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APPLICATIONS OF SETWISE REGRESSION ANALYSIS

John 0. Williams
University of North Dakota

In an earlier issue of Viewpoints, the setwise regression technique was first

described (Williams and Lindem, 1971a). A companion publication (Williams and

Lindem, 1971b) described the technique together with a description of a computer

program to effect the solution. The documentation (Williams and Lindem, 1971c) of

the program was also made available. The documentation was requested on a fairly

large basis, so that no record has attempted to be made of it's use. Three

specific applications of the technique are described in this presentation, however.

First, a description of the process would be useful. Setwise regression analysis

is a technique that allows a stepwise solution when the interest is in sets of

variables rather than in single variables. Thus, the setwise regression procedure

bears a strong resemblance to the stepwise regression procedure. There are, however,

advantages to be gained by the use of setwise regression analysis, and a disadvan­

tage of the stepwise procedure is overcome. A disadvantage of the usual stepwise

procedure is that it becomes inappropriate when there are more than two categories

being binary coded. A simple example can be made with religious affiliation. Four

categories might be used: Catholic, Protestant, Jewish and Other. Three binary

(1 or 0) predictors can be made with the first three religious affiliations, and

the fourth category can be represented as not having membership in the first three

categories (i.e., all 0's). If religious affiliation were used in conjunction

with other information, the stepwise procedure would not yield a valid indication

of the importance of the religious variables. The setwise procedure, on the other

hand, would allow a direct approach to such a situation.

The setwise procedure drops one set of variables at a time in a stepwise

fashion. There will be as many steps as there are sets. The steps are accom-
2

plished by an iterative procedure that allows the R term to be maximized at each
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step in a backward stepwise procedure. Once a set is discarded, the set is no

longer considered at later steps. One set is discarded at each step until there

is only one set remaining.

A difficulty with the setwise procedure (and the more familiar stepwise pro­

cedure) is that, if typical probability tests are employed, they will over-estimate

the significance at any given point. A partial solution to this problem has been

offered by Landry and Ehart (1973) who wrote a program to measure the unique

contribution in each set at the first stage of an analysis; their program includes

a test of significance.

APPLICATIONS

One of the earlier applications of the setwise technique was made by

Grooters (1971). Grooters was interested in predicting costs per student credit

hour in four state colleges. The input data were means by department for 16

variables, forming nine sets. Four of the sets were single variables, four sets

were logical sets and one set was formed among mutually exclusive binary sets

similar to the religious set described earlier. Such a situation typically

involves a linear dependency within the total set. To remove the dependency, any

one of the variables within the set can be excluded, and the analysis can be

performed. Using the setwise technique, Grooters was able to isolate a rather

intriguing result; student costs are in some measure higher in departments- that

have a higher incidence of outside of school professional activity (consulting,

speaking, local community work, artistic endeavors outside the college setting,

etc.). Yet another interesting result was that the average salary paid per

member in the department was the first set to drop out. In another study, Sando

(1973) used the setwise technique to predict scores on a computer programming test.

To better illustrate the technique, a complete setwise printout in included.

The problem considered was predicting the outcome of an election held among the
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faculty in the Center for Teaching and Learning at the University of North Dakota

(Williams, 1973). The specific problem involves 22 predictor variables that have

been placed into six sets. The list of variables follows.

LIST OF VARIABLES

Set Number Variable Number Variable Name

1 1 Rank: Instructor
1 2 Rank: Assistant Professor
1 3 Rank: Associate Professor

2 4 Building Housed In: Building A
2 5 Building Housed In: Building B
2 6 Building Housed In: Building C

3 7 Previous Program: Indian
3 8 Previous Program: New School
3 9 Previous Program: College of Education
3 10 Previous Program: New School & College

of Education combined
3 11 Previous Program: New School & Arts I

Sciences contained
4 12 Salary
4 13 Years in Rank
4 14 Years at the University

5 15 Previous Publications: Refereed articles
5 16 Previous Publications: Books
5 17 Previous Publications: Other Articles
5 18 Previous Publications: Reports, speeches

6 19 Present Publications: Refereed articles
6 20 Present Publications: Books
6 21 Present Publications: Other Articles
6 22 Present Publications: Reports, speeches

Variables 23-26 were criteria variables. The focus here is on Variable 24,

nuntaer of votes for constituency council. Variables 10 and 11 refer to faculty

who have previously been simultaneously employed by more than one unit.

Of the sets, three are mutually exclusive binary variables and three are

logical sets. For example in set 1, no variable is listed for the rank of

professor; this rank is zero-coded. Similarly for sets 2 and 3, a final cateaory

of "other" is not included and is zero-coded. On the other hand, sets 4-6 are made

of variables that are logically related; the variables in sets 4-6 are essentially
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continuous in nature. The print-out follows.

The first portion of the printout, following the listing of the variables

in each set, is a full regression solution with all predictor variables included.

After the full regression solution, each step in the setwise solution is shown.

For example, in the first step, each of the sets are in turn considered for

elimination. Because dropping set 2 would allow for the highest R value, set 2

is dropped. This process continues until only one set remains. For this particular

problem, set 4, which includes salary (variable 12), years in rank (variable 13)

and years at the University (variable 14), is the final remaining set.

A complete listing of the program is available to interested readers.
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Utilizacion of Multiple Regression Analysis in

Changing the Verbal Behavior Patterns of Elementary

Classroom Teachers Through Self-evaluation

Margaret E. Cummins

ABSTRACT

Multiple regression analysis was used to investigate the effectiveness of
a self-evaluation technique in changing the verbal behavior patterns of
elementary classroom teachers. Three ratios were employed: the I/D
ratio, or ratio of indirect to direct statements by the teacher; the
TRR, or teacher response ratio which eliminates questioning and lecturing
from the total I/D ratio; and the PIR, or the ratio of pupil talk-response
to pupil talk-initiated. The self-evaluation technique for changing the
verbal behavior patterns of elementary classroom teachers was not found
to be significant for any of the three measures.

INTRODUCTION AND RATIONALE

The control of the pattern of the classroom teacher's verbal

interaction with the pupils in her class is just one of the methods the

teacher may use to establish a desirable social climate in her classroom

which can in turn increase the amount and quality of pupil learning.

Ruth Cunningham (1951) called this desirable social climate democratic

living which provides an opportunity for making meaningful choices on

the basis of discussion and evaluation permitting the skills of self­

management and interaction to develop.

Cecil V. Millard (1953) indicated that the auality of group

living was a significant factor effecting the quality of education

received by children. Millard further suggested that a child who is

threatened by teacher mandate, arbitrary assignments, discriminating

marking and undesirable grouping, is a candidate for delinquent activity.
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Ned A. Flanders (1960) pictures the teacher as the source of

influence which supports or initiates the acts or patterns of action in

the social process which change the set of social relationships in the

social structure.

The purpose of this investigation was to demonstrate that teachers,

through a self-evaluation process, could improve the quality of the ver­

bal interaction patterns in their classrooms and thereby improve the

climate of the classroom in such a way as to enhance the learning

taking place. A self-evaluation treatment instrument was designed

which was comprised of a series of guideline questions compatible with

the goal of increasing supportive behaviors and flexibility of verbal

patterns used by teachers. The self-evaluation treatment was also

compatible with Flanders' system of interaction analysis which was

selected as the measurement instrument (Amidon and Flanders, 1967).

The instrument designed for this study was named "Improvement through

Self-evaluation" (ITSE). It was intended that this treatment process

would help teachers improve the quality of their verbal Interaction

patterns through assessment of their own behavior.

METHOD

Sample; The Ss were 29 volunteer elementary classroom teachers

from a small city school system. This sample represented over 46% of

the available population. The use of volunteers limited the sample

population but this procedure was deemed necessary because it was

believed that neither participation now change could be mandated and
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mapy teachers had personal arid professional obligations which precluded

participation in projects demanding extra time. It was expected that

random assignment of volunteers into the experimental and control groups

would partially overcome this bias.

Procedure and Design: The study encompassed a time period of ten

weeks. All subjects attended three group meetings. The first meeting

included all Ss and procedures conrnon to both conditions were explained.

The two subsequent meetings were held with subjects in Condition I and

II in separate study groups.

Each S received a cassette tape for recording forty-five minutes

of instructional proceedings. These first tapes were collected within

a week and were used at the conclusion for pretest evaluation.

Ss in Condition I were presented with a cassette tape to use as

a practice tape in self-evaluation. During the self-evaluation period,

these Ss were asked to make at least one tape a week. This was to be

done at the S's convenience. They were also instructed to prepare a

summary of conclusions from the self-evaluation session to be given the

E. This summary was to serve as a reliability check that procedures

were being followed consistently.

Ss in Condition II engaged in a project developed for their group

which was a modification of a study conducted by Edmund Amidon and

Ned A. Flanders (in Howes, 1970, Pp. 200-209). Because the project

emphasized pupil self-directed group work, it would be less likely to

influence the teacher's behavior during interaction taping sessions.
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At the end of the ten week period each S received another cassette

tape to prepare forty-five minutes of class work involving interaction

between teacher and the pupils. Fifteen minutes of the pretest and

posttest tapes were scored using Flanders' interaction analysis.

The selection and training of two scorers followed recommendations

of Flanders (1965). The reliability between scorers was checked using

Flanders' modification of Scott's coefficient for converting tallies

into per cent figures. A coefficient of .8 was the minimum accepted.

The two scorers tallied verbal responses simultaneously to assure analy­

sis of the same verbal interaction sequence.

At the close of the experimental period, 26 Ss remained. The

104 tally sheets resulting from each scorer’s numerical categorization of

the pretest and posttest tapes were compiled into matrices. From these

matrices three ratios were calculated. The first ratio was the I/D ratio,

or ratio of the total Indirect to direct teacher statements. The second

ratio was the TRR, or teacher response ratio which eliminates the asking

of questions and lecturing categories. This ratio minimizes the effect

of subject matter on the ratio. The third ratio calculated was the PIR,

or pupil initiation ratio. This ratio was proposed by Flanders (1970)

to Indicate the proportion of pupil talk which was initiated by the

pupil as opposed to being a response to a teacher question.

Since it is believed that the ratios are only estimates of the

true value, a better estimate of the true value of the ratios computed 

from the matrices was considered to be the average of the two ratios.
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RESULTS

In order to determine if the ratios obtained by the subjects in

Condition I who used the ITSE program were significantly different from

the ratios of the subjects in Condition II who did not use the treat­

ment program, an analysis of covariance using multiple regression models

was used. Six models were used to determine if there was a significant

difference between ratios obtained by the two groups when the pretest

scores were held constant.

Table 5 presents the statistical models and the resulting data.

The format follows that suggested by Newman (1972). Examination of

Table 5 reveals that the probability level of .05 set for rejection of

the null hypotheses was not obtained for any of the ratios. It must

be concluded, therefore, that there was no significant difference be­

tween the I/D ratios, the TRR, or the PIR of the two groups of subjects.

From the examination of the weekly summaries prepared by Ss in

Condition I, 5 factors in the design appear to require reexamination

before replication even though the importance and influence of these

factors cannot be determined.

1. All external peer reinforcement had been eliminated.
This required suppression of excitement of enthusiasm
which might have been generated by the use of ITSE.

2. The design of ITSE did not provide opportunity to
practice converting ideas into overt behavior.

3. The weekly written summaries varied greatly. These
summaries could possibly have been made more effective
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if a guide form had been used which would have helped
reduce Chis variability.

4. The use of less than 1000 tallies as suggested by
Flanders (1970) may have caused ratios to be spurious­
ly high. However the PIR and TRR as used were de­
signed by Flanders to overcome this instability.

5. The length of time involved in weekly taping and
the use of malfunctioning tape recorders caused
expressed frustration and irritation to the Ss in
Condition I.

CONCLUSIONS

The findings of this study were that the use of ITSE did not

significantly change the ratios obtained as measured by the application

of Flanders' interaction analysis to audio tapes. The limiting

factors presented leave the value of the instrument as an in-service tool

still in question. Further research should be undertaken to overcome

the weaknesses of this study.
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Incorporating Cost Information
into the Selection of Variables in

Multiple Regression Analysis

John T. Pohlmann
Southern Illinois University at Carbondale

The problem of finding the best regression equation is considered

from the standpoint of predictor costs. Typically, variables are selected

for inclusion in prediction equations on the basis of their unique

contribution to the prediction of a criterion. A method is presented

whereby losses due to lack of predictability and predictor costs are

combined in a loss function. The best predictor set is then chosen that

simultaneously minimizes losses incurred in measuring the predictors and

losses incurred from lack of predictability of a criterion variable.
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Incorporating Cost Information
into the Selection of Variables in

Multiple Regression Analysis

John T. Pohlmann
Southern Illinois University at Carbondale

The typical variable selection problem may be summarized as follows:

Given a criterion variable, Y, whose variance you wish to account for

by using a potential set of k predictors X±, i - 1 to k, find a subset

of Xt which will do the best job of predicting Y. This task usually

reduces to eliminating X^’s that do not uniquely account for a specified

minimum amount of variance in Y. Due to the cost factors involved in

obtaining measures on the various X^'s, this final set of predictors

should be as small as is possible to achieve the desired degree of

prediction accuracy.

Traditional Solutions to the Problem

The most widely used method for solving this problem is to try

various combinations predictors until each predictor uniquely accounts

for a significant proportion of variance in Y at some specified alpha

level. Hence the final set of predictors is composed of only those

variables that make significant contributors to predicting Y. Various

algorithms exist for testing the unique contributions of each X^. Draper

and Smith (1.163) suggest two goals that should guide a researcher

in selecting the "best" subset of Xp First, the final regression equation

uld be useful for prediction purposes, and secondly, because of the costs

involved in obtaining measures on the various X^s, the equation should 
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contain as few X’s as possible. In order to achieve this goal, various

stepwise regression procedures may be employed. Each of these procedures

specifies an orderly process whereby various combinations of predictors

are tried until only the most efficient subset of is left. Efficiency

implying that the maximum amount of variance in Y is accounted for with

the smallest set of predictors.

Since all stepwise procedures, either directly or indirectly, use

only the proportion of variance accounted for in Y as the criterion for

including Xt's the final predictor set, we must assume that an impli­

cation is made that each X^ costs the same to measure. This implication

follows since none of the standard stepwise regression algorithms incor­

porate cost information in the selection of predictors.

The position taken in this paper is that Draper and Smith's second

goal should be modified as follows:

Because of the costs involved in obtaining X^'s, the

model should contain the least expensive subset of X^

as is possible.

This modification suggests that the goal of selecting the most efficient

subset of X^ should be characterized by selecting X's that account for

the maximum amount of variance in Y, while simultaneously minimizing the

cost of the final subset of X|.

The Nature of Cost

Each potential predictor can be assigned a cost value on the basis

of many factors. Costs are incurred in measuring variables depending

upon 1. the actual purchase price of the measuring instruments, 2. the

time required to obtain each measure, 3. the difficulty encountered in 
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scoring or ennumerating a subject's performance, or 4. the sophistication,

and hence the cost of the staff required to administer the measuring device.

In general, time, dollar costs, and complexity all contribute to the cost

of measurement. In an applied setting where cost factors are critical,

any selection procedure which fails to consider these kinds of factors is

not an ideal one.

A Method of Selecting Variables Using Cost Information

In a standard regression equation the solution for the weighting

coefficients minimizes the residual variance in the criterion after the

predicted scores have been extracted. It may be assumed that some loss

is incurred when criterion variance cannot be accounted for, and regression

analysis is seen as a means by which these losses may be minimized. Various

regression models can be compared with regard to their usefulness in

minimizing the criterion residual variance, and hence the losses incurred

when the model is used. Another loss is realized when costs are incurred

in the measurement of the predictor variables. Consequently, two sources

of loss are present, the first being losses incurred by lack of predicts-

billty and secondly, losses Incurred in gathering predictive information.

These two sources of loss should be minimized in the solution for the "best"

regression model.

These two sources of loss may be incorporated into a common loss

function and the task of model selection may be reduced to finding the model

which serves to minimize the common loss. The loss function presented here

assumes that the two types of loss are additive. That is, losses due to

lack of predictability and predictor measurement may be added in the deriv­

ation of the common loss function. This loss function may be characterized
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as follows:

LI= kl <C1 x costP + k2 (C2 x t1 "

where L = the resulting loss value for the regression
equation using predictor subset I.

k^ and k2 = constants that will allow differential
weighting of cost and validity information.

costj. = the costs incurred in measuring the predictor
subset I.

(1-Rj) = the proportion of variance in Y that cannot
be accounted for by the regression equation
using predictor subset I. is the squared
multiple R.

and c2 = weighting coefficients derived so that cost
data and validity data can be reduced to a
common scale.

(1)

The constants k in equation (1) allow the researcher to determine which

source of loss will be more important in the derivation of the common loss

value. For example, if k^ = 1 and k^ = 2, the researcher is solving for

the regression model where losses due to lack of predictability are twice

as important as losses stemming from predictor costs.

1 may be the dollar amount spent in measuring

predictor subset I or it may be time required to obtain the measures.the

The term cost^. in equation

In general, it represents that cost factor the researcher wishes to minimize

in selecting the "best" model. The values c^ and c2 are weighting coefficients

which when multiplied by the cost^ values and the 1 - R^ values reduce them

to a common scale of measurement. For convenience sake, they may be derived

in such a way so that the sum of their values will equal 1.0. This may be

accomplished by finding the sum of the cost values for all of the predictor 

subsets, taking the reciprocal, and then by dividing this value into each

cost . A revised cost value will emerge for each predictor subset, which
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when summed will equal 1. Algebraically this rule is given as follows:

Let cost}. = the cost of measuring subset I

J = the total number of predictor subsets
under consideration

The value of c^ in equation (1) is then given by

/ J \-1
c< - I < cost- I (2)

V1"1 ' J
X / 9

This same procedure is used substituting (1 - R£) for costy in equation 2

to give c^.

The discussion that follows shows how the method can be applied to

a specific problem. The method proceeds as follows:

Step 1. After the costs have been assigned to each predictor set,

those subsets that exceed a maximum tolerable cost are eliminated.

Step 2. The cost values are then divided by the sum of the cost values,

to give a revised cost value. Step 3. The relative loss incurred for each

predictor subset due to its lack of predictability is given by (1 - R^),

2
where Ry is the proportion of variance in Y accounted for by predictor

subset I. Step 4. The values (1 - Ry) are then divided by the sum of the
2

(1 - RT) values for all predictor sets. Step 5. The values for losses

due to predictor cost found in step 1 are added to the values for losses

due to lack of predictability found in step 4. The predictor subset with

the lowest sum is then chosen as the predictor set.

final loss structure given in step 5 gives an index for the

of each predictor subset that weights both cost and validity

information. The predictor set with the lowest final combined loss value

is, of course, the set chosen.
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Sample Problem

Assume that you have cost and validity information on all possible

combinations of three predictors for predicting some criterion. Further,

assume that you can spend no more than $10.00 per subject in obtaining

the required data. The problem is to find the subset of predictors which

will do the best job of predicting Y for the least amount of money.

Table 1 shows how the analysis is conducted for the sample problem.

Column A contains the cost information for each predictor subset. The

predictor set (1, 2, 3) was rejected from further analysis since its

dollar cost exceeded the maximum allowable cost. Column B contains the

adjusted cost values. The adjustment was obtained by dividing each cost

value by the sum of the costs to give a cost value that sums to 1.0. Column

C contains the loss information based on the validity of the subset. The
9

value 1 - R for each predictor subset was chosen as the appropriate

indicator of loss due to lack of predictability. Column D contains the

adjusted validity loss values. As with the cost data, these adjusted

values were obtained by dividing each 1 - R by the sum of the 1 - R4,s

for all of the predictor subsets. Column E represents the final composite

loss value for each predictor subset. The values in Column E were obtained

by adding the respective values for each subset In Columns B and D. The

values in Column E represent a loss incurred when each predictor subset

is used, equally weighting cost and validity data. Column F shows the

respective loss values when validity data is weighted three times as

important as losses due to predictor cost. When cost and validity data

are equally weighted the predictor set containing variable 3 only is the

preferred subset. When validity data is weighted as being three times as
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important as cost data, the predictor set containing variables 2 and 3 fs

the preferred set.

insert Table 1 about here

Discussion

The method for selecting the "best" predictor set in a regression

analysis problem presented here insures that cost Information will be

incorporated into the selection process. This method of approaching

the variable selection problem suggests that researchers should try to

extract as much predictability out of a set of variables as is possible.

Researchers should try to fit various transformations of the original

variables, since the cost of transforming the original variables is nil.

Higher order polynomial functions should be attempted, along with cross

product (interaction) transformations. These transformations are indicated

since the cost of obtaining the original measurements is not changed when

these complex models are tried. If a researcher is concerned about the
2

possible shrinkage in R that is usually realized when such complex

functions are used, he could replace validity data with cross-validated
2 9

R s where original R 's were used in this sample problem. All of the

methodological safeguards that are presently employed in selecting a

predictor subset should still be used with this method, but an attempt

should be made to simultaneously minimize the costs of predicting criteria.
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Abstract

Multiple regression (MR) is a powerful and flexible techniques for
handling data analysis. The present paper presents a discussion of the
use of "contrast coding" in performing analysis of variance and analysis
of covariance procedures in MR. Contrast coding provides a method for
coding nominal variable in the set of predictor vectors in MR so that
such vectors reflect a set of orthogonal comparisons. As a result, one
is able to test hypotheses concerning more specific research questions
than those usually tested in more traditional MR. coding procedures.
By adding more components to the general linear model, contrast coding
provides a relatively simple and logical basis for extending analysis
of variance to its various subclassifications.

Cohen (1968) presented a discussion of contrast coding in multiple

linear regression models for use in analysis of variance (ANOVA) and

analysis of covariance (ANCOVA). The general theme of Cohen’s article was

that the main effects and interaction of ANOVA and ANCOVA can be reflected

in a linear model through the use of specifically coded predictor vectors.

Other writers have referred to these vectors as dummy vectors, nonsense

coded vectors, or group membership vectors. In our work with multiple

regression, we have found Cohen’s system of contrast coding to provide a

. very logical and relatively simple method for developing regression models

to answer more specific questions than the overall main effects and interaction

tests generally applied in ANOVA. One purpose of this paper is to present
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a discussion of the use of contrast coding to reflect orthogonal*-vuuKuiiai comparisons.

We have also found that, as Cohen suggests, contrast coding can easily

be applied in ANCOVA. Further, we found that for a two-way analysis of co­

variance, contrast coding leads to a more exact duplication of traditional

analysis of covariance than does the standard method of designating group

membership predictor vectors. A second purpose of this paper is to present

a discussion of the application of contrast coding to ANCOVA.

Analysis of Variance

Consider an experiment in which two treatment conditions are to be

compared. In this case, Winer (1962) indicates that each individual score

results from a number of sources of variability. According to Winer,

[1] xlj' “ + TJ +

an observation on person i under treatment j

observationsU =

effect of treatment j

a significant differenceIn order to answer the question of whether there is

model (Bottenberg & Ward,between Treatments 1 and 2 in a standard regression

and Lyon, 1969), one would employ1963; Kelly, Beggs, McNeil, Eichelberger

the following full model:

[2]

Tj =

error associated with X..

grand mean of all potential

+ a X + a X + E
11 2 2 1

Model 1 Y = a U
0

Where:



Where:

U

cones fromscore

come s f romscore

error vector

partial regression weights

Winer’s y ;

a restricted model (Model 99) which would contain only the unit vector as a

predictor vector and an error vector.

[3] E

Using contrast coding to reflect Treatments 1 and 2, the following

full model would result:

Model 2[4]

criterion scoresWhere:

unitU = vector

1 or -1 if cri terion

= error vector

= partial regression weights

To answer the question as to whether or not Treatments 1 and 2 are different

Model 2 would be compared to Model 99.

The advantage of contrast coding in the above example seems to be in the

1 if
from

criterion from Treatment
Treatment 2

1 if the corresponding criterion
Treatment 2; 0 otherwise

1 if the corresponding criterion
Treatment 1; 0 otherwise

a0’

X2

X1

E2

X1

E1

H1

Model 99 Y = a U +
0

a~ to
0

Y = aQU + a^ +

a and a to Winer’s t- and E. to Winer’s e
12- J J

difference exists between Treatments 1 and 2, Model 1 would be compared to

V ai’ a2

It will be noted
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ve.ctor of cri tcrion scores

unit vector (all elements are 1)

that Y corresponds to Winer’s Xi;

To determine if a significant

determination of degrees of freedom. It will be noted that the analysis in
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this example consists of a simple t-test or an F-test with one degree of

freedom in the numerator. In order to perform this analysis, one must set

and a2 from Model 1 equal to 0. This loss of

loss of only one degree of freedom because there 

two vectors results in a

is a linear dependency

existing within the set of vectors U, Xp and X2 in Model 1. In Model 2, 

no linear dependencies exist in the predictor variables. As a result, the

test for a significant difference between Treatments 1 and 2 is accomplished

simply by setting a^ - 0. As a result, the restriction of one regression 

weight accurately reflects the appropriate number of degrees of freedom for 

this analysis.

If one were to expand the above two-group example to include four 

treatment conditions, the advantages of contrast coding in ANOVA become

more apparent. If Treatments 3 and 4 are added, the addition of X3 and

to Model 1 would be required in order to allow for the main effects of

Treatments 3 and 4. Model 1 would then be revised to be:

[5] Model 3 Y nQU + a]X1 + fl?X2 + a3X3 + a^ + E-.

Where: Y, U, X^, and X2 ai'e as defined in Model 1

X3 = 1 if Treatment 3, 0 otherwise

X^ = 1 if Treatment 4, 0 otherwi.se

« error vector

Sqj a^, a2> a^, a^ = partial regression weights

To test for an overall main effect of treatments, the following restriction’

would be placed on Model 3:

otherwi.se
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al “ a2 “ a3 = a4 “ 0

It can again be seen that there is one more predictor vector restricted out

than degrees of freedom lost. Unless one employs a series of dependent t-tests

the overall treatment main effects appears to be the only question which

can be asked and tested in the above regression framework.

Using contrast coding, Model 4 might be used to reflect the various

treatment conditions.

[6] Model 4 Y = agU + a^X^ + a2%2 + a3^3 +

Where: Y = criterion scores

U = unit vector

E. = error vector
4

ag, a-,, a£» = partial regression weights

and where the elements in Xj, X2, and Xj reflect the linear,

quadratic and cubic trends and are as follows:

X1
If criterion from

Treatment

x2 X3

1 -3 1 -1

2 -1 -1 3

3 1 -1 -3

4 3 1 1

The elements presented here are the standard coefficients for orthogonal

polynomials. The use of these values would result in X^, X2> and X3 being

uncorrelated. As a result, it is possible to partition the variance into

its three independent sources.

If one were concerned about asking the overall main effect question, it 
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would be necessary to set ax “ a2 - a,* - 0. This test of significance would

result in precisely the same outcome as the use of 1 and 0 group membership

vectors as presented in Model 3. However, it is possible to ask more specific

questions given orthogonal coefficients. One may not only be interested in

the overall main effect question. The research hypothesis in a particular

research project might be that "the average of Treatment Groups 1 and 4 is

different from the average of Treatment Groups 2 and 3" (in other words,

the difference follows a quadratic trend). Given Model 4, it would simply

require that a 2 be set equal to 0 in order to answer this very specific

question.

As indicated above, the values in the vectors are standard coefficients

for orthogonal polynomials. It may be that such coefficients do not reflect

a particular question of interest. One might want to ask the question as

to whether the effect of Treatment 1 equals the average effect of Treatments

2, 3, and 4. Since the standard coefficients for orthogonal polynomials

do not reflect this particular question, it would be necessary to establish

a different set of coding coefficients. Since the question as to whether

Treatment 1 equals the average of Treatments 2, 3 and 4 would require coding

coefficients in the predictor vectors to reflect the differential weighting

of the Treatments, an appropriate set of coding coefficients might be:

Treatment 1-3; Treatment 2 = -1; Treatment 3 = -1; Treatment 4 = -1. The

values in vectors X^, X2, and X3 of Model 4 might then be as follows:

X1 x2 X3

If criterion from
Treatment

1 3 0 0

2 -1 2 0

3 -1 . -1 +1

4 -1 -1 -1
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In order to answer this question of interest, it would only be necessary to

restrict out vector Xx by setting a.^ = 0. X? and X3 are included in the

model in order to account for the rest of the overall treatment effect

even though such comparisons may not be of interest. '

The two examples presented above seem to point to two advantages

which accrue from the use of contrast coding in a one-way analysis of variance.

First, since the predictor vectors are all independent, the number of

predictor variables in a model accurately reflects the degrees of freedom

for the analysis. As was pointed out above, this is not the case when

standard 1 and 0 group membership vectors are used. Second, the use of

contrast coding allows one to ask more specific questions of interest than

the overall main effect. The importance of these two factors becomes even

more apparent when one considers a two-way analysis of variance.

Consider an experiment in which 2X3 factorial design is to be applied

and assume that there are two levels of conditions A and three levels of

condition B. Winer indicates that the following linear model would account

for all sources of variability contributing to an individual score:

(7] ' xijk " P + “i + Pj +;aBij + eijk . .

Where: X^jk = an observation on person k under treatment i and
treatment j

U = grand mean of all potential observations

= main effect for condition A

= main effect for condition B
oBjj = effect of interaction of conditions A and B

J

eijk = crror associated with X^jj.

The various sources of variability in Winer’s model can be duplicated

in standard multiple regression analysis. However, the need for a test of 
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interaction requires a full model which allows the differences between cell

means to vary and a restricted model which would force the differences between

cell means to be equal. While this is not a particularly difficult task, it

does require some rather lengthy algebraic manipulations of the partial

regression weights. Kelly, et.al, (1969) include an excellent presentation

of the procedures for performing a two-way analysis of variance in standard

regression analysis so we will not attempt to duplicate it here.

Using contrast coding to duplicate the 2X3 analysis of variance would

require the following full model:

[8] Model 5 Y = anU + a.X.. + a0X„ + aQX_ + a.X, + acXc + Ec0 11223344555

Where: Y = criterion vector

U = unit vector

X^ = 1 if subject from or -1 if from subject

X2 = -1 if subject from B ; 0 if subject from ^2 °r
if subject from

X = 1 if subject from B, ; -2 if subject from B2 or 1
if subject from B3

X4 = X^ multiplied by X^

X^ «= multiplied by X^

= error vector

a0 through = partial regression weights

It will be noted that the elements of X2 and X3 reflect the linear and quadratic

for the B main effect. In addition, the coefficients in X^ and X5 would

reflect the linear and quadratic components of the interaction effect. It

should also be noted that all five vectors are independent so that the number

of predictor vectors accurately reflects the between cells degrees of 



-35-

freedom for this two-way analysis of variance.

The overall main effects and interaction tests can be simply done

once Model 5 has been established. In order to test for interaction, one
2

need only set a^ = a5 = 0 and compare the R of Model 5 to the R2 of the

resulting restricted model. In order to test for a significant A main

effect one need only restrict X.^ from Model 5 by setting » 0. To test

for the B main effect, X2 and X3 must be restricted from Model 5 by setting

82=33= 0. Each of these tests of significance can be shown to exactly

duplicate the results one would obtain through the use of traditional two-

way analysis of variance equations.

As was the case with a one-way analysis of variance, the use of contrast

coefficients allows one to ask questions of interest other than the overall

main effects and interaction. In the example above, suppose one were interested

in determining if the interaction contained a significant quadratic trend.

This variable of interest is reflected in X5 of Model 5. In order to test

for a significant quadratic interaction trend, one need only set a^ = 0.

The linear trend of the interaction could be tested by setting a^ = 0.

Further, Model 5 allows one to test for significant linear and quadratic

components of the B main effect by setting a2 = 0 and a^ = 0 respectively.

The use of contrast coefficients in this linear regression analysis would

allow one to examine any one or all of the five independent sources of

variance which the between cells degrees of freedom indicate contribute to

each individual criterion score. In addition, one could ask other questions

of interest by establishing a set of contrast codes which would allow the

specific question of interest to be reflected in the predictor vectors.

Analysis of Covariance

The application of the use of contrast coefficients for analysis of
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covariance is a natural extension of the analysis of variance. The co­

variate or concomitant variable is entered as a predictor along with the

treatment variables in the linear equation. For example, if a covariate

were included in Model 4 above the equation would become:

[9] Model 6 Y = aQU + + a^ + a^ + Efi

Where: Y = criterion scores

X-^ through are treatment variables of interest

X, *= the covariate or concomitant variable
4
U = unit vector

E, •= error vector

a0 through a, = partial regression weights
4

The nature of the equation changes slightly, however, in that the predictor

variables (X} through are not all orthogonal to one another. Specifically,

there is a real or sample covariance between the covariate (X4) and each of

the variables of interest (X^ through X3) . When the restriction = a2 a

a^ = 0 is placed on the equation eliminating the treatment source of variance,

the weight associated with the covariate (a^) will change in value. It can

be shown that the variance which is lost by such a restriction is that variance

which is associated with the treatment but which is independent of the covariate.

In other words, the restriction results in a loss of that variance which is

unique to the treatment variables (X^ through xp . Such analysis is identical

to analysis of covariance as described in such textbooks as Winer (1962),

Lindquist (1963) and McNemar (1969). The interpretation made for a significant

statistical test for treatment effect obtained by the analysis is that the

treatments have an effect on the mean criterion scores over and above that
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which is accounted for by the covariate. The usual procedure of using group

membership vectors in the linear model also duplicates the analysis of

covariance for one-way ANCOVA designs. In fact, the only advantages for

using contrast coefficients rather than group membership vectors seem to be

that (1) contrast coefficients provide a more direct count of independent

vectors to obtain degrees of freedom and (2) contrast coefficients allow

for tests of more specific questions concerning treatment effects than does

the use of group membership vectors.

Winer (1962) indicates that the linear model for a two-factor ANCOVA

would be as follows:

[10] X... - V + a. + B. + aB + Y . + e. ..ijk i J ij yk ijk

an observation on person k under treatment i in
condition j given information on the covariate

grand mean of all observations

effect of the ith treatment

effect of the j th treatment

effect due to interaction

regression effect on the covariate

error associated with Xijk
Suppose, now, that we wish to utilize a model where the effect contains

two different conditions and the effect consists of a control group (B^)

and two experimental groups (I^ and B^). Then the more traditional regression

model for these effects with the covariate and interaction included would be:

Where: =

y =■

“i =

8. =
J

a0ij =

Yyk =

[11] Model 7 Y = aQU + + a^^ + a^A^ + + auA2B2 + Vo + S
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Where: Y ■ vector of criterion scores

U ■ unit vector (All elements are 1)

A1B1 1 if observation is found in both and B

Xq = concomitant variable

Ey ■= error vector 

0 otherwise

ag and a^ through a.^ “ partial regression weights

In order to test the interaction effect, one would restrict Model

7 to:

[12] Model 8 Y = aQU + a^ + a^ + a^ + a^ + + a^ + Eg

Where: Y = vector of criterion scores

U = unit vector

A^ = 1 if criterion from A^; 0 otherwise

Ay “ 1 if criterion from A£j 0 otherwise

By. - 1 if criterion from B ; 0 otherwise

B2 = 1 if criterion from B2; 0 otherwise

Bo « 1 if criterion from B ■ 0 otherwise
• J J

Xq = concomitant variable

Eg = error vector

aQ through a6 - partial regression weights

2 2Then the test for interaction (Ry - Rg) would be a test of whether the

proportion of variance unique to interaction is significant.
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There is c^r.’.o. disagreement a; on" researchers as to procedures for test ing

main effects following a non-significant test for interaction. Both Ferguson

(1971) and Wino.r (1962) suggest that after finding a non-signifleant

interaction effect, one has the option of treating the interaction sums of

squares as error. The sums of squares for interaction could, along with the

appropriate degrees of freedom, be pooled with the sums of squares error to

form a more stable error estimte. In a paper presented at the. 1972 convention

of the American Education Research Association, Pohlrnann (1972) discussed

the limit to which such pooling may aid in guarding against a type II error.

■ Kelly et.al. (1969) encourage the practice of pooling as. discussed in

the previous paragraph. Assuming one has chosen to pool, then the A effect

could be tested by restricting a^^ and a2 from Model 8 equal to 0 and the

subsequent model becomes:

[13] Model 9 Y = aQU + a^ + a^ + a^ + a&XQ + Eg

Where: Y - vector of criterion scores

U -■ unit vector

Eg = error vector

Bp B2, and B^ = defined as in Model 8

would

Xq = concomitant variable

1 - rJ
o

effect. The

aQ, a^, a^, a5> a6 = partial regression weights

(r - r ) would seem to be equal to the A niaJn effect whereas
8 9

consist of a pooled error term which includes the interaction

B main effect would be tested in a manner similar to the test for the A

effect.
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Ttiis, ho’xvcr, does not duplicate the main effect that is found in

traditional two factor ANCOVA as described in Winer (1962.) . In the model:

?14] xiik =y + °i + + aGiJ + Yyk + Ci3k

ai’ Bj a? . are orthogonal to one another and hence, the presence or

absence of any one should not have any effect on the others. However,

this is not the case in the presence of the covariate. The covariance

patterns between a^, B j, and aByj, with the covariate y seem to be of such

a nature that the restriction of any of the three effects equal to 0

results in a change (increase or decrease) in the other remaining effects.

This would not be the case without the presence of the covariate nor does

it affect a one-way ANCOVA. Thus, when the interaction term is pooled with

the error in order to test a main effect, the amount of variance associated

with that main effect is different from what it would have been without

pooling.

The use of contrast coding in a two-factor ANCOVA would provide a

method of analysis where one could easily test the main effects without

pooling the interaction, thus yielding a duplicate result to the traditional

two-factor ANCOVA as discussed by Winer (1962). Furthermore, contrast

coefficients allow for tests of more specific questions of interest.

Given the example presented above, where the A effect consists of two

conditions and the B effect consists of one control group (B^) and two

experimental groups (B^ and B^), the experimenter might be interested in a

comparison of the experimental groups of the B condition to the control group

(By) as the first question of interest. A second question might be if

there is a difference between the experimental groups over both A conditions.

Then, one may be interested in whether either or both of the B experimental

effects are different within the two A conditions.
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Note that in all questions, the interest lies in the effect of treatment

over and above that of the concomitant variable.

The model appropriate for this /JICOVA would be as follows:

[15] Model 10 Y = a^U + a-jA + a2Bj + a-^ + az>^Ei + a5AE2 + a6X0 + E10

Where: Y ■= criterion vector

U = unit vector

A = 1 if in condition A^; -1 if condition A2

B1 = 2 if in control group; -1 if in either experimental
group

B = 0 if in control group; 1 if in experimental group 1
(B2); -1 if in experimental group 2 (B3>

ABj = (obtained by A x Bj) = 2; AjB2 = -1; A^Bj = -1;

A^B^ *= v2;. A2E2 = ^2B3 =

AB2 = (obtained by A x B2) A^B^ = 0; A^B2 = 1; A^B^ = -1;

A2B'1 = 0; A2B2 = -1; A2B3 =- 1

XQ = concomitant variable

E1q = error vector

ag through ag = the regression weight associated with
the respective vectors
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There are three apparent advantages of contrast coding over the more

standard use of group membership vectors. First, the number of parameter

estimates are directly reflected by the number of weights (aQ through a&) used

in the model and, hence, lead to a more direct count of degrees of freedom.

Secondly, one can go directly to tests of the questions of interest by

restricting the appropriate weight of Model 10. For the four questions of

interest specified above this would result in four restricted models by

first setting a2 = 0, followed by a^ = 0, = 0, and finally = 0.

Each of the resulting restricted models would be compared to Model 10 above.

One could still test for an overall interaction effect or for either of

the main effects (A or B), by simply restricting all weights for the appropri­

ate vectors equal to 0. The third advantage of contrast coding is that it

allows for tests of the main effect without pooling the error term, thus

precisely duplicating the two factor ANCOVA as presented in Winer (1962).

While such a traditional analysis may not be superior, the authors suspect

that the difference in the two analyses would lead to somewhat different

conclusions. That is, the traditional ANCOVA and the use of contrast

coefficients analyze variance which is independent of all other sources in

the model; whereas, the use of standard group membership vectors yields

variance components that are in some way common to the interaction.

Summary

Hie use of contrast coefficients in multiple linear regression models

can provide a logical method of analysis for both ANOVA and ANCOVA. Three

distinct advantages were indicated in this paper. First, the number of

estimated parameters are directly indicated in the model, thus leading to

a more natural and direct count for degrees of freedom. Second, contrast

coding allows for the testing of specific variables of interest other than



-43-

the overall main effect and overall interaction effects. Finally, in the

case of a two-way ANCOVA, contrast coding does not require pooling interaction

with the error term and thus is an exact duplicate of ANCOVA as presented

in Winer (1962).

It would seem that the use of contrast coefficients allow for a

variety of types of analysis within the general linear model. This would

present future researchers with a more integrated concept of data analysis

rather than to contribute to fragmentation of the field by discussing

regression as separate from ANOVA with all its various subcategories. The

use of contrast coefficients encourages researchers to ask specific questions

which can be analyzed with F-tests which have only one degree of freedom in

the numerator. When there is only one degree of freedom in the numerator,

the researcher is in effect dealing with a single source of variability,

and as a result, is able to better interpret the meaning of the test of

significance. In overall main effects or interaction tests, the numerator

generally has more than one degree of freedom in the numerator. The

researcher must then attempt to interpret the test of significance realizing

that he is analyzing several sources of variability simultaneously.
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VARIATIONS BETWEEN SHRINKAGE ESTIMATION FORMULAS

AND THE APPROPRIATNESS OF THEIR INTERPRETATION

Isadore Newman
University of Akron

Abstract... This is a discussion paper dealing with
the use of shrinkage, different methods for estimating
shrinkage, and the accuracy of shrinkage estimates when
variables are preselected as in stepwise regression and
when variables are not preselected.

Everyone who Is familiar with multiple regression is well

aware that multiple correlations (R) tend to be biased upward.

That is, R tends to be higher in the sample than in the pop­

ulation from which the sample Is drawn. It Is also true that

the R calculated for any sample will tend to shrink when the

same regression weights are applied to an equivalent sample

that has been randomly drawn from the same population as the

first. The shrinkage In both cases Is due to the fact that

the regression weights are calculated to maximize the pre­

diction of the criterion.

In any sample in which a criterion Is being predicted

from a set of Independent variables, there Is a chance of

having sampling error. This sampling error Is capitalized

on when calculating the regression weights, so that the

predictive power for any one sample Is maximized. For this

reason, R tends to be somewhat of an overestimate of the

relationship between a set of Independent variables and the

criterion that exists.

Uhl and Eisenberg (1970) empirically Investigated the

accuracy of three shrinkage estimation formulas; Wherry’s
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orlgional formula (1931), KcNemar's modification (1962)

and Lord’s (1950) formula. These formulas are:
R2 = 1- (1 - R ) ^3^ (Wherry)

R = 1- (1 - R2) (McNemar)

R2 = 1- (1 - r2) |±K±1 (Lord)

corrected estimate of the multiple correlation
actual calculated multiple correlation
number of- Independent variables
number of Independent observations

where^
R = the
R = the
K = the
N = the

Uhl and Eslenberg found that even though Whery's and KcNemar's

formulas are the most commonly used, Lord’s formula consistently

gave more accurate estimates for the five different N sizes

they Investigated (n= 50, 100, 150, 250, 325) and for the

situations using two through thirteen predictor variables.

Nunnally (1967) states that shrinkage formulas are most

appropriate as unbiased estimates of R when the independent

variables are not preselected on the bases of their cor­

relation with the criterion. However, when the situation is

such that a number of tests are found to be correlated with

the dependent variable, and the most highly correlated are

then selected as the Independent variables for the regression

equation, Nunnally suggests that in these cases the shrinkage

formula may not reduce the R as much as Is needed. He feels

the best way to overcome such a problem is to employ as many

as 50 subjects for every variable.

Stepwise regression procedures will tend to capitalize

T* C & 1As the authors of the article pointed out, the cup -&s
study was actually one in which the shrinkage calcuia an
based on how much an R from one sample would deviate 1
R of an equivalent sample.
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more on chance variation then does traditional multiple

regression procedures. Therefore, even if shrinkage estimates

are employed when Interpreting stepwise regression results,

one should be cautious In interpreting the reliability of

any R calculated on a sample, and in generalizing that inter­

pretation to a population or to another sample.

Kelly, et al. (1969) suggests cross validation procedures

as estimates of shrinkage Instead of using the more math­

ematical approaches used by Wherry, FicNemar, and Lord. The

cross validation procedure estimates shrinkage by examining
2the differences in the R s from sample data.

Some of the differences In the shrinkage estimates, using

the different procedures may be explainable. For example,

Wherry’s and F’cNemar's formulas both attempt to estimate the

population R, based on the sample, while Lord's formula attempts

to estimate the R from one sample to another sample. This

Is conceptually similar to the cross validation procedure

suggested by Kelly. In deciding which method of estimating

shrinkage is to be used, It Is Important to consider the

underlying assumptions of each procedure.

In conclusion, when using regression procedures in which

the ratio between subjects and variables Is relatively small,

the Interpretation of R should be made with a great deal of

care. When In addition to a small ratio, the variables are

preselected, as they are In stepwise regression procedures,

the use of shrinkage estimates, while still helpful, may not

shrink enough to correct for the capitalization on chance
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varlation. Fore work is needed in developing and incorp­

orating appropriate shrinkage estimates when one is attempting

to generalize beyond the sample data.
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ADVERTISEMENTS for VIEWPOINTS Wanted

Advertise your: Books and Publications
Available positions
Availability for Employment,

Workshops, etc.

An ad of this size for a S.I.G. member - just $ 3.00
for nonmembers - $ 7.00

A full page ad for a S.I.G. member - just $15.00
for nonmembers - $35.00

AN INTRODUCTION TO THE BASIC CONCEPTS OF MEASUREMENT AND EVALUATION
By: Isadore Newman, Bill J. Frye, and Carole Newman

This book has been written in simple, plain talk for the
individual with little background who needs to develop a system
for classroom evaluation, and for the student who has been bogged
down in esoteric terms and formuli. The primary emphasis has been
placed on the treatment of basic concepts needed for understanding
and the practical application of measurement and evaluation. This
easy and concise method for teaching basic measurement concepts
was supported by an Research and Development Grant from the University
of Akron. The 132 page book can be obtained for $3.00 by writing
the authors, c/o College of Education, University of Akron,
Akron, Ohio, 44325
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DEPARTMENT OF COUNSELING
AND SPECIAL EDUCATION

The University of Akron
Akron, Ohio 44325

The Ph. D. Degree is awarded in Counseling, and
the Master's Degree is awarded in Counseling,
School Psychology and Special Education. All
programs are designed to emphasize the practical
application of theoretical concepts.

Requests for information related to admission
requirements and financial assistance should be
addressed to: Department Head, Department of
Counseling and Special Education, College of
Education, The University of Akron, Akron, Ohio
44325.

COMPUTER ASSISTED INSTRUCTION: THREE SELECTED
ARTICLES AND A CROSS REFERENCED ANNOTATED BIBLIOGRAPHY

Edited by Isadore Newman, University of Akron

An up-to-date reference is now available for people
interested in C.A.I. This very useful publication
was supported by a Phi Delta Kappa grant and can be
obtained for §3.00 by writing to:

Isadore Newman
Research and Design Consultant
College of Education
The University of Akron
Akron, Ohio 44325
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