00 - .01 1.00
5 .00 .00 .00 .02 1.00
6 .00 .00 .00 . .00 - .01 1.00
7 .00 .00 .00 .. 00 ..~OO -.04 1.00
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The matrix of intercorrelations between the factor scores is given in Table 3. Observe
that the matrix is not quite a perfect identity matrix. This fact in connection with the type
of iterative technique used to obtain the beta weights leads to slight discrepancies in the
regression analysis.

The RSQ for the full model with all factor score variables included in the predictor
set was .3236. This was identical to the RSQ obtained for the model in which Y was
regressed onto all of the raw predictor variables as one would ~have done in a usual regression
analysis. This indicates that the factor scores retain all of the information useful in
a regression analysis possessed by the raw predictor scores when the factoring is done
comp I e t ely.

TABLE 4
SUMMARYDATA FROMREGRESSION ANALYSIS

(1) (2) (3) (4)

VAR. RSQ

1 .5245 .2751 .0489 .2747
2 .1102 .0121 .3113 .0123
3 - .1107 .0123 .3112 .0124
4 - .0987 .0097 .3138 .0098
5 .0344 .0012 .3224 .0012
6 .0988 .0098 .3139 .0097
7 .0717 .0051 .3185 .0052

Columns 1 and 2 in Table 4 are the beta weights and their squares obtained for the
full model for the factor scores. Column 3 gives the RSQ value for the restricted model with
the variable in that row removed from the predictor set. An entry in column 4, then is the
drop in RSQ from the full model to the indicated restricted model which gives an indication
of the unique contribution of that factor score to the prediction of the criterion. Note that
columns 2 and 4 are almost identical supporting the premi~ that the drop in RSQ is equal to
the square of the beta weight for the variable dropped.

Since the factor scores are orthogonal their intercorrelations are all zero. As soon as
one computes the validities for the factor scores he is essentially done since the beta
weights to be determined in the regression analysis are simply the validities. The RSQ
value then for a model using any subset of the factor scores is simply the sum of the squares
of the validities for those factor scores included in the predictor set.

SUMMARYCOMMENTS

Regression upon principal components appears to be worthwhile during the exploratory
phases of empirical research. It permits a systematic analysis of data in situations where
the problem of multicollinearity would otherwise make data analysis quite difficult. As
Massy (1965) has indicated, these procedures are not a substitute for the long established
principals of statistical inference, those being hypothesis building and testing; rather,
the procedures discussed here provide the data organization preliminary to hypothesis
development and testing.

REFERENCES

Massy, W.F. Principal components regression in exploratory statistical research.
American Statistical Association Journal, 1965,60,234-256.
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