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ON PAYING DUES

The SIG on multiple linear regression may be the only organization

in the U. S. to lower its dues. Previously, the dues have been $2.00.

For the year 1972, the dues have been reduced to $1 .00. If you have not

already paid your 1972 dues, send your dollar to either Bill Connett,

The University of Northern Colorado (Greeley) or ~JudyLyon, CIRCE (St.

Louis). This issue is being sent to several people who have not yet

paid their 1972 dues and other likely members, in addition to being sent

to paid up members.

WRITING FOR VIEWPOINTS

Every member of the SIG is encouraged (pleaded?) to make a written

contribution to ~ Preference is given to the short papers

(one, two, three or four pages, typewritten).

Also, members are encouraged to send in lists of publications in

multiple linear regressions, There will be some attempt by the SIG to

put together one or more books of readings on multiple linear regression.

Your thoughts and contributions are sincerely encouraged. Send $1.00 a

page directly to the editor when you send in your contributions to

Viewpoints. Get those papers rolling
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A COMPARISONOF RAWGAIN SCORES, RESIDUAL GAIN SCORES,
AND THE ANALYSIS OF COVARIANCE

WITH TWOMODES OF TEACHING READING

John D. Williams Roger T. Maresh
The University of North Dakota Rockwood School District

James 0. Peebies
University City, Missouri Public School System

The measurement of change has been seen to be one of the most difficult

issues in psycho-educational research (Harris, 1963). Several different

solutions have been proposed, arid almost simultaneously, have been criticized.

When pre and post-testing have taken place, an intuitively pleasing approach has

been the use of raw gains (that is, the post’~test score minus the pre-test score

for each subject). The use of this measure has been severely criticized.

Ruch (1970) has indicated his displeasure with gain scores because of their

disregard for the psychology of learning, Because learning, in its latter phases,

is often characterized by a negatively accelerated curve, those students who

enter an experiment with more practice in the skill or concept being tested will

be handicapped by the gain score approach. The student who has a smaller amount

of prior practice enters the experiment during the initial phase of learning,

which will allow him to be in a period of rapid acceleration in regard to measured

learni ng.

A common approach to the problem of measuring change when a pre and post-

test have been used is the analysis of covariance, The analysis of covariance

is often used when the assignment of subjects to an experiment has been made on

some basis other than strict randomization. The analysis of covariance takes

into account the correlation between the pre-~test and the post-test. More specif—

i cal ly, it is hel pful to look at the process of the analysis of covari ance as it
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can be generated through the use of. linear models. Because the present appi 1-

cation is concerned with two modes of instruction, one mode being the vertically

grouped method of teaching reading, and the second method being the more typical

graded method of teaching reading, and because-a pre- and-post-test are being

used, the linear models developed here will represent that specific situation.

First, a full model can be defined. A full model is essentially a model

that contains all the information relevant to the data analysis. For this

specific situation, the full model is:

V = b0 + b1X1 + b2X2 + e1, (1)

where

V = the post-test score,

X1 = the pre-test score,

= 1 if the score is from a menter of the vertical group; 0 otherwise,

b0 = the V-intercept,

b1 = the regression coefficient for X,

b = the regression coefficient for X , and
2 2

e1 the error in prediction with the full model.

If this model is solved using a multiple linear regression computer pro-

granring routine, part of the output includes the multiple correlation coeff-

icient (R). For the present usage, since a full model is being used, the R

value found from the use of equation 1 will-be labeled R~.

Similarly, a restricted model can be developed, using the pre-test as the

predictor variable:

Y=b0+b1X1 ~e, (2)
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where

Y the post-test score,

= the pre-test score,

b0 = the Y-intercept (the b0 value for equation 2 will , in general , be

different from the b0 value in equation 1),

b1 = the regression coefficient for X (again, the b value for equation 2

will, in general, be different from the b1 value found in equation 1),

and

e the error in prediction with the restricted model.
2

The restricted model will also yield an R value, and it will be labeled R
RM

The F test for the analysis of covariance is given by:

F=(R2 -R2 )/i

FM RM

(l-R2 )/N-3 (3)

This F test is specific for this situation. A more general F test would be

given by:

F = (R2FM - R2RM)/(k - 1)

2 (4)

(1 - R FM~~- C - k)

where

k is the number of groups,

N is the number of subjects, and

C is the number of covariates.

It is also possible to find adjusted means for the analysis of covariance.

DuBois (1957, 1970) has worked extensively with the residual gain analysis.

Essentially, the residual gain analysis can be conceptualized as a part correlation

between the group membership variable(s) and the residual in the post-test data
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when using the pre-test as the predictor. As a model, this can be accomplished

easily in two stages with an ordinary multiple regression program. The first

niodel is:

Y = b0 + b1X1 + e, (5)

where

V = the post-test score,

= the pre—test score,

b0 = the V-intercept (the value for b0 in equation 5 will, in general , be

different than previously defined b0 values),

b1 = the regression coefficient for X1 (the value for b in equation 5 will

in general, be different than previously defined b values), and

e the error in prediction for this model -

3
The focus in the residual gains analysis is on the residual errors (e) for each

subject. These residual errors become the criterion scores, and the group

membership variable(s) are used to complete the residual gain analysis. The

model is as follows:

V = b + bX + e4, (6)

where

V’ = the residual errors found from the use of equation 5,

= 1 if the score is from a member of the vertical group; 0 otherwise,

b the Y-intercept (the b0 value in equation 6 will , in general, be

different than the previous b values),

b = the regression coefficient for X (the b value in equation 6 will,
2 2 2

in general, be different from the b value in equation 2), and

e = the error in prediction for this model -

The use of the residual gain analysis has been based upon the following

considerations: the residual gain scores will be uncorrelated with initial



status, whereas it can be expected that the raw gain scores will show a negative

correlation with initial states; whenever all subjects do not start at a common

point (so that the methods of common points of mastery could not be used), the

residual score nevertheless:

1. can be defined precisely and accurately,

2. the residual does not require the use of a ratio scale to measure

initial and final states, and

3. higher ordered residual gains can be found.

Carver (1970) has compared the residual gain analysis to the method of common

points of mastery, initially proposed by Ruch (1936). Conceptually, both of

these measures were employed to overcome the difficulties involved with the raw

gain scores. Employing both methodologies on empirical data, Carver was able to

find only moderate correlations between the measures.

Subjects

The subjects for this study included 165 students in 8 rural North Dakota

schools. All the students were enrolled in learning situations where the

instructor was an intern (or in some cases, graduates) from the New School of

the University of North Dakota, an experimental program funded by the United

States Office of Education. The vertically grouped subjects were those students

who were enrolled in a classroom setting that allowed a non-graded approach to

instruction in several areas. Thus, the reading instruction took place in a

homogeneous group rather than an age (or graded) group. The second group of

students received their reading instruction in a graded group (i.e., Grade Four,

Grade Five, etc). The grade levels involved were Grades Two through Grade Six.

Method

Two instruments were administered on a pre and post-test basis. Pre—tests

were administered in October, 1970, and post-tests were administered in May,
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1971. The vocabulary and comprehension sections of the California Reading Test

(Tiegs and Clark, 1957) was used at all five grade levels. The Attitudes Toward

Reading Inventory (Hunt, 1961) was used with grades four, five, and six.

The Attitudes Toward Reacj gjnventory~ has two subtests, Attitudes Toward Reading,

and Attitudes Toward Reading Class.

Results

Tables 1-6 show the analysis of the data. Each table includes means for

the pre-test and post-test, adjusted means, raw gain, and residual gain for the
2

two modes of instruction in reading. Included also are the F values, R, R , and

SST (Sum of Squares Total) for each analysis. This method of presentation is

used for economy of space arid to allow for eese in comparing the different results.

Actually, a summary table could be generated for all five different sets of data

analyses. In the following tables the R value is the correlation between the

dichotomous predictor (group membership) and the criterion scores, with the

exception of the analysis of covariance (illustrated here under the name adjusted

means), which is completed as it was described earlier. While there are different

approaches to measuring the strength of relationships with dichotomous information,
2

using Walberg’s (1971) approach, the R value is interpreted as being the amount

of criterion variance accounted for by group membership. Also included in each

table is some indication of significance. There is a slight discrepancy with

the analysis of covariance (adjusted means) and the residual gains analysis.

The degrees of freedom for the analysis of covariance and the residual gains

analysis in this situation will actually be one less than the degrees of freedom

listed under each table. In that no interpretations are changed in the present

situation in regard to the differences in degrees of freedom, that slight

difference in degrees of freedom is not indicated in the tables.
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TABLE 1

SUMMARYDATA RELATING TO SECOND GRADE VOCABULARYSCORES

Vocabul~y~~ores- Grade 2 (N =35)

Pre-test Post-test Adjusted Mean Raw Gain Residual Gain

Critical value for significance at .05 level with df 1 , 33 is 4.14.
Critical value for significance at .01 level with df = 1 , 33 is 7.47.

TABLE 2

SUMMARY DATA RELATING TO THIRD GRADE VOCABULARY SCORES

Vertical Group

- Grade 3 (N= 48)

Mean Raw Gain

.603

Residual

-.049

GainPre-test Post-test Adjusted

3.667 4.270 4.300
Graded Group 3.789 4.483 4.433 .694 .082

F = t2 .701 2.246 1.537 .603 1.512
R .123 .216 Full .688 .114 .180

2
R

Rest .675
.015 .047 Full .473

Rest .456
.013 .032

SS
T

11.192 11.000 5.989 7.212 5.988

Vertical Group 2.359 3.194 3.229 .835 -.022
Graded Group 2.611 3.306 3.273 .694 .021

F = 1.840 .695 .119 .581 J12
R .230 .144 Full .392 .132 .059

2 Rest .388
R .053 .021 Full

Rest
.154
.151

.014 .003

SS 10.535 5.267 4.475 10.022 4.474
T

Cri ti cal val ue for
Critical value for

significance at .05 level with df 1, 46 is 4.05.
significance at .01 level with df = 1, 46 is 7.21.
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TABLE 3

SUMMARYDATA RELATING TO FOURTH GRADE VOCABULARYSCORES

Vocabu1ar~’ Scores -Grade4(N=37)

Pre—test Post-test Adjusted Mean Raw Gain Residual Gain

Vertical Group
Graded Group

F=t
R

2
R

sS

5.244
4.986

1.161
.179

.032

5.900
r
0.0/

.005 1.328

.012 Full .771
Rest .761

.001 Full .594
Rest .579

14.015

.656

.890

1.290
.189

-.134
.102

1.283
.191

.036

Critical value
Critical value

for significance at .05 level with df
for significance at .01 level with df

=T. 35 i’s 4.12.
= 1, 35 is 7.42.

TABLE 4

SUMMARYDATA RELATING TO FIFTH GRADE VOCABULARYSCORES

Vertical Group
Graded Group

F = t2

R
2

R

SS
T

Scores - Grade 5 (N = 27)

Mean Raw Gain

.700
.518

.869

.183

.033

6.234

Residual GainPre-test Post-test Adjusted

5.880 6.580 6.536
5.800 6.318 6.344

.064 .599 .954

.050 .153 Full .829
Rest .821

.003 .023 Full .687
Rest .674

15.816 18.534 6.038

.120
—.071

.952

.195

.038

6.038

Critical value for significance at .05 level with df = 1 , 25 is 4.24.
Critical value for significance at .01 level with df = 1, 25 is 7.77.

2

5.748
5.992

T
18.829 33.243 14.016 14.014
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TABLE 5

SUMMARY DATA RELATING TO SIXTH GRADE VOCABULARYSCORES

~ula~cores_-Grade 6(N = 28)

Pre-test Post-test Adjusted_Mean Raw Gain Residual Gain

Vertical Group 6.356 7.089 7.162 .774 .033
Graded Group 6.479 7.147 7.113 .669 -.016

2
F = t .153 .027 .044 .079 .045
R .077 .032 Full .771 .055 .042

Rest .770
.006 .001 Full .594 .003 .002

Rest .593
ss 15.847 20.297 8.248 8.507 8.248

T

~TEical value for significance at .05 level with df = 1 , 26 is 4.22.
Critical value for significance at .01 level with df 1 • 26 is 7.72.

TABLE 6

SUMMARY DATA RELATING TO SECOND GRADE COMPREHENSIONSCORES

Comprehension Scores- Grade 2(N= 35)

pre-test Post-test Adjusted Mean Raw Gain Residual Gain

Vertical Group 2.047 3.094 3.216 1.047 .057
Graded Group 2.550 3.194 2.079 .644 -.054

2
F = t 793** .318 .594 4,8~18* .478

.440 .098 Full .481 .358 .121
2 Rest .466

.194 .010 Full .231 .128 .015
Rest .217

SS 11.419 9.228 7.226 11.084 7.225
T

~nificant at .05 level. Critical Va] Ue for Signi ficance at .05 level
with df = 1, 33 is 4.14.

**Sjgnificant at .01 level. Critical value for significance at .01 level
with df = 1, 33 is 7.47.
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TABLE 7

~prehension Scores - Grade 3(N= 48)

Pre-test Post-test Adjust] Mean Raw Gain Residual Gain

Critical value for significance at .05 level with df=l, 46is 4.05.
Critical value for significance at .01 level with df 1, 46 is 7.21.

TABLE 8

SUMMARYDATA RELATING TO FOURTH GRADE COMPREHENSIONSCORES

~~p~ehension Scores - Grade 4 (N=37J

Pre-test Post-test Adjusted Mean Raw Gain Residual

Vertical Group 5.237 6.244 6.205 1.006 .189
Graded Group 5.176 5.843 5.872 .667 -.144

Gain

F = t2 .046 1.160 2.719 2.847 2.714
R .036 .179 Full .850 .274 .272

2 Rest .837
R .001 .032 Full .723 .075 .074

Rest .701
SS 25.910 45.490 13.616 13.923 13.614

Critical value for significance at .05 level with df = I • 35 is 4.12.
Critical value for ~ienificance at .01 level with df = 1. 35 ~S 7.42.

SUMMARYDATA RELATING TO THiRD GRADE COMPREHENSIONSCORES

Vertical Group 3.678 4.307 4.321 .627 -.035
Graded Group 3.744 4.439 4.415 .594 .058

F = t .203 .890 .696 .308 .693
R .066 .138 Full .624 .082 .123

2
R .004 .019

Rest
Full
Rest

.617

.389

.381
.007 .015

SS 9.548 10.358 6.419 778O 6.419
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TABLE 9

SUMMARYDATA RELATING TO FIFTH GRADE COMPREHENSIONSCORES

~ i on Scores - Gra de5(N=~J

Pre-test Post-test AdjusY~d Mean Raw Gain Residual Gain

Vertical Group 6.330 7.070 6.626 .740 .149
Graded Group 5.394 6.053 6,314 .659 -.087

F = t 8,l24** lO,778** 2.031 .159 1.501
R .495 .549 Full .864 .079 .243

2 Rest .851
R .245 .301 Full .747 .006 .059

Rest .742
SS 22.485 21.617 5.954 6.567 5.952

T

~ftical value for significance at.O5 level with dT1~2~is4.22.
**Significant at .01 level. Criticai value for si~iiificanceat .01 level

with df = 1, 25 is 7.77.

TABLE 10

SUMMARYDATA RELATING TO SIXTH GRADE COMPREHENSIONSCORES

Comprehension Scores - Grade 6 (N =28)

Pre-test Post-test Adjusted Mean Raw Gain Residual Gain

Vertical Group 6.367 7.378 7.512 1.011 .201
Graded Group 6.616 7.274 7.210 .658 -.095

F = t2 .598 .101 2.094 2.746 2.043
R .150 .062 .785 309 .275

2 .765
R .023 .004 .618 .095 .076

.585
SS 16.864 17.138 7.095 7.978 7.097

T

Critic value for significance at .05 level with df = 1, 26 f2~T~2,
Critical value for significance at .01 level with df = 1 , 26 is 7.72.



-13—

TABLE 11

SUMMARYDATA RELATING TO FOURTH GRADE

ATTITUDES TOWARDREADING SCORES

Attitudes Toward Readinq Scores - 0.ade 4 (N 37)

Pre-test Post-test Adjusted_Mean Raw Gain Residual Gain

Vertical Group
Graded Group

2
F=t
R

2
R

SS
T

.114

.057

.003

570.808

.765 .756

.145 Full .706
Rest .698

.021 Full .498
Rest .487

610.105 312.619

.492

.118

.014

356.755

.754

.147

.022

312.615

withdf = 1,35 is 4.12.
Critical value for significance at .Ol level with df = 1, 35 is 7.42.

TABLE 12

SUMMARY DATA RELATING TO FIFTH GRADE
ATTITUDES TOWARD READING SCORES

Vertical Group

Attitudes Toward Reading Scores - Grade5(N = 27)

Residual GainPre-test Post—test Adjusted Mean Raw Gain

26.100 26.700 24.339 .600 .588
Graded Group 21 .412 21.765 23.154 .354 .346

F = t2 6.718* 6.232* .586 .031 .460
R .460 .447 Full .793 .035 .137

2
R

Rest .787
.212 .330 Full .629 .001

Rest .619
.019

SS 653.407 768.516 292.629 306.665 292.626
T

*significant at .05 level. Critical value for significance at .05 level

with df = 1, 25 is 4.24.
Cri ti cal val ue for significance at .01 1 eve] with df = 1 25 is 7.77.

24.50 26.000 25.816 1.500 .490
24048 24.810 24.950 .762 —.374
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TABLE 13

SUMMARYDATA RELATING TO SIXTH GRADE
ATTITUDES TOWARDREADING SCORES

Atti tudes Toward Reading Scores - Grade 6 (N = 28)

Pre-test Post-test Adjusted_Mean Raw Gain Residual Gain

Critical value for significance at .05 level with df = 1 , 26 is 4.22.
Critical value for significance at .01 level with df = 1, 26 is 7.72.

TABLE 14

SUMMARYDATA RELATING TO FOURTH GRADE
ATTITUDES TOWARDREADING CLASS SCORES

Attitudes Toward Reading Class Scores - Grade 4 (N = 37)

GainPre-test Post-test ~4justed Mean Raw_Gain

1.813

Residual

Vertical Group 38.375 40.188 39.450 .103
Graded Group 36.619 37.000 37.562 .381 -.78

F = t2 1.312 2.862 1.474 .847 1.418
R .190 .275 Full .641 .154 .200

2 Rest .621
R .036 .076 Full .411 .024 .040

Rest .386
SS 774.702 20.670 750.256 787.997 750.254

T

Critical value for significance at .05 level with df = 1, 35 is 4.12.
Critical value for significance at .01 level with df = 1, 35 is 7.42.

Vertical Group 24.444 25.~JO0 24.175 .555 .197
Graded Group 22.053 23.474 23.864 .526 -.093

2
F = t 1.896 1.092 .064 .455 .060
R .261 .201 Full .625 .131 .049

2
R .068 .041

Rest .624
Full .391
Rest .389

.017 .002

SS 514.105 342.962 215.518 334.712 215.518
T
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SUMMARY DATA RELA~G73 FiFTH GRADE

ATTITUDES TOWARD ~DiNG CL~2SSCORES

Att i t u des Toward Read~~C1~s ~cor~s-6~ ada 5(N = 2~

Pre-test Post-test Ad~st~Mean Raw Gain Residual Gain

- ~1 Group 37.600 39.100 17.434 1.500 .819
Vert1~ Group 33.882 35.000 35.980 1.118 .482
Grade~

2.947 4,289* 1.176 .076 1.046
t .325 .383 Full .815 .055 .204

R Rest .805
2 .106 .147 Full .654 .003 .042

R Rest .648
825.183 722.754 254.847 305.184 254.844

SS
T ________

~ ~f ~i725isT~.
CritIC 1 value for significance at .01 level with df = 1, 25 is 7.77.
Cr1 t~

TABLE 16

SUMMARYDATA RELATING TO SIXTH GRADE
ATTITUDES TOWARDREADING CLASS SCORES

~tudesTowardReadinClassScores—Grade6’N=28

Pre-test Post-test Adjusted Mean Raw Gain Residual Gain

.~ ~roup 35.667 36.000 36.726 .333 -.164Vert1~Group 37.053 37.316 36.972 .263 .077
Graded

2 .556 .404 .025 .002 .025
F = .145 .124 Full .699 .009 .032
R Rest .699

2 .021 .015 Full .489 .0001 .001
P. Rest .489

560.677 690.678 353.465 381.713 353.462
SS

T ___ _______ ____

_—T~ie~~~gnificanceat .05 level with df = L25 is 4.22.
Critlca1 value for significance at .01 level with d—f 1, 26 is 7.72.
Cr1 ~ ca
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Discussion

It should be abundantly clear from the 16 tabl es that the three approaches

to psycho—educational change are different. While this set of data does not

exhibit strong relationships between the dichotomous predictor and the various

criteria, the use of the statistical significance approach would occasionally

yield different interpretations. Perhaps the most objective comparison between

the three measures would be the term (for the analysis of covariance, or

adjusted means approach, R2
1~- R2~

1). Only one significant di fferénce is found

in the three measures. In Table 6, the raw gain is significant (p .c .05), but,

under exactly the conditions that would tend to make this occur, the vertical

group was significantly smaller than the graded group on the pre-test, but this

difference was almost erased on the post-test. In terms of the- raw gains score,

this produced a significant difference in- favor of the vertical group.

In general, the interpretations of the tests would be in the same direction,

although the reverse is true in Table 1. In Table 1, the raw gain scores favor

the vertical group, while the analysis of covariance (adjusted means) and the

residual gain scores favor the graded group.
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LINEAR MODELS UNDERLYING THE ANALYSIS OF COVARIANCE,
RESIDUAL GAIN SCORES AND RAW GAIN SCORES

Earl Jennings
The University of Texas at Austin

The problem of investigating “changE or “gain’ that can be attributed to

‘treatments” has been discussed extensively over a number of years without a

noticeable concensus emerging. Cronbach (1970) has even suggested that many

questions that appear to involve “change” can be effectivel~’ resolved without

reference to the concept of change.

This paper has the modest purpose of identifying the linear models that

can be viewed as the basis for some of the commonly used procedures.

Assumption: The expected value at Time 2 for a member of

Group j with a Time 1 of g is

c~j + ~j q

where aj and ~j are unknown parameters and j ranges

from 1 to the number of groups. Denote this value.

E(J~ q)

Problem: 1. What is a good number to characterize or describe

amount of change for the various combinations of

group membership and levels of initial or Time 1

performance.

2. What is a good way to evaluate the hypothesis that

the change is the same for all groups.

Argument: 1 . The quantity

E(i9 q) - q

is a reasonable number to characterize the change for
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a member of group j w~th~a Eme 1 score of g,

2. Test the hypothesis

[E(i~ q) - - [Eft~ q) - q] = 0

where i and k range irom 1 to the number of groups

and i ~ k.

Consider the case of two groups. If the assumptions are true then a least

squares solution to the following model should produce good estimates of the

c~5 and ~ ‘s and of the expected values.

Model 1. T(2) = a1G0~
+ a2G(2) + b1(G~ * T~) + b2(G(2) * T(l)) +

where

T(2) is a column vector of dimension n containing measures

obtained at Time 2,

~ is a column vector of dimension n containing a one if
(2)

the corresponding element in T was observed on a member

of Group 1; zero otherwise.

G(2) is a column vector of dimension n containing a one if the

corresponding element in T(2) was observed on a member of Group

2; zero otherwise.

~ is a column vector of dimension n containing Time one

measures arranged in the same order as

E~ is the residual vector.

The a’s are estimates of the ~‘s and the b’s are estimates of the ~ ‘s.

Thus:

(1, q) is estimated by a1 + b1 q

and

(2, q) is estimated by a,~+ b q
2



and the hypothesis

(a1 + b1 q - q) - (a + b2 q - q) = 0 (1)

implies that

a1 = a2 = a3 a common value

b1 = b2 = b3 a common value

Imposing these restrictions on Model 1 yields

(2) (1) (2) ~l’ (2)

Model 2. T = a3(G + G ) + b3T’ + E

and F = (ESS2 - ESS1) / (4 - 2)12 ~N-4

An undesirable characteristic of this test in evaluating group differences in

change is that a statistically significant F12 can be the result of

a1 ~ a2 or b1 ~ b2 or both. Note that in (1), not only does the amount of

change within a group depend on g but also the difference in change between

the two groups depends on ~. In other words, the amount that an individual

can be expected to change depends on where he started (q) and also whether or

not he can be expected to change by the same amount as an individual in the

other group who started with the same value (q) depends on what that value is.

Suppose we assume only that

b, = b2 = b3 a common value. (2)

Then (1) can be written

(a1 + b3 q - q) - (a2 + b3q - q) = 0

or a1-a~0 (3)

Thus if (2) is accepted th�~amount of change still depends on q but the

difference in change between the two groups does not.
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The hypothesis implied by (2) can be evaluated by imposing the restriction

on Model 1 yielding

Model 3 T(2) = a G~1~
+ a G(2) + b T(1) + ~

1 2 3

F - (Ess - ESS ) / (4 - 3)
13 1 _____

ESS1 / (N - 4)

A rejection of (2) would lead to the inference that an unqualified conclusion

about group differences in change is not justified (i.e., there may be some

value of g at which the expected change is the same for both groups and other

values of g where the expected change is not the same.)

If (2) is acceptable then (3) can be evaluated by imposing the restriction on

Model 3 yielding Model 2 and

F — (EsS2 - ESS3) / (3 - 2)
32 ESS3 / (N - 3)

A rejection of (3) would lead to the inference that two individuals from

different groups but with the same initial performance do not change by the

same amount and the difference between a1 and a2 in Model 3 is an estimate

of the expected difference in change.

Notice that Models 1, 2 and 3 are identical to those ordinarily associated

with the analysis of covariance. F13 is used to evaluate the question of homo-

geneous slopes and F32 is used to evaluate the question of homogeneous inter-

cepts (or homogeneous adjusted means).

Notice that in Model 3 the predicted changes

a1 + b3 q - q

and a +b3q - q

still depend on initial performances g. These expressions can be written
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a1 + q(b3 - 1)

~r~d a +q(b .. 1)2 3

us, if b3 can be assumed equal to one then the expected change does not

~j~pend on the value of ~ This assumption can be tested by imposing the

~~stricti0n 1 (4)
3

Model 3 yielding

T(2) T(1) = a G(1) + a2G(2) + ~Model ~ 1

= (ESS - ESS)/(3-2)
~34 4 3

ESS3 / (N - 3)

In terms of Model 4 the expected change for Group 1 is estimated by a and
the expected change for Group 2 is a and the hypothesis of equal change can be

2

by imposing the restriction

= a2 = a3 a common value (5)

Model 4 yielding
~(2) - T~ a3(G(1) + G(2)) +

5
F (ESS5 - ESS4) / (2 - 1)

aflt~ 45

ESS4 / (n - 2)

Notice that in Model 4 and 5 the criterion vector has as each element the

di ffere0~ between Time 2 and Time 1 scores. Thus a comparison of Model 4

afld 5 -is identical to performing a one way analysis of variance on difference

Consi~r the fol1oWin~g model:
(11) (12) + a21 (21)

Model 6 Y a11X + a12X X + a x(22)22

+ ~1pW + + cP~°~+ E(6)



where Y is a column vector of dimension 2n containing both

Time 1 and Time 2 scores on n individuals.

is a column vector of dimension 2n containing a one

if the corresponding observation in V was observed on an

individual in group 1 at Time J. (1 1, 2; J = 1, 2).
K is a column vector of dimension 2n containing a one

if the corresponding observation in V was observed on

individual K.

(K = 1, 2, ..,, n). Note that each P vector contains two

ones and 2n - n zeroes.

Note that Model 6 has only n + 2 linearly independent predictors.

Model 6 is the full model that is used in a type of analysis that goes by

different names including Lindquist Type I Design, two groups two times repeated

measurements analysis of variance, and a Groups by Trials analysis of variance.

A particular comparison that can be referred to as the test for a Groups by

Time interaction is evaluated by imposing the restriction

a11 - a12 = a21 - a22 (6)

on Model 6 which yields a restricted model (Model 7) with one less parameter.

F F (ESS - ESS ) / (n + 2 - n - 1)
45 67 76

ESS6 / (2n - n - 2)

Thus the F test resulting from a one way analysis of variance of difference

scores is identical to the Groups by Time test in a Groups by Trials analysis

when there are only two times.

In view of the fact that many writers caution against using Models 4 and 5

(e.g., Edwards~196O)~, it is somewhat surprising that similar cautions are
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infrequantly urged with respect to Models 6 and even though they lead to

the .sant r?suit,

The models used in analytis of rr let’ gains can be written as:

Model8 T(2J=aU+bT+E(8)
0 1

Model 9 = a + .. r2).p ~
1

The restriction to test for equality of mean residual gain is

a =a =a aconsimn value1 2 3
yielding

Model 10 = a U + E1~0)
3

and the test statistic Is calculated by

F (ESS —ESS)/lg,io 10 9
ESS9 / (n — 2)

I have looked in vain for an argument that persuades me of the desirability

of conducting such an analysis. It Is true that E(8) is orthogonal to and

uncorrelated with T0~. It may be desirable to have a “measure of change” that

is uncorrelated with initial performance but it certainly cannot be argued that

any set of nuthers that can be shown to be uncorrelated with initial performance

are a “measure of change.”

It is easy to construct a set of data in which the slopes for the two groups

are different that lead to conclusions using models 8, 9 and 10 that are flatly

contradicted by the data. Moreover, even when there Is good reason to believe

that the slopes are equal (see F13) the value of b in Model 3 may be quite

different from the value of b1 In Model 8 if the groups are not matched on

initial performance.



Cronbach L. 3. , and Furby. Li to. ~HowShould We Measure Change’ —-- Or
Should We~~~lo~icalBufletin~ Vol. 74, No. 1, July, 1970. (68—80)

Edwards.~ A. L. ~ (Third Edition),
Holt, Rinehart and Winston, New Yo~, 1968. (Pp. 343—344)
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AUTOMATIC INTERACTION DETECTORAID-4

Janos B. Koplyay

I. INTRODUCTION

The primary value of AID-4 to the task scientist is its ability to

identify the maximum amount of variance in the criterion which can be

accounted for by the predictors available; it relieves the task scientist

of the trial-and-error task of attempting to identify the various relevant

combinations of linear and non-linear interaction terms presently required

by the multiple linear regression technique. The splitting process of AID-4,

being based upon maximizing the between sums-of-squares and minimizing the

within—sums—of—squares, automatically takes all present interactions into

account, indicating the maximum variance predictable in the criterion from

the predictors. The interactions and patterns or trends are identifiable

from the AID-4 output, however, no interactions sums of squares are provided

the user.

The major advantage accruing to the task scientist is the evaluation of
2

the maximum R without the impossible task of generating all patterns of simple

and complex interaction for entry into the linear regression system.

II. APPROACH

On the following pages there is an example for a simple two predictor, one

criterion multiple linear regression model in the form of

(1) (2)
Modell: Y=aU+aX +aX +e0 1 2

where and x(2) are predictors (independent variables)

V dependent variable
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2
which after the conventional multiple regression solution yielded an R of

2
.750847. Using the same data, AID-4 produced an R of .900306. It will be

demonstrated that the following polynomial regression model was used to obtain
2

this R = .900306:

Model 2: Y = a0U + a1XW + a2x(2) + a~~2
+ a~~2+ a ~l~2 (2~~e2

It is obvious that without definite a priori knowledgeof theseadditional

and complex interaction terms, the researcherwould have to try all kinds of
2

combinations of all kinds of interaction terms to arrive at an R = .900306.
2

He would not know what the magnitudeof the maximum R might be, thus he could
2

be satisfied with the original P .750847, reaching the conclusion that the

predictor variables cover 75% of the variance of the criterion variable. He

might abandon further investigation from the conclusion that the variables
2

are not strong predictors. Little would be known about the maximum R of

.900306 identified by AID-4.

Since we know that there are only 6 groups in this example problem (3

educational levels and 2 rating status levels), we could solve this problem

simply by solving a regression model of

(1) (2) (3) (4) (5) (6)
Y=ax +ax +ax +ax +ax +ax +e

1 2 3 4 5 6

where X 1 if Group 1 , zero otherwise

= 1 if Group 2, zero otherwise

= 6 if Group 6, zero otherwise
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However, if the number of variables is large (say 80) and each variable

has many levels or categories (say 10 categories each), in order to exhaust
2 80

the system and arrive at the maximum P , one would have to generate 10

categorical variables, Obviously most of these categories would have no cases

in them (empty cells) but without a priori knowledge of the number and type

of non-empty cells all 1080 groups would have to be considered. A distribution

of cell frequencies could solve this problem to identify non-empty cells, never-

theless it would constitute much more labor and groundwork than AID-4 which

requires no such identification of empty cells or generation of categorical

variables.

Many additional and useful bits of information are provided by the output

of AID-4; some of which are (1) at each split, the increased present total

explained variance (R2) is printed, together with a statistical test of sign-
2

ificance for this R , (2) the splits are in a descending order of importance,

that is, the first split identifies that variable which contributes the most

to the explained variance; the second split identifies the second variable or

a subset of the first split as the next important contributor to the explained

variance; and so on. This hierarchy is very useful especially if after a few
2

splits a reasonably high P is obtained, thus giving the researcher an option

of using only a few of the predictors in the actual prediction system if data

collection on the rest of the variables is costly; (3) the branching pattern of

splits reflects trends of characteristicsspecific to the groups split, that

is, it can serve as an ‘eyeball’ pattern analysis. Following the path of each

branch of the split-tree, one can identify major characteristicsof the final

groups on which they differ the most in light of the criterion measure, (4)

cross—validation and double—crossvalidation option. This feature splits the

original sample into 2 random samples, treats each random sample separately
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2

deciding the best split pattern for each and the associated maximum R . Then

it forces the split pattern of Sample 1 upon Sample 2 and vice-versa computing
2 2

the P for these forced splits. The difference between the maximum P for

each sample and the corresponding P obtained by forced splitting is a good

indicator of the stability of the system, (5) selective or “partial” effects

of the predictors are identifiable meanings that even if the so called main

effect in a complex analysis of variance results in a non-significant F-ratio,

AID-4 selectively indicates the level on the other variable at which this non-

significant effect becomes significant. In the example which follows it will

be seen that setting the level of significance at .01 there was no significant

overall row effect in a two-way analysis of variance, however, it was signi-

ficant at two of the three levels of the columns.

Let us take a classroom example taken from Hays (1963), page 403 with

the following as given: (1) 60 observations,(2) one criterion assumedto be

Air Force Qualifying Test Score (AFQT), (3) two predictor variables; education

(3 levels) and pilot status (2 levels). Table 1 shows the AFQT scores at

different levels of the two predictor variables.
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TABLE I

(1)
Education X

3 ( E3)

52 28 15
48 35 14
43 34 13
50 32 21

1 (P) 43 34 14
44 27 20
46 31 21
46 27 16
43 29 20

PILOT 49 25 14
STATUS

38 43 23
42 34 25
42 33 18
35 42 26
33 41 18

2 (NP) 38 37 26
39 37 20
34 40 19
33 36 20
34 35 17
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AID-4 SOLUTION

Note that no more than 5 splits can be expectedas only 6 possible

groups are initially defined.

The AID-4 output “Split Summary” (Figure 1) summarizesthe resultant

splits and “Split Diagram 1” (Figure 2) can then be drawn.

The “Split Summary” representsthe most compact format of AID-4 output,

however, the user has the option of requesting a detailed printed sequence

of the whole splitting process if desired.

Note that with a final R value of .900306, approximately 90% of the

variance is accountedfor by the final groups numbered6 through 11

CONVENTIONALREGRESSIONSOLUTION

The first regression model was formulated without interaction terms.

Model 1: y = a u + a x + a x 2) + e
0 1 2 1

where the y’s are AFQT scores, u is the unit vector, x is the education

variable, e1 is the error vector and a , a , a are the unknown parameters
01 2 2

to be computed in the least-square sense. The resulting P was .750847.

Next, the interaction term for and ~(2) were generated as a cross

product of the two:

Model 2: y = b u + b x + b ~ 2 + b z~ + e

where ~(l) = [x0~. [x(2~ 2 3 2

The resulting P2 increased to .818364.

2
At this point, assumingthat the maximum P of .900306 was unknown, one

would have probably stopped pursuing the issue and conclude that considering
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2
P = .684550

FIGURE 2

SPLIT DIAGRAM 1

= .774076
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interactions between the two predictors, approximately 81% of the criterion

variance is explainable with Model 2.

In order to make the contrast between conventional regression technique

and AID-4 stronger, Model 3 was formulated, This model had no logical bases

other than duplicate the R2
= .900306 of AID-4.

Model 3: ‘ 2 2

V = c0U + c1X +cX(2)+c~ .[X(2~}+ c4{~1~ ~ c5[~(1~ + e

(1) (2) (1) (2) (3)
Y=cU+cX +cX +cZ +cZ +cZ +e

0 1 2 3 4 5 3

where

= [~(l~. ~(2)]

= 1x~)]2.[x(2)]
(3) ~(lz

Solving for the unknown parametersc , c , c , c , and c in the least
1 234 5

squaresenseby the conventional iterative techniquebringing in one variable

at a time in descending order of importance of contribution to the explained
2

variance, one would obtain an P of .900288 in 494 iterations. The maximum
2

P = .900306 achievedby AID-4 will not be reachedbecausesome of the predictors

are highly correlated and the iterative algorithm terminates or “hangs—up” by

cycling back and forth between predictors and thus the stop criterion; i.e.,

the increase in the amount of explained variance becomes lower that that specified

for the algorithm. This condition, however, can be remedied by a modified

algorithm which takes three variables at the time into consideration. With
2

this latter algorithm the resulting P reaches the optimum of .900306 in ten
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iterations.

It is obvious that the likiihood is very small that a researcher would

identify interaction terms as included in Model 3 above.

III. ANALYSIS AND RESULTS

Using Split Diagram 1 , one can start asking meaningful questions in terms

of linear regression models and arrive at the necessary weights and prediction

equations.

Proceedingsfrom bottom to the top of the diagram, the full model consists

of all the final groups; i.e., groups 6, 7, 8, 9, 10, and 11. The original

model then becomes

(1) (2) (3) (4) (5) (6)
Model 4: y=ax +ax +ax +ax +ax +ax +e

1 2 3 4 5 6 4

where:
(1) (2) (6)

x , x . . . , x are categorical vectors with the value of 1

if belongs to groups 6, 8, 10, 7, 9, 11 respectively; zero otherwise. y is

the criterion vector (AFQT score); a1, a, ..., a6 are the unknown parameters.

Solving Model 4 for the unknown parameters in the least-square sense
2

resulted in R = .900306. Split Diagram 1 suggeststhat one would first test

the hypothesis about pilot-status in educational level 3 (college graduates)

by assuming that the respective parameters of a (Group 10) and a (Group 11)

are equal in Model 4.

The resulting model is:

Model 5:

y = b1xW + b2x(2) + b3z~ ± ~ + ~ + e5

where
(1) (3) (6)

z =x +x
2

Solving this model for the unknown parameters, P = .890262. One can



-35—
2

test for significance between the R ‘s of Model 4 and Model 5 by

(P2
- R2 ) / (6-5)

F = Model 4 Model 5 544

(1 - R2 ) / (60-6)
Model 5

with a probability of p = .02 which is not significant at .01 level of

confidence.

In a similar mannerone can proceedand assumethat the unknown

coefficients of Groups 8 and 9 are equal (a1 and a4 respectively). This

restricted model becomes

Model 6:
(1) (21 (1) (4)

y = c1x + cz ‘ + c3z + c4x +

where
2 (2) (5)

z =x+x +x

P2
= .845499

2 2
(P - P ) / (5-1)

F = Model 5 Model 6

(1 - P2 ) / (60-5)
Model 5

p = ~Løøøø

significant beyond the .01 level of confidence

COMPARISONOF AID-4 WITH THE CONVENTIONALREGRESSIONTECHNIQUE

Table 2 summarizes the results of the two different approaches.



[xW] .[x(2)1

(2)

x
Symbols: X

(2)

El

E2

E3

P

NP

Example: E3NP

493 .900285

494 .900287

EDUCATION predictor

PILOT-STATUS predictor

Educational level 1 (non—high school graduate)

Educational level 2 (high school but not college graduate)

College~ Graduate

Pilot

Non—pilot

College graduateand non-pilot
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TABLE 2

Iterative Regression

Variable Iteration

[x(1~]2

[x~2 .[x(2)] 2

(2)

[(l~2

(2)
x 5

(1)
X 6

2

AID-4

Variable

El , E2 vs E3

El vs E2

E1P vs E1NP

E2P vs E2NP

E3P vs E3NP

P2

.773221

.795602

.805800

.822057

.823394

.823973

Split

1

2

3

4

5

R2

.684550

.774076

.845499

.890262

.900306
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IV. CONCLUSIONS

Looking at Table 2, it is obvious that in caseof the regressionmodel

it would be very difficult to put any practical meaningsto the entering

variables such as 2

[xO)]2
or L~].[x(2)1

On the other hand AID-4 is easily interpretable. The first split simply

implies that separating college graduates (E3) from non-college graduates

(El and E2) explains 68% of the variance of the criterion variable. Further

separation of high school graduates from non-high school graduates increases

the explained variance to 77%. The effect of pilot status is most important

is separating non-high school graduates (Split 3) and increases the explained

variance to 84%.

In short, one can easily interpret the meanings and relative importance

of the variables in the AID-4 splits while in the iterative regression scheme

it is an almost impossible task. In addition, AID-4 needed only 5 splits to

contrast to 494 iterations with a simple iterative procedure or 10 iterations

with a modified version considering triplets of variables at a time (this

latter procedureis not included in Table 2).

This procedurecan be continued until there are only two groups remaining

(Groups 1 and 2) in which case the F-test is simply the result of a one-way

analysis of variance.

Split Diagram 1 suggestsall kinds of interesting hypothesesto be

tested. It identifies trends, gives cumul ati ye explai ned variancesand coul d

conceivably be a very valuable tool for a researcher.
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All the properties of the AID-4 approach discussed above and exemplified

in this section can be generalized to problems of a more complex nature

where attempts to include all possible combinations of interaction terms

represent a practical impossibility. Appendix I contains an example of a

real-life research project using AID-4 as a basic research tool.
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