

MULTIPLE LINEAR REGRESSION VIEWPOINTS

A publication of the Special Interest Group on Multiple Linear Regression of The American Educational Research Association.

Chairman: Judy T. McNeil, Department of Guidance and Educa-

tional Psychology, Southern Illinois University, Carbon-

dale, Illinois 62901

Editor: Isadore Newman, Research & Design Consultant, The

University of Akron, Akron, Ohio 44325

Secretary and Chairman-elect: James Bolding, Educational Founda-

tions, University of Arkansas, Fayetteville, Arkansas

72701

Cover by: David G. Barr

Layout by: Edward Lasher

If you are submitting a research article other than notes or comments, I would like to suggest that you use the following format as much as possible.

Title
Author and Affiliation
Single-spaced indented abstract
Introduction (purpose--short review of the literature, etc.)

Method
Results
Discussion (conclusion)
References using APA report

All manuscripts should be sent to the editor at the above address.

APPLICATIONS OF SETWISE REGRESSION ANALYSIS

John D. Williams University of North Dakota

In an earlier issue of <u>Viewpoints</u>, the setwise regression technique was first described (Williams and Lindem, 1971a). A companion publication (Williams and Lindem, 1971b) described the technique together with a description of a computer program to effect the solution. The documentation (Williams and Lindem, 1971c) of the program was also made available. The documentation was requested on a fairly large basis, so that no record has attempted to be made of it's use. Three specific applications of the technique are described in this presentation, however.

First, a description of the process would be useful. Setwise regression analysis is a technique that allows a stepwise solution when the interest is in sets of variables rather than in single variables. Thus, the setwise regression procedure bears a strong resemblance to the stepwise regression procedure. There are, however, advantages to be gained by the use of setwise regression analysis, and a disadvantage of the stepwise procedure is overcome. A disadvantage of the usual stepwise procedure is that it becomes inappropriate when there are more than two categories being binary coded. A simple example can be made with religious affiliation. Four categories might be used: Catholic, Protestant, Jewish and Other. Three binary (1 or 0) predictors can be made with the first three religious affiliations, and the fourth category can be represented as not having membership in the first three categories (i.e., all 0's). If religious affiliation were used in conjunction with other information, the stepwise procedure would not yield a valid indication of the importance of the religious variables. The setwise procedure, on the other hand, would allow a direct approach to such a situation.

The setwise procedure drops one <u>set</u> of variables at a time in a stepwise fashion. There will be as many steps as there are sets. The steps are accomplished by an iterative procedure that allows the R^2 term to be maximized at each

step in a backward stepwise procedure. Once a set is discarded, the set is no longer considered at later steps. One set is discarded at each step until there is only one set remaining.

A difficulty with the setwise procedure (and the more familiar stepwise procedure) is that, if typical probability tests are employed, they will over-estimate the significance at any given point. A partial solution to this problem has been offered by Landry and Ehart (1973) who wrote a program to measure the unique contribution in each set at the first stage of an analysis; their program includes a test of significance.

APPLICATIONS

One of the earlier applications of the setwise technique was made by Grooters (1971). Grooters was interested in predicting costs per student credit hour in four state colleges. The input data were means by department for 16 variables, forming nine sets. Four of the sets were single variables, four sets were logical sets and one set was formed among mutually exclusive binary sets similar to the religious set described earlier. Such a situation typically involves a linear dependency within the total set. To remove the dependency, any one of the variables within the set can be excluded, and the analysis can be performed. Using the setwise technique, Grooters was able to isolate a rather intriguing result; student costs are in some measure higher in departments that have a higher incidence of outside of school professional activity (consulting, speaking, local community work, artistic endeavors outside the college setting, etc.). Yet another interesting result was that the average salary paid per member in the department was the first set to drop out. In another study, Sando (1973) used the setwise technique to predict scores on a computer programming test.

To better illustrate the technique, a complete setwise printout in included. The problem considered was predicting the outcome of an election held among the

faculty in the Center for Teaching and Learning at the University of North Dakota (Williams, 1973). The specific problem involves 22 predictor variables that have been placed into six sets. The list of variables follows.

LIST OF VARIABLES

Set Number	Variable Number	Variable Name
1 1 1	1 2 3	Rank: Instructor Rank: Assistant Professor Rank: Associate Professor
2 2 2	4 5 6	Building Housed In: Building A Building Housed In: Building B Building Housed In: Building C
3 3 3 3	7 8 9 10	Previous Program: Indian Previous Program: New School Previous Program: College of Education Previous Program: New School & College of Education combined
3	11	Previous Program: New School & Arts & Sciences combined
4	12	Salary
4	13	Years in Rank
4	14	Years at the University
5 5 5 5	15 16 17 18	Previous Publications: Refereed articles Previous Publications: Books Previous Publications: Other Articles Previous Publications: Reports, speeches
6 6 6	19 20 21 22	Present Publications: Refereed articles Present Publications: Books Present Publications: Other Articles Present Publications: Reports, speeches

Variables 23-26 were criteria variables. The focus here is on Variable 24, number of votes for constituency council. Variables 10 and 11 refer to faculty who have previously been simultaneously employed by more than one unit.

Of the sets, three are mutually exclusive binary variables and three are logical sets. For example in set 1, no variable is listed for the rank of professor; this rank is zero-coded. Similarly for sets 2 and 3, a final category of "other" is not included and is zero-coded. On the other hand, sets 4-6 are made of variables that are logically related; the variables in sets 4-6 are essentially

VARIABLE	MEAN	STANDARD	CORRELATION	EGRESS	STD. ERROR	COMPUTED	BETA
NO.		DEVIATION.		FIC		ALU	
-	0.25000	0.43667		3.4102	4.89639	.6964	.4286
2		0.50169		.9960	.0113	2	.2882
3	0.21667	0.41545		.270	.769	6022	-2714
4	0.30000	0.46212	-0.11507	.5475	_	51	8
5				.62	-	1903	6060.
9				.357	-	0937	.0352
7	0.13333	0.34280	0.17457	1.41594	4.71332	0.30041	0.13971
8	0.31667	0.46910		.026	-	•0064	.0035
6				840		5	1135
10	0.11667	4		644		.3167	.1350
11	0.05000	0.21978		969		. 3941	.1073
12 120	63	3069.56558		000		. 504	1498
13	•	2.54117	-0.18142	-0.34032		\sim	.2489
14	3.71667	4.27880		690		.233	. 0860
1.5	0.50000	2,25869	0.22570	.160	0.48904	1 .	1043
91	•	0.75070		-0.50707			.1095
17	•	5.17760		.194		-	-2895
87	3.78333	7.11191		.015	0.11295	.135	.0313
61		2.04994		0.61272	_	.087	615
20	0.06667	0.51640		123	1.95482	1	.1669
21	0.21667	0.82527	.110	-1.10404	1.07647	.0256	.26
22 DEDENDENT	C. 90000	1.98641	S.	-0.12760	0.36355	-0.35099	-0.07274
1 1	2.71667	3.47431					
INTERCEPT		3.72447					
MULTIPLE C	CORK ELATION	N 0.52332					
00000	OF ECTIMATE						
	5	• 0				-	
					1		-

10 11

ANALYSIS OF VARIANCE FOR THE REGRESSION

1 1	5	1 - 1 - 1	
F VALUE 0.63431 0.72613	22 22 22 20 ARED=0.73830	ARED=0.75394	ARED=0.77154
MEAN SQUARES 8.86557 13.97663 27387 1-R-SQUARED=0	17 18 19 20 21 22 17 18 19 20 21 22 19 20 21 22 17 18 19 20 21 22 14 19 20 21 22 14 15 16 17 18 16 15 16 17 8	20 21 22 20 21 22 21 22 17 18 0=0.24606 1-R-SQUARED=0	21 22 22 18 SQUARED=0.22846 1-R-SQUARED=0
SUM OF SQUARES 195.04245 517.13525 712.17749 32 R-SQUARED=0.	REGRESSION 12 13 14 15 16 12 13 14 15 16 14 15 16 17 18 9 10 11 15 16 9 10 11 12 13 9 10 11 12 13	REGRESSION 15 16 17 18 19 17 18 19 20 21 15 16 17 18 19 12 13 14 19 20 12 13 14 15 16 0.49605 R-SQUARE	REGRESSION 20 21 22 18 19 20 19 20 21 15 16 17 0.47798 R-
DEGREES OF FREEDO 22 37 59 ELATION=0.52	S INCLUDED IN 7 8 9 10 11 4 5 6 12 13 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8	INCLUDED IN 0 11 12 13 14 2 13 14 15 16 7 8 9 10 11 7 8 9 10 11 CORRELATION	INCLUDED IN 5 16 17 18 19 0 11 15 16 17 0 11 12 13 14 CORRELATION=
TO REGRESSION OM REGRESSIONMULTIPLE CORR	VARIABLE 4 5 6 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 MULTIPL	VARIABLES 7 8 9 1 1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3	VARIABLES 12 13 14 1 5 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1
SOURCE OF VARIATION ATTRIBUTABLE TO REGRESS DEVIATION FROM REGRESSI FOLL MODELMULTIPLE C	0UT MULT-R 1 0.50905 2 0.51157 3 0.48533 4 0.49977 5 0.50329 6 0.48053 DROPPED IS	00T MULT-R 1 0.49605 3 0.46846 4 0.48165 5 0.49048 6 0.47093 DROPPED IS	3 0.45072 4 0.44115 5 0.47798 6 0.46543 DROPPED IS
ATTR DEVI	SET O	SET	

	0.31889 -0.22578 -0.00006			
.80525	COMPUTED T VALUE 2.48046 -1.01532 -0.00028			F VALUE
1-R-SQUARED=0.80525	STD. ERROR OF REG. COEF. 0.00015. 0.30403 0.18384			
ON R-SQUARED=0.19475 ON R-SQUARED=0.13262	REGRESSION COEFFICIENT 0.00036 -0.30869 -0.00005		THE REGRESSION	MEAN SQUARES 31.48370 11.03083
I ON I ON I ON	CORRELATION X VS Y 0.28742 -0.18142 -0.11266		FOR	SUM OF SQUARES 94.45111 617.72656 712.17749
INCLUDED 20 21 22 11 19 20 11 12 13 CORRELATI CORRELATI CORRELATI CORRELATI	STANDARD C DEVIATION, 3069.56558 2.54117 4.2788C	-0.86552 0.36417 3.32127	YSIS OF VARIANCE	DEGREES OF FREEDOM 3 56 59
T-R 755 1 1688 1131 15 6 17 1 17 1 19 9 7 4	MEAN 1.44922 3.50000 1.71667	CORRELATION IR OF ESTIMATE	ANALYSI	SOURCE OF VARIATION ATTRIBUTABLE TO REGRESSION DEVIATION FROM REGRESSION TOTAL
SET OUT MULT- 3 0.4275 4 0.4268 6 0.4413 SET DROPPED 1S SET OUT MULT- 3 0.3641 4 0.3497 SET DROPPED 1S	VARTABLE NO. 12 12063 13 2 14 3 DEPENDENT 24 2	INTERCEPT MULTIPLE COR STD. ERROR O		SOURCE OF VA ATTRIBUTABLE TO DEVIATION FROM R TOTAL

continuous in nature. The print-out follows.

The first portion of the printout, following the listing of the variables in each set, is a full regression solution with all predictor variables included. After the full regression solution, each step in the setwise solution is shown. For example, in the first step, each of the sets are in turn considered for elimination. Because dropping set 2 would allow for the highest R value, set 2 is dropped. This process continues until only one set remains. For this particular problem, set 4, which includes salary (variable 12), years in rank (variable 13) and years at the University (variable 14), is the final remaining set.

A complete listing of the program is available to interested readers.

REFERENCES

- Grooters, L. L. A study of program offerings and factors affecting instructional salary costs in major curricula at the four state colleges in North Dakota.

 Doctoral Dissertation, University of North Dakota, 1971.
- Landry, R. G., and Ehart, J. Unique: A regression analysis of the uniqueness and specificity of predictor variables and sets. Educational and Psychological Measurement, 1973, 33, 181-183.
- Sando, R. The identification of personal and curricular variables related to achievement in COBOL. Doctoral Dissertation, University of North Dakota, 1973.
- Williams, J. D. Combining competing units in higher education: An analysis of voting patterns. Unpublished manuscript, 1973.
- Williams, J. D., and Lindem, A. C. Setwise regression analysis--A raw data analytic tool. <u>Multiple Linear Regression Viewpoints</u>, 1971a, 2, 25-27.
- Williams, J. D., and Lindem, A. C. Setwise regression analysis--A stepwise procedure for sets of variables. <u>Educational and Psychological Measurement</u>, 1971b, 31, 747-748.
- Williams, J. D., and Lindem, A. C. <u>Setwise Linear Regression</u>. UND Computer Center Special Report, No. 30, November, 1971c.

RALPH O. BLACKWOOD

Using operant conditioning to eliminate misbehavior, motivate their students, and refine academic skills, classroom teachers have succeeded amazingly. Operant Control of Behavior gives you these behavior modification methods in clear language with real classroom examples. In addition, this book goes beyond the "simple operant conditioning" which has become so popular and so successful among the most informed educators, and brings you a new way to teach your students self-control. With this new method, called mediation training, you adapt operant laws to complex humans, teaching them self-control. You no longer monitor students continuously, handing out each reward: the students use their own covert speech to set up Mediation training for their own schedules of reinforcement. self-control is a powerful addition to any teacher's tool kit and, by itself, is well worth the price of Operant Control of Behavior. ISBN 0-912784-01-6 Paperbound 249 Pp.

EXORDIUM PRESS
Box 606-S
Akron, Ohio 44308

Utilization of Multiple Regression Analysis in

Changing the Verbal Behavior Patterns of Elementary

Classroom Teachers Through Self-evaluation

Margaret E. Cummins

ABSTRACT

Multiple regression analysis was used to investigate the effectiveness of a self-evaluation technique in changing the verbal behavior patterns of elementary classroom teachers. Three ratios were employed: the I/D ratio, or ratio of indirect to direct statements by the teacher; the TRR, or teacher response ratio which eliminates questioning and lecturing from the total I/D ratio; and the PIR, or the ratio of pupil talk-response to pupil talk-initiated. The self-evaluation technique for changing the verbal behavior patterns of elementary classroom teachers was not found to be significant for any of the three measures.

INTRODUCTION AND RATIONALE

The control of the pattern of the classroom teacher's verbal interaction with the pupils in her class is just one of the methods the teacher may use to establish a desirable social climate in her classroom which can in turn increase the amount and quality of pupil learning. Ruth Cunningham (1951) called this desirable social climate democratic living which provides an opportunity for making meaningful choices on the basis of discussion and evaluation permitting the skills of selfmanagement and interaction to develop.

Cecil V. Millard (1953) indicated that the quality of group
living was a significant factor effecting the quality of education
received by children. Millard further suggested that a child who is
threatened by teacher mandate, arbitrary assignments, discriminating
marking and undesirable grouping, is a candidate for delinquent activity.

Ned A. Flanders (1960) pictures the teacher as the source of influence which supports or initiates the acts or patterns of action in the social process which change the set of social relationships in the social structure.

The purpose of this investigation was to demonstrate that teachers, through a self-evaluation process, could improve the quality of the verbal interaction patterns in their classrooms and thereby improve the climate of the classroom in such a way as to enhance the learning taking place. A self-evaluation treatment instrument was designed which was comprised of a series of guideline questions compatible with the goal of increasing supportive behaviors and flexibility of verbal patterns used by teachers. The self-evaluation treatment was also compatible with Flanders' system of interaction analysis which was selected as the measurement instrument (Amidon and Flanders, 1967). The instrument designed for this study was named "Improvement through Self-evaluation" (ITSE). It was intended that this treatment process would help teachers improve the quality of their verbal interaction patterns through assessment of their own behavior.

METHOD

Sample: The Ss were 29 volunteer elementary classroom teachers from a small city school system. This sample represented over 46% of the available population. The use of volunteers limited the sample population but this procedure was deemed necessary because it was believed that neither participation now change could be mandated and

many teachers had personal and professional obligations which precluded participation in projects demanding extra time. It was expected that random assignment of volunteers into the experimental and control groups would partially overcome this bias.

Procedure and Design: The study encompassed a time period of ten weeks. All subjects attended three group meetings. The first meeting included all Ss and procedures common to both conditions were explained. The two subsequent meetings were held with subjects in Condition I and II in separate study groups.

Each S received a cassette tape for recording forty-five minutes of instructional proceedings. These first tapes were collected within a week and were used at the conclusion for pretest evaluation.

Ss in Condition I were presented with a cassette tape to use as a practice tape in self-evaluation. During the self-evaluation period, these Ss were asked to make at least one tape a week. This was to be done at the S's convenience. They were also instructed to prepare a summary of conclusions from the self-evaluation session to be given the E. This summary was to serve as a reliability check that procedures were being followed consistently.

Ss in Condition II engaged in a project developed for their group which was a modification of a study conducted by Edmund Amidon and Ned A. Flanders (in Howes, 1970, Pp. 200-209). Because the project emphasized pupil self-directed group work, it would be less likely to influence the teacher's behavior during interaction taping sessions.

At the end of the ten week period each S received another cassette tape to prepare forty-five minutes of class work involving interaction between teacher and the pupils. Fifteen minutes of the pretest and posttest tapes were scored using Flanders' interaction analysis.

The selection and training of two scorers followed recommendations of Flanders (1965). The reliability between scorers was checked using Flanders' modification of Scott's coefficient for converting tallies into per cent figures. A coefficient of .8 was the minimum accepted. The two scorers tallied verbal responses simultaneously to assure analysis of the same verbal interaction sequence.

At the close of the experimental period, 26 Ss remained. The 104 tally sheets resulting from each scorer's numerical categorization of the pretest and posttest tapes were compiled into matrices. From these matrices three ratios were calculated. The first ratio was the I/D ratio, or ratio of the total indirect to direct teacher statements. The second ratio was the TRR, or teacher response ratio which eliminates the asking of questions and lecturing categories. This ratio minimizes the effect of subject matter on the ratio. The third ratio calculated was the PIR, or pupil initiation ratio. This ratio was proposed by Flanders (1970) to indicate the proportion of pupil talk which was initiated by the pupil as opposed to being a response to a teacher question.

Since it is believed that the ratios are only estimates of the true value, a better estimate of the true value of the ratios computed from the matrices was considered to be the average of the two ratios.

RESULTS

In order to determine if the ratios obtained by the subjects in Condition I who used the ITSE program were significantly different from the ratios of the subjects in Condition II who did not use the treatment program, an analysis of covariance using multiple regression models was used. Six models were used to determine if there was a significant difference between ratios obtained by the two groups when the pretest scores were held constant.

Table 5 presents the statistical models and the resulting data. The format follows that suggested by Newman (1972). Examination of Table 5 reveals that the probability level of .05 set for rejection of the null hypotheses was not obtained for any of the ratios. It must be concluded, therefore, that there was no significant difference between the I/D ratios, the TRR, or the PIR of the two groups of subjects.

From the examination of the weekly summaries prepared by Ss in Condition I, 5 factors in the design appear to require reexamination before replication even though the importance and influence of these factors cannot be determined.

- All external peer reinforcement had been eliminated.
 This required suppression of excitement of enthusiasm which might have been generated by the use of ITSE.
- The design of ITSE did not provide opportunity to practice converting ideas into overt behavior.
- 3. The weekly written summaries varied greatly. These summaries could possibly have been made more effective

TABLE 5

MODELS, F-RATIOS, AND R² FOR PREDICTING POSTTEST SCORES OF SUBJECTS

Models and Explanations	Models	R ²	df	ÇL,	д
Hypothesis 1: An analysis of covariance (Pretest score was covaried) to determine if there was significant difference between the I/D ratios of SsGI and SsC-II.	st score ere was n the				
Model 1 $Y_1 = a_0 U + a_1 X_1 + a_2 X_7 + a_3 X_8 + E_1$	Ful1	.03	1,03	6	;
Model 2 $Y_1 = a_0 U + a_1 X_1 + E_2$	Restricted	.02	1/73	1/23 0.23	•
Hypothesis 2: An analysis of covariance (Pretest score was covaried) to determine if there was significant difference between the TRR of the SsC-I and SsC-II.	st score ere was n the				
Model 3 $Y_2 = a_0U + a_1X_3 + a_2X_7 + a_3X_8 + E_3$	Pull	.16			
Model 4 $Y_2 = a_0 U + a_1 X_3 + E_4$	Restricted	.03	1/23	3.43	80.

Note. - Table 5 continued on the following page

Table 5 - Continued

Models and Explanations	Models	R ²	df	[t4	ч
Hypothesis 3: An analysis of covariance (Pretest score was covaried) to determine if there was significant difference between the PIR of the SsC-I and SsC-II.	est score here was en the PIR				7
Model 5. $Y_3 = a_0U + a_1X_5 + a_2X_7 + a_3X_9 + E_5$ Model 6 $Y_3 = a_0U + a_1X_5 + E_6$	Pu11	.20	1/23	1/23 0.96 .34	.34

if a guide form had been used which would have helped reduce this variability.

- 4. The use of less than 1000 tallies as suggested by Flanders (1970) may have caused ratios to be spuriously high. However the PIR and TRR as used were designed by Flanders to overcome this instability.
- 5. The length of time involved in weekly taping and the use of malfunctioning tape recorders caused expressed frustration and irritation to the Ss in Condition I.

CONCLUSIONS

The findings of this study were that the use of ITSE did not significantly change the ratios obtained as measured by the application of Flanders' interaction analysis to audio tapes. The limiting factors presented leave the value of the instrument as an in-service tool still in question. Further research should be undertaken to overcome the weaknesses of this study.

BIBLIOGRAPHY

BOOKS

- Amidon, Edmund J., & Flanders, Ned A. The role of the teacher in the classroom. (Rev.ed.) Minneapolis: Association for Productive Teaching, 1967.
- Amidon, Edmund J., & Flanders, Ned A. Self-directed group work in the elementary school. In Virgil M. Howes, <u>Individualization of instruction</u>. New York: The Macmillan Company, 1970. Pp. 200-209.
- Amidon, Edmund J., & Hough, John B. (Ed.) <u>Interaction analysis: theory, research, and application</u>. Reading: Addison-Wesley, 1967.
- Cunningham, Ruth, and associates. <u>Understanding group behavior of boys</u>
 and girls. New York: Bureau of Publications, Teachers College,
 Columbia University, 1951.
- Flanders, Ned A. Analyzing teaching behavior. Reading: Addison-Wesley, 1970.
- Flanders, Ned A. Diagnosing and utilizing social structures in classlearning. The dynamics of instructional groups. Fifty-ninth Yearbook of the National Society of the Study of Education, Part II. Chicago: University of Chicago Press, 1960.
- Flanders, Ned A. <u>Interaction analysis in the classroom</u>. Ann Arbor: The University of Michigan, 1965a.
- Flanders, Ned A. Teacher influence in the classroom. In Arno A. Bellack (Ed.), <u>Theories and research in teaching</u>. New York: Bureau of Publications, Teachers College, Columbia University, 1963. Pp. 37-53.
- Flanders, Ned A. <u>Teacher influence, pupil attitudes, and achievement.</u>
 Washington: U. S. Department of Health, Education, and Welfare,
 1965b.
- Flanders, Ned A. Teacher behaviors and in-service programs. In Edmund J. Amidon & John B. Hough (Ed.), <u>Interaction analysis: theory</u>, research, and application. Reading: Addison-Wesley, 1967. Pp. 256-261.
- Hough, John B. & Edmund J. Amidon. <u>Behavioral change in preservice</u>
 <u>teacher preparation: an experimental study</u>. <u>Philadelphia: College of Education</u>, Temple University, 1964.

- Kelly, Francis J., Beggs Donald L., McNeil, Ruth A., Eichelberger, Tony, & Lejon, Judy. <u>Multiple regression approach</u>. Carbondale, Illinois: Southern Illinois University Press, 1969.
- Millard, Cecil V. Child growth and development in the elementary school years. Boston: D. C. Heath and Company, 1951.
- Popham, W. James. Educational statistics. New York: Harper and Row, 1967.

PERIODICALS

- Campbell, James Reed. A longitudinal study in the stability of teachers verbal behavior. Science Education, 1972, 56(1), 89-96.
- Moon, Thomas C. A study of verbal behavior patterns in primary grade classrooms during science activities. <u>Journal of Research in Science Teaching</u>, 1971, 8, 171-177.
- Newman, Isadore. A suggested format for the presentation of multiple linear regression. <u>Multiple Linear Regression Viewpoints</u>, 1972, 2, 44-45.

Incorporating Cost Information into the Selection of Variables in Multiple Regression Analysis

John T. Pohlmann
Southern Illinois University at Carbondale

The problem of finding the best regression equation is considered from the standpoint of predictor costs. Typically, variables are selected for inclusion in prediction equations on the basis of their unique contribution to the prediction of a criterion. A method is presented whereby losses due to lack of predictability and predictor costs are combined in a loss function. The best predictor set is then chosen that simultaneously minimizes losses incurred in measuring the predictors and losses incurred from lack of predictability of a criterion variable.

Incorporating Cost Information into the Selection of Variables in Multiple Regression Analysis

John T. Pohlmann Southern Illinois University at Carbondale

The typical variable selection problem may be summarized as follows: Given a criterion variable, Y, whose variance you wish to account for by using a potential set of k predictors X_i , i=1 to k, find a subset of X_i which will do the best job of predicting Y. This task usually reduces to eliminating X_i 's that do not uniquely account for a specified minimum amount of variance in Y. Due to the cost factors involved in obtaining measures on the various X_i 's, this final set of predictors should be as small as is possible to achieve the desired degree of prediction accuracy.

Traditional Solutions to the Problem

The most widely used method for solving this problem is to try various combinations predictors until each predictor uniquely accounts for a significant proportion of variance in Y at some specified alpha level. Hence the final set of predictors is composed of only those variables that make significant contributors to predicting Y. Various algorithms exist for testing the unique contributions of each X_i . Draper and Smith (1:163) suggest two goals that should guide a researcher in selecting the "best" subset of X_i . First, the final regression equation should be useful for prediction purposes, and secondly, because of the costs involved in obtaining measures on the various X_i 's, the equation should

contain as few X's as possible. In order to achieve this goal, various stepwise regression procedures may be employed. Each of these procedures specifies an orderly process whereby various combinations of predictors are tried until only the most efficient subset of X_i is left. Efficiency implying that the maximum amount of variance in Y is accounted for with the smallest set of predictors.

Since all stepwise procedures, either directly or indirectly, use only the proportion of variance accounted for in Y as the criterion for including X_i 's in the final predictor set, we must assume that an implication is made that each X_i costs the same to measure. This implication follows since none of the standard stepwise regression algorithms incorporate cost information in the selection of predictors.

The position taken in this paper is that Draper and Smith's second goal should be modified as follows:

Because of the costs involved in obtaining X_1 's, the model should contain the least expensive subset of X_1 as is possible.

This modification suggests that the goal of selecting the most efficient subset of X_i should be characterized by selecting X's that account for the maximum amount of variance in Y, while simultaneously minimizing the cost of the final subset of X_i .

The Nature of Cost

Each potential predictor can be assigned a cost value on the basis of many factors. Costs are incurred in measuring variables depending upon 1. the actual purchase price of the measuring instruments, 2. the time required to obtain each measure, 3. the difficulty encountered in

scoring or ennumerating a subject's performance, or 4. the sophistication, and hence the cost of the staff required to administer the measuring device. In general, time, dollar costs, and complexity all contribute to the cost of measurement. In an applied setting where cost factors are critical, any selection procedure which fails to consider these kinds of factors is not an ideal one.

A Method of Selecting Variables Using Cost Information

In a standard regression equation the solution for the weighting coefficients minimizes the residual variance in the criterion after the predicted scores have been extracted. It may be assumed that some loss is incurred when criterion variance cannot be accounted for, and regression analysis is seen as a means by which these losses may be minimized. Various regression models can be compared with regard to their usefulness in minimizing the criterion residual variance, and hence the losses incurred when the model is used. Another loss is realized when costs are incurred in the measurement of the predictor variables. Consequently, two sources of loss are present, the first being losses incurred by lack of predictability and secondly, losses incurred in gathering predictive information. These two sources of loss should be minimized in the solution for the "best" regression model.

These two sources of loss may be incorporated into a common loss function and the task of model selection may be reduced to finding the model which serves to minimize the common loss. The loss function presented here assumes that the two types of loss are additive. That is, losses due to lack of predictability and predictor measurement may be added in the derivation of the common loss function. This loss function may be characterized

as follows:

$$L_{I} = k_{1} (c_{1} \times cost_{I}) + k_{2} (c_{2} \times (1 - R_{I}^{2}))$$
 (1)

where L = the resulting loss value for the regression equation using predictor subset I.

 k_1 and k_2 = constants that will allow differential weighting of cost and validity information.

cost = the costs incurred in measuring the predictor subset I.

 $(1-R_{\rm I}^2)$ = the proportion of variance in Y that cannot be accounted for by the regression equation using predictor subset I. R^2 is the squared multiple R.

c₁ and c₂ = weighting coefficients derived so that cost data and validity data can be reduced to a common scale.

The constants k in equation (1) allow the researcher to determine which source of loss will be more important in the derivation of the common loss value. For example, if $k_1 = 1$ and $k_2 = 2$, the researcher is solving for the regression model where losses due to lack of predictability are twice as important as losses stemming from predictor costs.

The term $\cos t_{\rm I}$ in equation 1 may be the dollar amount spent in measuring predictor subset I or it may be the time required to obtain the measures. In general, it represents that cost factor the researcher wishes to minimize in selecting the "best" model. The values c_1 and c_2 are weighting coefficients which when multiplied by the $\cot t_1$ values and the $1 - R_1^2$ values reduce them to a common scale of measurement. For convenience sake, they may be derived in such a way so that the sum of their values will equal 1.0. This may be accomplished by finding the sum of the cost values for all of the predictor subsets, taking the reciprocal, and then by dividing this value into each $\cot t_1$. A revised cost value will emerge for each predictor subset, which

when summed will equal 1. Algebraically this rule is given as follows:

Let cost = the cost of measuring subset I

J = the total number of predictor subsets
under consideration

The value of c_1 in equation (1) is then given by

$$c_1 = \left(\sum_{i=1}^{J} cost_i\right)^{-1}$$
 (2)

This same procedure is used substituting $(1 - R_I^2)$ for $cost_I$ in equation 2 to give c_2 .

The discussion that follows shows how the method can be applied to a specific problem. The method proceeds as follows:

Step 1. After the costs have been assigned to each predictor set, those subsets that exceed a maximum tolerable cost are eliminated. Step 2. The cost values are then divided by the sum of the cost values, to give a revised cost value. Step 3. The relative loss incurred for each predictor subset due to its lack of predictability is given by $(1 - R_1^2)$, where R_1^2 is the proportion of variance in Y accounted for by predictor subset I. Step 4. The values $(1 - R_1^2)$ are then divided by the sum of the $(1 - R_1^2)$ values for all predictor sets. Step 5. The values for losses due to predictor cost found in step 1 are added to the values for losses due to lack of predictability found in step 4. The predictor subset with the lowest sum is then chosen as the predictor set.

This final loss structure given in step 5 gives an index for the selection of each predictor subset that weights both cost and validity information. The predictor set with the lowest final combined loss value is, of course, the set chosen.

Sample Problem

Assume that you have cost and validity information on all possible combinations of three predictors for predicting some criterion. Further, assume that you can spend no more than \$10.00 per subject in obtaining the required data. The problem is to find the subset of predictors which will do the best job of predicting Y for the least amount of money.

Table 1 shows how the analysis is conducted for the sample problem. Column A contains the cost information for each predictor subset. The predictor set (1, 2, 3) was rejected from further analysis since its dollar cost exceeded the maximum allowable cost. Column B contains the adjusted cost values. The adjustment was obtained by dividing each cost value by the sum of the costs to give a cost value that sums to 1.0. Column C contains the loss information based on the validity of the subset. The value 1 - R² for each predictor subset was chosen as the appropriate indicator of loss due to lack of predictability. Column D contains the adjusted validity loss values. As with the cost data, these adjusted values were obtained by dividing each 1 - R2 by the sum of the 1 - R2's for all of the predictor subsets. Column E represents the final composite loss value for each predictor subset. The values in Column E were obtained by adding the respective values for each subset in Columns B and D. The values in Column E represent a loss incurred when each predictor subset is used, equally weighting cost and validity data. Column F shows the respective loss values when validity data is weighted three times as important as losses due to predictor cost. When cost and validity data are equally weighted the predictor set containing variable 3 only is the preferred subset. When validity data is weighted as being three times as

important as cost data, the predictor set containing variables 2 and 3 $_{
m is}$ the preferred set.

insert Table 1 about here

Discussion

The method for selecting the "best" predictor set in a regression analysis problem presented here insures that cost information will be incorporated into the selection process. This method of approaching the variable selection problem suggests that researchers should try to extract as much predictability out of a set of variables as is possible. Researchers should try to fit various transformations of the original variables, since the cost of transforming the original variables is nil. Higher order polynomial functions should be attempted, along with cross product (interaction) transformations. These transformations are indicated since the cost of obtaining the original measurements is not changed when these complex models are tried. If a researcher is concerned about the possible shrinkage in R^2 that is usually realized when such complex functions are used, he could replace validity data with cross-validated R^2 's where original R^2 's were used in this sample problem. All of the methodological safeguards that are presently employed in selecting a predictor subset should still be used with this method, but an attempt should be made to simultaneously minimize the costs of predicting criteria.

REFERENCES

1. Draper, N.R.; Smith, H. Applied regression analysis. New York: Wiley, 1966.

A Table Depicting Cost and Validity Data, and the Derivation of the Final Loss Function for Selecting the "Best" Predictor Subset

Variables in the Predictor Set	1	2	-26· ω	1, 2	1, 3	2, 3		9 ()
in the r Set				2	ω	ω	1, 2, 3	0 (null set)
Cost	\$ 5	4	2	9	7	6	11	0
Revised Cost Value	. 15	.12	.06	. 27	.21	.18	*	.00
1 - R ² where R ² is the proportion of variance in Y Accounted for by the Predictor Set	.50	.55	.60	.45	.40	.35	1	1.00
Revised Loss Value	.13	.14	.16	.12	.10	.09	1	. 26
Combined Loss Value (B + D)	.28	. 26	. 22	.39	.31	.27	1	. 26
Combined Loss Value on the Basis of Validity Being Three Times as Important as Cost (B + 3D)	.54	.54	.54	.63	51	.45	1	.78

*Set (1,2,3) was immediately rejected since its costs exceeds the \$10.00 maximum. Sum of Cost = 33 Sum = 1.00 excluding (1,2,3) Sum = 3.85Sum = .97

SECONDARY EDUCATION

THE UNIVERSITY OF AKRON AKRON, OHIO 44325

THE MASTER OF ARTS DEGREE IS AWARDED IN SECONDARY EDUCATION

AND Ph.D. ALSO IN SECONDARY EDUCATION, WITH SPECIALTIES IN SUCH

AREAS OF VOCATIONAL EDUCATION, BUSINESS, LANGUAGE, SOCIAL SCIENCE,

SCIENCE AND OTHERS.

ALSO THERE IS AN OPPORTUNITY TO SPECIALIZE IN CAI. DR. JOHN
HIRSCHBUHL, DIRECTOR OF CAI IS LOOKING FOR A RESEARCH ASSISTANT
TO WORK WITH HIM IN EVALUATING AND DEVELOPING CAI PROGRAMS.
REQUEST FOR INFORMATION RELATED TO ADMISSION REQUIREMENTS AND
FINANCIAL ASSISTANCE SHOULD BE ADDRESSED TO, DEPARTMENT HEAD,
SECONDARY EDUCATION, COLLEGE OF EDUCATION, THE UNIVERSITY OF
AKRON, AKRON, OHIO 44325.

The Use of Contrast Coding to Simplify ANOVA and ANCOVA

Procedures in Multiple Linear Regression

Ernest L. Lewis, Assistant Professor

and

John T. Mouw, Associate Professor

Southern Illinois University at Carbondale

Abstract

Multiple regression (MR) is a powerful and flexible techniques for handling data analysis. The present paper presents a discussion of the use of "contrast coding" in performing analysis of variance and analysis of covariance procedures in MR. Contrast coding provides a method for coding nominal variable in the set of predictor vectors in MR so that such vectors reflect a set of orthogonal comparisons. As a result, one is able to test hypotheses concerning more specific research questions than those usually tested in more traditional MR coding procedures. By adding more components to the general linear model, contrast coding provides a relatively simple and logical basis for extending analysis of variance to its various subclassifications.

Cohen (1968) presented a discussion of contrast coding in multiple
linear regression models for use in analysis of variance (ANOVA) and
analysis of covariance (ANCOVA). The general theme of Cohen's article was
that the main effects and interaction of ANOVA and ANCOVA can be reflected
in a linear model through the use of specifically coded predictor vectors.
Other writers have referred to these vectors as dummy vectors, nonsense
coded vectors, or group membership vectors. In our work with multiple
regression, we have found Cohen's system of contrast coding to provide a
very logical and relatively simple method for developing regression models
to answer more specific questions than the overall main effects and interaction
tests generally applied in ANOVA. One purpose of this paper is to present

a discussion of the use of contrast coding to reflect orthogonal comparisons.

We have also found that, as Cohen suggests, contrast coding can easily be applied in ANCOVA. Further, we found that for a two-way analysis of covariance, contrast coding leads to a more exact duplication of traditional analysis of covariance than does the standard method of designating group membership predictor vectors. A second purpose of this paper is to present a discussion of the application of contrast coding to ANCOVA.

Analysis of Variance

Consider an experiment in which two treatment conditions are to be compared. In this case, Winer (1962) indicates that each individual score results from a number of sources of variability. According to Winer,

[1]
$$X_{ij} = \mu + \tau_{j} + e_{ij}$$

Where: X_{ij} = an observation on person i under treatment j

µ = grand mean of all potential observations

τ_j = effect of treatment j

e_{ij} = error associated with X_{ij}

In order to answer the question of whether there is a significant difference between Treatments 1 and 2 in a standard regression model (Bottenberg & Ward, 1963; Kelly, Beggs, McNeil, Eichelberger and Lyon, 1969), one would employ the following full model:

[2] Model 1
$$Y = a_0U + a_1X_1 + a_2X_2 + E_1$$

Where: Y = vector of criterion scores

U = unit vector (all elements are 1)

X₁ = 1 if the corresponding criterion score comes from
Treatment 1; 0 otherwise

X₂ = 1 if the corresponding criterion score comes from
Treatment 2; 0 otherwise

E = error vector

 a_0 , a_1 , a_2 = partial regression weights

It will be noted that Y corresponds to Winer's X_{ij} ; a_0 to Winer's μ ; a_1 and a_2 to Winer's τ_j and E_j to Winer's e_{ij} . To determine if a significant difference exists between Treatments 1 and 2, Model 1 would be compared to a restricted model (Model 99) which would contain only the unit vector as a predictor vector and an error vector.

[3] Model 99
$$Y = a_0 U + E$$

Using contrast coding to reflect Treatments 1 and 2, the following full model would result:

[4] Model 2
$$Y = a_0^U + a_1^{X_1} + E_2$$

Where: Y = criterion scores

U = unit vector

X₁ = 1 if criterion from Treatment 1 or -1 if criterion
 from Treatment 2

 E_2 = error vector

 a_0 , a_1 = partial regression weights

To answer the question as to whether or not Treatments 1 and 2 are different, Model 2 would be compared to Model 99.

The advantage of contrast coding in the above example seems to be in the determination of degrees of freedom. It will be noted that the analysis in

this example consists of a simple t-test or an F-test with one degree of freedom in the numerator. In order to perform this analysis, one must set a_1 and a_2 from Model 1 equal to 0. This loss of two vectors results in a loss of only one degree of freedom because there is a linear dependency existing within the set of vectors U, X_1 , and X_2 in Model 1. In Model 2, no linear dependencies exist in the predictor variables. As a result, the test for a significant difference between Treatments 1 and 2 is accomplished simply by setting $a_1 = 0$. As a result, the restriction of one regression weight accurately reflects the appropriate number of degrees of freedom for this analysis.

If one were to expand the above two-group example to include four treatment conditions, the advantages of contrast coding in ANOVA become more apparent. If Treatments 3 and 4 are added, the addition of X_3 and X_4 to Model 1 would be required in order to allow for the main effects of Treatments 3 and 4. Model 1 would then be revised to be:

[5] Model 3
$$Y = a_0 U + a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_4 + E_3$$

Where:
Y, U, X₁, and X₂ are as defined in Model 1

X₃ = 1 if Treatment 3, 0 otherwise

X₄ = 1 if Treatment 4, 0 otherwise

E₃ = error vector

a₀, a₁, a₂, a₃, a₄ = partial regression weights

To test for an overall main effect of treatments, the following restriction would be placed on Model 3:

It can again be seen that there is one more predictor vector restricted out than degrees of freedom lost. Unless one employs a series of dependent t-tests, the overall treatment main effects appears to be the only question which can be asked and tested in the above regression framework.

Using contrast coding, Model 4 might be used to reflect the various treatment conditions.

[6] Model 4
$$Y = a_0U + a_1X_1 + a_2X_2 + a_3X_3 + E_4$$

Where: Y = criterion scores

U = unit vector

E₄ = error vector

 a_0 , a_1 , a_2 , a_3 = partial regression weights and where the elements in X_1 , X_2 , and X_3 reflect the linear, quadratic and cubic trends and are as follows:

Ιf	criterion i	X ₁	$\mathbf{x_2}$	x ₃
	Treatment 1	-3	1	-1
	2	-1	-1	3
	3	1	-1	-3
	4	3	1	1

The elements presented here are the standard coefficients for orthogonal polynomials. The use of these values would result in X_1 , X_2 , and X_3 being uncorrelated. As a result, it is possible to partition the variance into its three independent sources.

If one were concerned about asking the overall main effect question, it

would be necessary to set $a_1 = a_2 = a_3 = 0$. This test of significance would result in precisely the same outcome as the use of 1 and 0 group membership vectors as presented in Model 3. However, it is possible to ask more specific questions given orthogonal coefficients. One may not only be interested in the overall main effect question. The research hypothesis in a particular research project might be that "the average of Treatment Groups 1 and 4 is different from the average of Treatment Groups 2 and 3" (in other words, the difference follows a quadratic trend). Given Model 4, it would simply require that a_2 be set equal to 0 in order to answer this very specific question.

As indicated above, the values in the vectors are standard coefficients for orthogonal polynomials. It may be that such coefficients do not reflect a particular question of interest. One might want to ask the question as to whether the effect of Treatment 1 equals the average effect of Treatments 2, 3, and 4. Since the standard coefficients for orthogonal polynomials do not reflect this particular question, it would be necessary to establish a different set of coding coefficients. Since the question as to whether Treatment 1 equals the average of Treatments 2, 3 and 4 would require coding coefficients in the predictor vectors to reflect the differential weighting of the Treatments, an appropriate set of coding coefficients might be: Treatment 1 = 3; Treatment 2 = -1; Treatment 3 = -1; Treatment 4 = -1. The values in vectors X_1 , X_2 , and X_3 of Model 4 might then be as follows:

		$\mathbf{x_1}$	$\mathbf{x_2}$	x_3
Ιf	criterion from	1		
	1	3	0	0
	2	-1	2	0
	3	-1	1	+1
	4	-1	-1	-1

In order to answer this question of interest, it would only be necessary to restrict out vector X_1 by setting $a_1 = 0$. X_2 and X_3 are included in the model in order to account for the rest of the overall treatment effect even though such comparisons may not be of interest.

The two examples presented above seem to point to two advantages which accrue from the use of contrast coding in a one-way analysis of variance. First, since the predictor vectors are all independent, the number of predictor variables in a model accurately reflects the degrees of freedom for the analysis. As was pointed out above, this is not the case when standard 1 and 0 group membership vectors are used. Second, the use of contrast coding allows one to ask more specific questions of interest than the overall main effect. The importance of these two factors becomes even more apparent when one considers a two-way analysis of variance.

Consider an experiment in which 2 X 3 factorial design is to be applied and assume that there are two levels of conditions A and three levels of condition B. Winer indicates that the following linear model would account for all sources of variability contributing to an individual score:

[7]
$$X_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + e_{ijk}$$

Where: X_{ijk} = an observation on person k under treatment i and treatment j

 μ = grand mean of all potential observations

 α_i = main effect for condition A

 β_1 = main effect for condition B

 $\alpha\beta_{ij}$ = effect of interaction of conditions A and B

eijk = crror associated with Xijk

The various sources of variability in Winer's model can be duplicated in standard multiple regression analysis. However, the need for a test of

interaction requires a full model which allows the differences between cell means to vary and a restricted model which would force the differences between cell means to be equal. While this is not a particularly difficult task, it does require some rather lengthy algebraic manipulations of the partial regression weights. Kelly, et.al, (1969) include an excellent presentation of the procedures for performing a two-way analysis of variance in standard regression analysis so we will not attempt to duplicate it here.

Using contrast coding to duplicate the 2 X 3 analysis of variance would require the following full model:

[8] Model 5
$$Y = a_0 U + a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_4 + a_5 X_5 + E_5$$

Where: Y = criterion vector

U = unit vector

 $X_1 = 1$ if subject from A_1 or -1 if from subject A_2

 $X_2 = -1$ if subject from B_1 ; 0 if subject from B_2 or 1 if subject from B_3

X₃ = 1 if subject from B₁; -2 if subject from B₂ or 1
if subject from B₃

 $X_4 = X_1$ multiplied by X_2

 $X_5 = X_1$ multiplied by X_3

E₅ = error vector

a₀ through a₅ = partial regression weights

It will be noted that the elements of X_2 and X_3 reflect the linear and quadratic trends for the B main effect. In addition, the coefficients in X_4 and X_5 would reflect the linear and quadratic components of the interaction effect. It should also be noted that all five vectors are independent so that the number of predictor vectors accurately reflects the between cells degrees of

freedom for this two-way analysis of variance.

The overall main effects and interaction tests can be simply done once Model 5 has been established. In order to test for interaction, one need only set $a_4 = a_5 = 0$ and compare the R^2 of Model 5 to the R^2 of the resulting restricted model. In order to test for a significant A main effect one need only restrict X_1 from Model 5 by setting $a_1 = 0$. To test for the B main effect, X_2 and X_3 must be restricted from Model 5 by setting $a_2 = a_3 = 0$. Each of these tests of significance can be shown to exactly duplicate the results one would obtain through the use of traditional two-way analysis of variance equations.

As was the case with a one-way analysis of variance, the use of contrast coefficients allows one to ask questions of interest other than the overall main effects and interaction. In the example above, suppose one were interested in determining if the interaction contained a significant quadratic trend. This variable of interest is reflected in X_5 of Model 5. In order to test for a significant quadratic interaction trend, one need only set $a_5=0$. The linear trend of the interaction could be tested by setting $a_4=0$. Further, Model 5 allows one to test for significant linear and quadratic components of the B main effect by setting $a_2=0$ and $a_3=0$ respectively. The use of contrast coefficients in this linear regression analysis would allow one to examine any one or all of the five independent sources of variance which the between cells degrees of freedom indicate contribute to each individual criterion score. In addition, one could ask other questions of interest by establishing a set of contrast codes which would allow the specific question of interest to be reflected in the predictor vectors.

Analysis of Covariance

The application of the use of contrast coefficients for analysis of

covariance is a natural extension of the analysis of variance. The covariate or concomitant variable is entered as a predictor along with the treatment variables in the linear equation. For example, if a covariate were included in Model 4 above the equation would become:

[9] Model 6
$$Y = a_0 U + a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_4 + E_6$$

Where: Y = criterion scores

X1 through X3 are treatment variables of interest

 X_4 = the covariate or concomitant variable

V = unit vector

E = error vector

 a_0 through $a_{\Lambda} = partial regression weights$

The nature of the equation changes slightly, however, in that the predictor variables (X_1 through X_4 are not all orthogonal to one another. Specifically, there is a real or sample covariance between the covariate (X_4) and each of the variables of interest (X_1 through X_3). When the restriction $a_1 = a_2 = a_3 = 0$ is placed on the equation eliminating the treatment source of variance, the weight associated with the covariate (a_4) will change in value. It can be shown that the variance which is lost by such a restriction is that variance which is associated with the treatment but which is independent of the covariate. In other words, the restriction results in a loss of that variance which is unique to the treatment variables (X_1 through X_3). Such analysis is identical to analysis of covariance as described in such textbooks as Winer (1962), Lindquist (1963) and McNemar (1969). The interpretation made for a significant statistical test for treatment effect obtained by the analysis is that the treatments have an effect on the mean criterion scores over and above that

which is accounted for by the covariate. The usual procedure of using group membership vectors in the linear model also duplicates the analysis of covariance for one-way ANCOVA designs. In fact, the only advantages for using contrast coefficients rather than group membership vectors seem to be that (1) contrast coefficients provide a more direct count of independent vectors to obtain degrees of freedom and (2) contrast coefficients allow for tests of more specific questions concerning treatment effects than does the use of group membership vectors.

Winer (1962) indicates that the linear model for a two-factor ANCOVA would be as follows:

[10]
$$X_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \gamma_{vk} + e_{ijk}$$

Where: X_{ijk} = an observation on person k under treatment i in condition j given information on the covariate

μ = grand mean of all observations

 α_i = effect of the ith treatment

 $\beta_i = \text{effect of the } \underline{jth} \text{ treatment}$

 $\alpha\beta_{ij}$ = effect due to interaction

 γ_{vk} = regression effect on the covariate

 e_{ijk} = error associated with X_{ijk}

Suppose, now, that we wish to utilize a model where the α_1 effect contains two different conditions and the β_j effect consists of a control group (B_1) and two experimental groups $(B_2$ and $B_3)$. Then the more traditional regression model for these effects with the covariate and interaction included would be:

[11] Model 7
$$Y = a_0 U + a_7 A_1 B_1 + a_8 A_1 B_2 + a_9 A_1 B_3 + a_{10} A_2 B_1 + a_{11} A_2 B_2 + a_{12} A_2 B_3 + a_6 A_0 + E_7$$

Where: Y = vector of criterion scores

U = unit vector (All elements are 1)

 $A_1B_1 = 1$ if observation is found in both A_1 and B_1 , 0 otherwise

 X_0 = concomitant variable

 E_7 = error vector

 a_0 and a_6 through $a_{12} = partial regression weights$

In order to test the interaction effect, one would restrict Model

7 to:

[12] Model 8
$$Y = a_0 U + a_1 A_1 + a_2 A_2 + a_3 B_1 + a_4 B_2 + a_5 B_3 + a_6 A_0 + E_8$$

Where: Y = vector of criterion scores

U = unit vector

 $A_1 = 1$ if criterion from A_1 ; 0 otherwise

 $A_2 = 1$ if criterion from A_2 ; 0 otherwise

 $B_1 = 1$ if criterion from B_1 ; 0 otherwise

 $B_2 = 1$ if criterion from B_2 ; 0 otherwise

 $B_3 = 1$ if criterion from B_3 ; 0 otherwise

X₀ = concomitant variable

Eg = error vector

a₀ through a₆ = partial regression weights

Then the test for interaction $(R_7^2 - R_8^2)$ would be a test of whether the proportion of variance unique to interaction is significant.

There is some disagreement among researchers as to procedures for testing main effects following a non-significant test for interaction. Both Ferguson (1971) and Winer (1962) suggest that after finding a non-significant interaction effect, one has the option of treating the interaction sums of squares as error. The sums of squares for interaction could, along with the appropriate degrees of freedom, be pooled with the sums of squares error to form a more stable error estimate. In a paper presented at the 1972 convention of the American Education Research Association, Pohlmann (1972) discussed the limit to which such pooling may aid in guarding against a type II error.

Kelly et.al. (1969) encourage the practice of pooling as discussed in the previous paragraph. Assuming one has chosen to pool, then the Λ effect could be tested by restricting a_1 and a_2 from Model 8 equal to 0 and the subsequent model becomes:

[13] Model 9
$$Y = a_0 U + a_3 B_1 + a_4 B_2 + a_5 B_3 + a_6 X_0 + E_9$$

Where: Y = vector of criterion scores

U = unit vector

 $E_q = error vector$

 B_1 , B_2 , and B_3 = defined as in Model 8

 $X_0 = concomitant variable$

 a_0 , a_3 , a_4 , a_5 , a_6 = partial regression weights $(R_8^2 - R_9^2)$ would seem to be equal to the A ma'n effect whereas $1 - R_8^2$ would consist of a pooled error term which includes the interaction effect. The B main effect would be tested in a manner similar to the test for the A effect.

This, however, does not duplicate the main effect that is found in traditional two factor ANCOVA as described in Winer (1962). In the model:

[14]
$$X_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \gamma_{yk} + e_{ijk}$$

 α_{i} , β_{j} , $\alpha\beta_{ij}$ are orthogonal to one another and, hence, the presence or absence of any one should not have any effect on the others. However, this is not the case in the presence of the covariate. The covariance patterns between α_{i} , β_{j} , and $\alpha\beta_{ij}$, with the covariate γ seem to be of such a nature that the restriction of any of the three effects equal to 0 results in a change (increase or decrease) in the other remaining effects. This would not be the case without the presence of the covariate nor does it affect a one-way ANCOVA. Thus, when the interaction term is pooled with the error in order to test a main effect, the amount of variance associated with that main effect is different from what it would have been without pooling.

The use of contrast coding in a two-factor ANCOVA would provide a method of analysis where one could easily test the main effects without pooling the interaction, thus yielding a duplicate result to the traditional two-factor ANCOVA as discussed by Winer (1962). Furthermore, contrast coefficients allow for tests of more specific questions of interest.

Given the example presented above, where the A effect consists of two conditions and the B effect consists of one control group (B_1) and two experimental groups $(B_2 \text{ and } B_3)$, the experimenter might be interested in a comparison of the experimental groups of the B condition to the control group (B_1) as the first question of interest. A second question might be if there is a difference between the experimental groups over both A conditions. Then, one may be interested in whether either or both of the B experimental effects are different within the two A conditions.

Note that in all questions, the interest lies in the effect of treatment over and above that of the concomitant variable.

The model appropriate for this ANCOVA would be as follows:

[15] Model 10
$$Y = a_0 U + a_1 A + a_2 B_1 + a_3 B_2 + a_4 A B_1 + a_5 A B_2 + a_6 X_0 + B_{10}$$

Where: Y = criterion vector

U = unit vector

A = 1 if in condition A_1 ; -1 if condition A_2

B₁ = 2 if in control group; -1 if in either experimental

 $B_2 = 0$ if in control group; 1 if in experimental group 1 (B_2) ; -1 if in experimental group 2 (B_3)

 $AB_1 = \text{(obtained by A x B}_1) A_1B_1 = 2; A_1B_2 = -1; A_1B_3 = -1;$ $A_2B_1 = -2; A_2B_2 = 1; A_2B_3 = 1$

 AB_2 = (obtained by A x B₂) A_1B_1 = 0; A_1B_2 = 1; A_1B_3 = -1; A_2B_1 = 0; A_2B_2 = -1; A_2B_3 = 1

X₀ = concomitant variable

 $E_{10} = error vector$

a₀ through a₆ = the regression weight associated with the respective vectors

There are three apparent advantages of contrast coding over the more standard use of group membership vectors. First, the number of parameter estimates are directly reflected by the number of weights $(a_0$ through $a_k)$ used in the model and, hence, lead to a more direct count of degrees of freedom. Secondly, one can go directly to tests of the questions of interest by restricting the appropriate weight of Model 10. For the four questions of interest specified above this would result in four restricted models by first setting $a_2 = 0$, followed by $a_3 = 0$, $a_4 = 0$, and finally $a_5 = 0$. Each of the resulting restricted models would be compared to Model 10 above. One could still test for an overall interaction effect or for either of the main effects (A or B), by simply restricting all weights for the appropriate vectors equal to 0. The third advantage of contrast coding is that it allows for tests of the main effect without pooling the error term, thus precisely duplicating the two factor ANCOVA as presented in Winer (1962). While such a traditional analysis may not be superior, the authors suspect that the difference in the two analyses would lead to somewhat different conclusions. That is, the traditional ANCOVA and the use of contrast coefficients analyze variance which is independent of all other sources in the model; whereas, the use of standard group membership vectors yields variance components that are in some way common to the interaction.

Summary

The use of contrast coefficients in multiple linear regression models can provide a logical method of analysis for both ANOVA and ANCOVA. Three distinct advantages were indicated in this paper. First, the number of estimated parameters are directly indicated in the model, thus leading to a more natural and direct count for degrees of freedom. Second, contrast coding allows for the testing of specific variables of interest other than

the overall main effect and overall interaction effects. Finally, in the case of atwo-way ANCOVA, contrast coding does not require pooling interaction with the error term and thus is an exact duplicate of ANCOVA as presented in Winer (1962).

It would seem that the use of contrast coefficients allow for a variety of types of analysis within the general linear model. This would present future researchers with a more integrated concept of data analysis rather than to contribute to fragmentation of the field by discussing regression as separate from ANOVA with all its various subcategories. The use of contrast coefficients encourages researchers to ask specific questions which can be analyzed with F-tests which have only one degree of freedom in the numerator. When there is only one degree of freedom in the numerator, the researcher is in effect dealing with a single source of variability, and as a result, is able to better interpret the meaning of the test of significance. In overall main effects or interaction tests, the numerator generally has more than one degree of freedom in the numerator. The researcher must then attempt to interpret the test of significance realizing that he is analyzing several sources of variability simultaneously.

References

- Bottenberg, R.A., & Ward, J.H., Jr. <u>Applied pultiple linear regression</u>.

 (PRI-TDR-63-6), Lackland Air Force Base, Texas, 1963.
- Cohen, J. Multiple regression as a general data-analytic system. <u>Psychological</u>

 <u>Bulletin</u>, Vol. 70, 6, 426-443, 1968.
- Kelly, F.J., Beggs, D.L., McNeil, K.A., Eichelberger, R.T., & Lyon, J.

 Research design in the behavioral sciences: multiple regression

 approach. Southern Illinois University Press, Carbondale and

 Edwardsville, Illinois, 1969.
- Lindquist, E.F. <u>Design and analysis of experiments in psychology and</u>
 education. Houghton Mifflin, Boston, 1953.
- McNemar, O. Psychological statistics. John Wiley & Sons, New York, 1969.
- Pohlmann, J. The effects of pooling the interaction and within components on the alpha and power of the main effects test. Paper presented at the meeting of the American Educational Research Association, Chicago, April, 1972.
- Winer, B.J. <u>Statistical principles in experimental design</u>. McGraw-Hill, New York, 1962.

VARIATIONS BETWEEN SHRINKAGE ESTIMATION FORMULAS AND THE APPROPRIATNESS OF THEIR INTERPRETATION

Isadore Newman University of Akron

Abstract... This is a discussion paper dealing with the use of shrinkage, different methods for estimating shrinkage, and the accuracy of shrinkage estimates when variables are preselected as in stepwise regression and when variables are not preselected.

Everyone who is familiar with multiple regression is well aware that multiple correlations (R) tend to be biased upward. That is, R tends to be higher in the sample than in the population from which the sample is drawn. It is also true that the R calculated for any sample will tend to shrink when the same regression weights are applied to an equivalent sample that has been randomly drawn from the same population as the first. The shrinkage in both cases is due to the fact that the regression weights are calculated to maximize the prediction of the criterion.

In any sample in which a criterion is being predicted from a set of independent variables, there is a chance of having sampling error. This sampling error is capitalized on when calculating the regression weights, so that the predictive power for any one sample is maximized. For this reason, R tends to be somewhat of an overestimate of the relationship between a set of independent variables and the criterion that exists.

Uhl and Eisenberg (1970) empirically investigated the accuracy of three shrinkage estimation formulas; Wherry's

origional formula (1931), McNemar's modification (1962), These formulas are: and Lord's (1950) formula.

$$\hat{R}^2 = 1 - (1 - R^2) \frac{N-1}{N-K}$$
 (Wherry)
 $\hat{R}^2 = 1 - (1 - R^2) \frac{N-1}{N-K-1}$ (McNemar)
 $\hat{R}^2 = 1 - (1 - R^2) \frac{N+K+1}{N-K-1}$ (Lord)

where: \hat{R} = the corrected estimate of the multiple correlation

R = the actual calculated multiple correlation

K = the number of independent variables N = the number of independent observations

Uhl and Esienberg found that even though Whery's and McNemar's formulas are the most commonly used, Lord's formula consistently gave more accurate estimates for the five different N sizes they investigated (N=50, 100, 150, 250, 325) and for the situations using two through thirteen predictor variables.

Nunnally (1967) states that shrinkage formulas are most appropriate as unbiased estimates of R when the independent variables are not preselected on the bases of their correlation with the criterion. However, when the situation is such that a number of tests are found to be correlated with the dependent variable, and the most highly correlated are then selected as the independent variables for the regression equation, Nunnally suggests that in these cases the shrinkage formula may not reduce the R as much as is needed. He feels the best way to overcome such a problem is to employ as many as 50 subjects for every variable.

Stepwise regression procedures will tend to capitalize

As the authors of the article pointed out, the empirical study was actually one in which the shrinkage calculated was based on how much an R from one sample would deviate from an R of an equivalent sample.

more on chance variation then does traditional multiple regression procedures. Therefore, even if shrinkage estimates are employed when interpreting stepwise regression results, one should be cautious in interpreting the reliability of any R calculated on a sample, and in generalizing that interpretation to a population or to another sample.

Kelly, et al. (1969) suggests cross validation procedures as estimates of shrinkage instead of using the more mathematical approaches used by Wherry, McNemar, and Lord. The cross validation procedure estimates shrinkage by examining the differences in the R²s from sample data.

Some of the differences in the shrinkage estimates, using the different procedures may be explainable. For example, Wherry's and McNemar's formulas both attempt to estimate the population R, based on the sample, while Lord's formula attempts to estimate the R from one sample to another sample. This is conceptually similar to the cross validation procedure suggested by Kelly. In deciding which method of estimating shrinkage is to be used, it is important to consider the underlying assumptions of each procedure.

In conclusion, when using regression procedures in which the ratio between subjects and variables is relatively small, the interpretation of R should be made with a great deal of care. When in addition to a small ratio, the variables are preselected, as they are in stepwise regression procedures, the use of shrinkage estimates, while still helpful, may not shrink enough to correct for the capitalization on chance

variation. More work is needed in developing and incorporating appropriate shrinkage estimates when one is attempting to generalize beyond the sample data.

References

- Kelly, F.J., Beggs, D., McNeil, K.A., Eichelberger, and Lyon.

 Research Design in the Behavioral Sciences: Multiple

 Regression Approach. Carbondale, Ill: Southern Illinois
 University Press, 1969.
- Lord, F.M. "Efficiency of Prediction When A Regression Equation From One Sample Is Used In A New Sample." Research Bulletin, 50, 40. Princeton, N.J.: Educational Testing Service, 1950.
- McNemar, Q. <u>Psychological</u> <u>Statistics</u> (3rd ed.). New York: Wiley and Sons, 1962.
- Nunnally, J. <u>Psychometric Theory</u>. New York: McGraw-Hill Book Co., 1967.
- Uhl, N and Eisenberg, T. "Predicting Shrinkage In The Multiple Correlation Coefficient." Educational and Psychological Measurement. 30, 487-489, 1970.

ADVERTISEMENTS for VIEWPOINTS Wanted

Advertise your: Books and Publications

Available positions

Availability for Employment,

Workshops, etc.

An ad of this size for a S.I.G. member - just \$ 3.00

for nonmembers - \$ 7.00

A full page ad for a S.I.G. member - just \$15.00

for nonmembers -\$35.00

AN INTRODUCTION TO THE BASIC CONCEPTS OF MEASUREMENT AND EVALUATION By: Isadore Newman, Bill J. Frye, and Carole Newman

This book has been written in simple, plain talk for the individual with little background who needs to develop a system for classroom evaluation, and for the student who has been bogged down in esoteric terms and formuli. The primary emphasis has been placed on the treatment of basic concepts needed for understanding and the practical application of measurement and evaluation. This easy and concise method for teaching basic measurement concepts was supported by an Research and Development Grant from the University of Akron. The 132 page book can be obtained for \$3.00 by writing the authors, c/o College of Education, University of Akron, Akron, Ohio, 44325

DEPARTMENT OF COUNSELING AND SPECIAL EDUCATION

The University of Akron Akron, Ohio 44325

The Ph. D. Degree is awarded in Counseling, and the Master's Degree is awarded in Counseling, School Psychology and Special Education. All programs are designed to emphasize the practical application of theoretical concepts.

Requests for information related to admission requirements and financial assistance should be addressed to: Department Head, Department of Counseling and Special Education, College of Education, The University of Akron, Akron, Ohio 44325.

COMPUTER ASSISTED INSTRUCTION: THREE SELECTED ARTICLES AND A CROSS REFERENCED ANNOTATED BIBLIOGRAPHY Edited by Isadore Newman, University of Akron

An up-to-date reference is now available for people interested in C.A.I. This very useful publication was supported by a Phi Delta Kappa grant and can be obtained for \$3.00 by writing to:

Isadore Newman
Research and Design Consultant
College of Education
The University of Akron
Akron, Ohio 44325

New Addresses Changes Received too Late to Appear on the Current Membership List

Donald J. Cegala 1119 Caniff Road Columbus, OH 43221

Paul Jones Dept. of Bicmetry Univ. Hospital Cleveland, OH 44120

Reynold J. Krueger 1515 Kirby #5 Champaign, IL 61820

V. Rutledge McClaran Dept. of Mathematics East Texas Baptist College Marshall, TX 75670

Donald Wells 2120 Melrose Ames, IA 50010

Correct Addresses are Needed for the Following Members K. Brown Cherl L. Reed Gary J. Coles Gerald Schluck John Convey Donald R. Senter

MEMBERSHIP LIST

SPECIAL ASSIT TO THE CHANCELLUR UNIV OF DENVER

DENVER

CU 80210

JUEL AGER
PSYCHOLOGY

MAYNE ST

DETRUIT MI 48202

PERFORMANCE RESEARCH LABORATURY
UNIV OF LOUISVILLE

LOUISVILLE KY 40208

EARL A ALLUISI
UNIV OF LOUISVILLE
VP FOR PLANNING

LOUI SVILLE KY 40208

RICHARD ARAKAKI HAWAII STATE DEPT OF EDUCATION

HONDEDED HI

ARNOLD G ASHBURN

1804 SABINE COURT

COLLEGE STATION TX 77840

SYLVIA AUTON
DEPT OF ED MEASURES & STATISTICS
UNIV DE MARYLAND

COLLEGE PARK MD

RICHARD L BALE
INSTITUTE FOR SUCIAL RESEARCH
FLURIDA STATE UNIV

TALLAMASSEE FL 32306

PAUL BARBUTO JR
TEACHERS COLLEGE
COLUMBIA UNIVERSITY
BOX 37
NEW YORK NY 13027

DAVID G BARR LNIV UF AKRON

EDUCATION

AKRUN UH 44325

RICHARD BEESON RESEARCH METHUDDLOGY ST LOUIS UNIV 221 NORTH GRAND

ST LCUIS MO 63103

DUNALD L BEGGS'
DEPT OF GUIDANCE AND ED PSYCH
SOUTHERN ILLINDIS ON

CARBCHDALE IL 62901

KATHERINE BEMIS
S W COUPERATIVE ED LABORATORY

ALBUQUERQUE NM

CAPT WILLIAM BEUSSE AFHRL / MD 701 PRINCE ST

ALEXANDRIA VA 22314

E H BLEKKING

UNIVERSITY STATION
BOX 12524
GAINESVILLE FL 32601

JAMES BULDING ED FUUNDATIONS-CULLEGE OF ED UN DE ARKANSAS

FAYETTEVILLE AR 72701

30SS MARVIN FACULTY OF EDUCATION UN UF OTTAWA

UTTAHA

CNTARIU

RUBERT BOTTENBERG

4014 FAWNRIDGE

FSSST AT CINOTINA NAS

MICHAEL A BREBNGER DEPT UP ED PSYCH JN OF CALGARY CALGARY 44

ALBERTA

CANACA

WILLIAM K BROCKSHIRE NORTH TEXAS STATE UNIVERSITY

13841

DENTON TX 76203

BROWN

5811 ATLANTIC BLVD

JACKSONVILLE FL 32202

ROBERT L BRUWNLEE CTB/MCGRAW-HILL DEL MUNTE RES PARK

MONTEREY

CA 93940

DAVE CEMREL

BUCKHOLT

10646 ST CHARLESRUCK

ST ANN MO 63074 NAME & ADDRESS

MEL BUCKI BUCKLEY

550

COLUMBIA

MS 39429

LEIGH

BURSTEIN

744 COLEMAN AVE #E

MENLU PARK

CA 94025

JACK

BYFNS

1016 HARVARD RD

MONDEVILLE

PA 15146

LEGNARD S CAHEN EDUCATIONAL TESTING SERVICE DIV PSYCH STUDIES

PRINCETON

NJ 08540

DALE CARLSON DEPT OF ED OFFICE OF PROG EVAL 721 CAPITOL MALL

SACRAMENTO

CA 95814

DONALD

J CEGALA

241 DALTON COURT

TALLAHASSEE

FL 32304

RUBERT J COLDIRON ED RESEARCH ASSUCIATE DEPT OF PUBLIC INSTR

HARRI SBURG

PA 17126

GARY J COLES . ASSUC RESEARCH SCIENTIST

113

PALO ALTON CA 94302

NAME & ADDRESS

CARL

CROSSWHITE

UN OF NO COLORADO

GREELEY

CJ 83631

E CUMMINS MEDINA CITY SCHOOL DISTRICT 130 NURTH STATE RD

403

MEDINA

DH 44250

ALEX CARBES UNIV UF AKRON PSYCH DEPT UNIV UF AKRON

AKRON

OH 44325

WAYNE V DENNY CANTON CITY SCHOOLS TITLE PROGRAMS 618 HIGH AVE N A

CANTON

OH 44703

YEAR VED C YHTCMIT

DENTON STATE SCHOOL

368

DENTON

TX 76202

WILLIAM DIFFLEY

8 BUXWOOD LANE

CT 06360 NORWICH

WILLIAM DONAL DS CN

DELA RD PINEY RIDGE

PINE GROVE MILL PA 16868

DRAVLAND VERN COOR OF EDUCATIONAL RESEARCH UN OF LETHBRIDGE

ALBERTA

CANADA

. . IOWA CENTRAL COMMUNITY COLLEGE 330 AVE M

FORT DOUGE

IA 50501

J COLTVET

FRANK

ARNOLO

COMPESTINE

AIMS CULLEGE

GREELEY CO 80631

WILLIAM E CONNETT STATE DEPT OF EDUCATION AND DEVEL AND PEVAL

STATE CAPITAL MT 59601

NHOL FLA STATE UNIV CONVEY

TALLAHASSEE FL

LOUISE CORMAN RESEARCH INST FOR ED PROBLEMS

12 MAPLE AVE

CAMBRIDGE

MA 02139

CORSON RESEARCH ASSC MIAMIDADE JR CELLEGE 11011 SW 104 STREET

MIAMI

FL 33156

PAUL T CCSTA DEPT OF SUCIAL RELATIONS WILLIAM JAMES HALL

CAMBRIDGE

MA 02138

R CRANE LAURA DEPT GOVT FUNDED RM 1130 228 N LASALLE

CHICAGO

IL

NAME & ADDRESS

MΑ

RUSERT G GARDNER

6 EBERLY CHARLES OFFICE OF EVAL SER-MICHIGAN ST UN

239 S KEDZIE HALL

1305 6TH STREET

EAST LANSING MI +8823

GREELLY

CU 80631

JKE AV EY

EICHELBERGER LEARNING RESEARCH AND DEV CENTER

160 N CRAIG

BOSTUN COLLEGE

PI TT SBURGH PA 15243

BOSTLN

PATRICIA SLMOKE COUNSELING AND TESTING CENTER S ILLINOIS UN BEATRICE GREEN

GUPTA

EAST ST

STOCKBRIDGE MA

VINCENT

CARBONDALE IL 62901

CLAIRE B ERNHART

HUGH GREENUP

HOFSTRA UNIVERSITY

HEMPSTEAD

NY

TARZANA CA 91356

AVIGDORE FARINE FACULTY OF ED UN OF MONTREAL 90 VINCENT D INDY

WILLA DATA ANALYST UCLA ED PRESCHOOL LAG 1868 GREENFIELD AVE

5406 RHEA AVENUE

MONTREAL

CANADA

LOS ANGELES CA 90025

GARRETT R FOSTER

OFELIA HALASA DIV OF RESEARCH AND DEVELOPMENT CLEVELAND PUBLIC SCH

FLORIDA STATE UN

CLEVELAND

JН

PAUL GAMES

TALLAHASSEE FL 32306

RUBERT E HALE RE SEARCH METHUDOLOGY 211 N GRAND

UNIVERSITY PARK 420 SUCTAL SCIENCES

ST LOUIS MJ 63103

PA 16802

IRMA HALFTER
VICE-PRES ANALYTIC STU DEPAUL UN 25 EAST JACKSON BLVD

CHICAGU

IL 60604

NAME & ADDRESS

RONALD S HALINSKI DEPARTMENT OF EDUCATION THEINDIS STATE UN

DENNIS HEIN

NORMAL

IL 61761

AUGUSTANA COLLEGE

MARVIN H HALLDORS ON SCHOOL OF BUSINESS

SOULA FALLS SD 57102

UN OF NO CULORADO

JOHN

INDIANA UNIVERSITY

GREELEY CU 80631

BLOOMINGTON IN

JOE B HANSEN EDUCATION SERVICE CENTER REGICN 13

VERON L HENDRIX UNIVERSITY OF MINNESOTA 221 BORTON HALL

AUSTIN (X

MINNEAPOLIS MN 55455

BEATRICE HARRIS
YESHIVA UNIVERSITY
55 FIFTH AVENJE

JAMES D HENNES
COLURADO DEPT OF EDUCATION
STATE OFFICE BLOG

NEW YORK NY 10003

DENVER

CO 80203

HEMMETER

JOSEPH HARRISON MATH COORDINATOR EXP IN HIGHER ED 13200 ST LOUIS AVE

THOMAS L HICK DIR OF CHILD STY CENTER CAMPUS 5CH STATE UN COLLEGE

LOUIS IL 62201

NEW PALTZ NY 12561

JACK K HAYNES DEPT OF PSYCHOLOGY BOX 13587 NT STATION VYNCE A HINES

DENTON TX 76203

1220 SW NINTH ST

LETITIA HEIL

GAINESVILLE FL 32601

204 BRIARTON LANE

JACK I HOFFMAN

CRYSTAL CITY MD 63109

4845 JEROME AVENUE

BEATRICE HEIMERL DEPT OF RESEARCH & STATISTICAL MET UN OF NO COLURADO SKOKIE IL 60076

JAMES H HOGGE SCHOOL OF EDUCATION GEORGE PEABODY COLL 512

GREELLY CJ 30631

NASHVILLE TE 37200 .

NAME & AUDRESS

SAMUEL R HOUSTON RESEARCH & STATISTICAL METHUDOLOGY UN DE NO COLORADO

CJ 80031

CARL J HUBERTY

AG FÜ VINU COLCHREGE 626

GREELEY

ATHENS GA 30602

BRAD HUITEMA

PSYCHOLOGY DEPT WESTERN MICHIGAN UN

KALAMAZOÙ MI 49001

JANET C HYDE

1048 M GRADUATE HS

W LAFAYETTE IN 47906

EARL JENNINGS

UN OF TEXAS STATION

7246

AUSTIN TX 78712

PAUL JCNES
RES & DEL DIV AM CUL TESTING PRO

168

10 AA CITY 10 52240

THEMAS E JORDAN BEHAVIORAL STUDIES & RESEARCH

UN OF MISSOURI

ST LOUIS MO 63121

DANIEL C KAU EDUCATIONAL PSYCH UN OF ILLINDIS

URBANA IL 61801

FRANCIS J KELLY GUIDANCE AND ED PSYCH SOUTHERN ILL JN

CARBUNDALE IL 62901

FJ KING INS OF HUMAN LEARN FLA ST UV 403 EJ BUILDING

TALLAHASSEE FL 32306

ALAN C KLAAS

219 CARBONDALE MO HM

CARBUNJALE IL 62901

JA KLOCK

2226 MERCER CIRCLE S

JACKSUNVILLE FL 32317

HAROLD V KNIGHT DIRECTOR EDUCATION RESEARCH SOUTHERN STATION

98

HATTIESBURG MS 39401

PATRICIA R KNOX

6350 N LAKE CRIVE

MILWAUKEE WI 53217

RICHARD L KOHR

500 WINAND DR

HARRISBURG PA 17109

JANOS B KOPLY AY
PERSONNEL RESEARCH DIVISION
AIRFURCE HUMAN RES

LACKLAND AFB TX 78236

..

...

NAME & ADDRESS

CENRAD C KRAUFT

800 PITTMAN DRIVE

FAYETTEVILLE AK 72701

> J KRUEGER REYNOLD

UN OF ILLINOIS

IL 61801 URBANA

> ALBERT K KURTZ

PK KNOWLES APT 418

WINTER PARK FL 32789

> LANDRUM WL

3 CHISCLM ST

SC 29401 CHARLESTON

EDWARD LASHER UNIV OF AKRON

EDUCATION

AKRON OH 44325

> REX L LEGNARD

SOUTH STATION

5221

HATTIE SBURG MI 39401

ERINE LEW IS SIU

WHAM

CARJONDALE IL 62901

JAMES O LINDEN

DEPT OF PSYCHOLOGY PURDUE UNIVERSITY

LAFAYETTE IN 47907 NAME & ADDRESS

RESEARCH CEN OTTAWA BO OF ED

330 GILMOUR ST

OTTANA

FRANK YNAM

2220 PIEDMONT AVE

BERKELEY CA 94702

GERALD R MARTIN

& TIES PROJECT

1925 W COUNTY RD 8-Z

ST PAUL MN 55113

A MARTIN COLLEGE OF ECUCATION UNIV TOPONTO

371 BLOOR ST W

TORUNTO

V RUTLEDGE MCCLARAN

1772 W OAK

DENTON TX 76201

NHUL MCCLURE W VA DEPT OF EDUCATION

CHARLESTON WV

KUBERT E MCCLURE HEALTH CARE PLANNING-S ILL UN 421 5 SIXTH ST

SPRINGFIELD

IL 62701

JUHN W MCCCNNELL

915 Meadowlark Lane Glenylew, Illinois 60025

WILLIAM J MCCCRMICK BUREAU EVALUATION & RESEARCH 721 CAPITUL MALL

SACRAMENTO CA 95814

GARNET L MCDIARMID ONTARIO INST STUDIES IN ED 252 BLOOR ST W

TORONTO CANADA

NURMAN & MCEACHRON STANFORD RESEARCH INSTITUTE 333 RAVENSWOOD AVE

MENLU PARK CA 94025

LAWRENCE MCNALLY BD OF COOP ED SERVICES 125 JERICHO TURNPIKE

JERICHU NY 11753

JUDY MCNEIL
DEPT OF GUIDANCE AND FU PSYCH
SOUTHERN ILLINOIS UN

CARBUNDALE IL 62901

KEITH MONEIL DEPT OF GUIDANCE AND ED PSYCH SOUTHERN ILLINOIS UN

CARBUNDALE IL 62901

hV MEREDITH

1231 W & 14TH COURT

DEERFIELD BEACH FL 33441

NAME & ALDRESS

PAUL É MERRILL

FLORIDA STATE UN

TALLAHASSEE FL 32306

DON MUSE ABT ASSOCIATES INC 55 WHEELER ST

CAMBRIDGE MA 02138

ISADORE NEWMAN
DEPT OF EDUCATIONAL FOUNDATIONS
UNIVERSITY OF AKRON

AKRON JH

RCNALD L NUTTALL
INSTITUTE OF HUMAN SCIENCES
BOSTON COLLEGE

CHESTNUT HILL MA 02167

GEORGE HOLSON

2325 W PENSACOLA

TALLAHASSEE FL 32304

RALEIGH PEGRAM DALLAS INDEPENDENT SCHOOLS 3700 ROSE AVE

DALLAS TX

DAN N PERKUCHIN DEPT OF SUCIOLOGY 2212 WILLIAM & MARY DR

ALEXANDRIA VA 22308

VINCENT J PIRAINO

11791 BIRCHWOJD LANE

FRANKLIN WI 53132

NAME & ADDRESS

JUHN T POHLMAN

TESTING CENTER SU ILLINUIS UN

CARBONDALE IL 62901

MARJORIE POWELL

20 DARTMOUTH PLACE

BUSTON MA D2115

THOMAS W PYLE
JEPT OF PSYCHOLOGY
E WASH STATE COLLEGE

CHENEY WA 99004

FRED PSYCHULUGY
UN OF CALGARY

CALGARY ALBERTA
CANADA

NAMBURY S RAJU

301 PLAINFIELD RD

LAGRANGE IL 60525

PHILLIP RAMSEY
DEPT OF PSYCHOLOGY
HOFSTRA UNIVERSITY

HAMPSTEAD NY 11550

NICHULAS F RAYDER DIR OF EVAL FAR WEST ED LAB 1 GARDEN CIRCLE

BERKELEY CA 94702

CHERL L REED

72

RT 9

W LAFAYETTE IN

JAMES A REYNOLDS RITENOUR COLSDLIDATED SCH DISTPICT 2420 WOJDSON RO

JVERLAND

MJ 63114

CAROLYN E RITTER
COMPUTER AND DATA PROCESSING CENUN UF N COLORADO

GREELEY

CJ 80631

EMMETT A RITTER
EDUCATIONAL ADMINISTRATION
419 MCKEE

GREELEY

CO 80631

BRUCE C ROGERS MEASUREMENT AND STATISTICS UN OF MARYLANDION

COLLEGE PARK MO 20742

BOB ROSEMIER EDUCATIONAL AD AND SERVICES N ILLINOIS UN

DEKALB

ΙL

NOLAN F RUSSELL

4507 BERKELEY STREET

HARRISBURG PA 17109

GERALD SCHLUCK

4037 N MONROE

TALLAHASSEE FL 32301

JEKKY

SCHURF

BALL STATE UN

MUNCIE

Lix

WATT. W SEAWELL JR COMPUTER CENTER UNIVERSITY AKRON 103 SIMMONS

AK R.J.N

JH 4+325

DONALD R SENTER
RESEARCH DIR ED DEV LAB INC R SENTER ED DEV LAB INC

HUNTINGTON

NY 11743

J SUTHERN SIMS JR DEAN STUDENT AFFAIRS UN OF GEORGIA

ATHENS

GA 30601

PING KEE SIU

23 E 17TH ST APT AC

BRJOKLYN

NY 11220

DONALD M SMITH

3009 AMHERST RD

MUNC 16

IN 47304

JUHN C SQUERSTRUM

UNIVERSITY STATION 13677 GAINESVILLE FL 32501

MR EUWARD M SCLINSKI UIR COMPUTER SERVICES TUPUT 1100 WEST MICHIGAN

INDIANAPOLIS IN 46202

NAME & ADDRESS

SPANER SPANER SPANER SFRAVIUNAL STUDIES AND FESTANCH UN OF MO-ST LOUIS

ST LOUIS

MD 63121

ROBERT G ST PIERRE

224 NEWTONVILLE AVE

NE ATON

MA 02150

FAY I STARR DEPT OF PSYCHULDGY S ILLIHOIS UN

EUWAKUSVILLE IL 02025

ALAN D STEWART ASSUC IN ED RESEARCH 444 MOSLEY RD

FAIRPORT

NY 14450

GARY L STOCK CANDLER HALL UN DE GEORGIA

ATHENS

GA 30601

STROHMEYER

ERIC REID HALL

MONTANA STATE UN

BUZEMAN

MT 59715

DAVID E SUDDICK TESTING AND EVALUATION CENTER UN OF GEORGIA

ATHENS

JA 30601

STEVE TEGLUVIC JR SCHOOL OF BUSINESS UN OF 40 CULURADO

GREELEY

CJ 30051

NAME & AUDKESS

THAYER JEROME DIR OF TESTING AND RESEARCH UNION COLLEGE

LINCCLN

NE 68506

DENALD L THOMAS

76 LORETTA AVE APT 2

FAIRBURN JH 45324

BINNIE TRAFTON DEPT OF GUIDANCE AND ED PSYCH SOUTHERN ILLINOIS UN

CARBONJALE IL 62901

MARGARET TRIKALSKY

UN OF NO COLURADO

GREELEY

CJ 80631

NURMAN

JHL

407 LANDER WOOD LANE

CHAPEL HILL

NC 27514

MICHAEL R VITALE 4551 LIKINI ST

4551 LIKINI ST

HUNDLULU

VROEGH INSTITUTE FOR JUVENILE RESEARCH 1140 PAULINA ST

CHICAGO

IL 60612

JUE H WARD JR SOUTHWEST EDUCATIONAL LABORATORY 107 E ARRUMHEAD DR

DINCTHA MAZ

TX 78228

NAME & ADDRESS

WILLIAM 8 WARE COLLEGE OF EJUCATION UN OF FLORIDA

GAINESVILLE FL 32601

G LEIGHTON WASEM

512 UAK ST

CHA THAM

IL 62629

BILLY-BELLE WEBER

605 WASHINGTON PLACE

E ST LOUIS IL 62205

WEBSTER RES AND EVAL JALLAS IND SCH DIST 3700 ROSS 4VE

JALLAS

TX 75204

DONALD HELLS PSYCHOLOGY DEPT UN OF TENN AT MARTIN

MARTIN

TN 38237

GEORGE D WHITE

1588 MOKULUA DR

KAILUA

HI 96734

O WILLIAMS CENTER OF TEACHING AND LEARNING UN DE N DAKOTA

GRAND FORKS

พบ 58201

ELINDR

M WCOOS

41 RAWSON RD

MOLLASTON

MA 32170

MAKENNEN YIMER

UN OF ILLINUIS

URBANA IL 61801

VIRGINIA ZACHERT ROCK HUUSE-JACKS CREEK

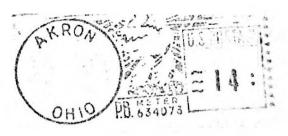
RT 1

28

GOCD HUPE GA 30641

GRADE = 00 HIGH GRADE = 00 ND.

TABLE OF CONTENTS



APPLICATIONS OF SETWISE REGRESSION ANALYSIS-	
JOHN D. WILLIAMS	1
UTILIZATION OF MULTIPLE REGRESSION ANALYSIS IN CHANGING THE VERBAL BEHAVIOR PATTERNS OF ELEMENTARY CLASSROOM TEACHERS THROUGH SELF-EVALUATION- MARGARET E. CUMMINS	8
INCORPORATING COST INFORMATION INTO THE SELECTION OF VARIABLES IN MULTIPLE REGRESSION ANALYSIS— JOHN T. POHLMANN	. {
THE USE OF CONTRAST CODING TO SIMPLIFY ANOVA AND ANCOVA PROCEDURES IN MULTIPLE LINEAR REGRESSION-ERNEST L. LEWIS AND JOHN TO. MOUV	27
VARIATIONS BETWEEN SHRINKAGE ESTIMATION FORMULAS AND THE APPROPRIATENESS OF THEIR INTERPRETATION— ISADORE NEWMAN	. 5
CLASSIFIED NOTICES 4	9
MEMBERSHIP LIST 5	;]

OOO4000 STEVE STUDIES AND RESEARCH UN OF MO-ST LOUIS ST LOUIS MC 63121