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THE ANALYSIS OF SPLIT-PLOT AND SIMPLE HIERARCHICAL
DESIGNS USING MULTIPLE LINEAR REGRESSION

Thomas W. Pyle

Eastern Washington State College

For those researchers who are interested in using multiple linear

regression (MLR) as a general data analytic technique, it is of some

importance to recognize what types of models and restrictions on models

generate £ ratios that correspond to classical hypothesis testing

procedures. Many of these equivalences have already been demonstrated

for a variety of experimental designs (e.g., Kelly, Beggs, McNeil,

Eichelberger, and Lyon, 1969; Williams, 1970; Jennings, 1967), but some

appear to have been overlooked. One of these is the split-plot factorial

design and another is the completely randomized hierarchical design

(Kirk, 1968). What will be demonstrated here is that MLR models can be

constructed for these designs which generate F ratios that are equivalent

to those obtained by traditional computing formulas. An example of each

of these follows.

Split-plot Factorial

A x B Interaction and B Main Effect

In this design n subjects are randomly assigned to each of p levels

(p^2) of a between-subjects variable (A). Each subject’s performance is

measured at q time periods (i.e., there are q levels of the within-subjects

B, variable). A total of pnq dependent variable scores are obtained. The

following data are from Myers (1972, p. 200).
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B1 b2 B3

S1 7 1 7
A1

s2 9 2 10

s3 11 6 7
A2

S4 16 14 9

Consider the following regression model:

Y1 " aoU + aiXl,l + a2Xl,2 + a3Xl,3 + a4X2,l + a5X2,2 + ^2,3

+ b1P1 + b2P2 + b3P3 + b4P4 + E1 [II

where:

Y]_ is the vector of dependent variable scores;

U is the unit vector:

Xj is a vector which contains a one if the corresponding
value in Yj_ was made by a person in treatment condition
AjBk, zero otherwise;

P^ is a vector which contains a one if the corresponding
value in Y^ was made by person i (i ■ 1, 2, 3, 4,)
zero otherwise;

a0 aj .... b^ are weighting coefficients, the values of which
are chosen so as to minimize the sum of the squared values of

and

Ej Is the error vector.

' .• It can be shown that when the following restrictions are

imposed on Model 1,

(aQ + aj^ + bj + ao + ax + b2)  (aQ + a^ + b3 + aQ + a4 + b^)
- . -

(a + a_ + b. + a + a + b,)  (a + a_ + b_ + a + a. + b.)o z * 1 o z Z — o 5 3 o 5 4
- _

(a + a + b + a + a + b2)  (a + a, + b_ + a + a, + b.)ojloj^ — oo3o6 4- ______
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Model 2 obtains:

. Y ■ %U + ' «1,1 + Xl,2 + Xl,3> + a4 (X1,1 + X2,l> + 5 (X1,2 + X2,2>

+ a6 (X1,3 + X2,3> + blPl + b2P2 + b3P3 + b4P4 + E2 ™

where c = 1/2 (2k ~ “ b2 + b3 + b^) .

The restrictions may look somewhat complicated, but they are actually

rather straightforward. In terms of Model 1 the expression in the first

set of parentheses is the average predicted value for treatment combination

^1B1: ao + al + B1 th® Predicted value for Person 1 at A^B^ and ao +

al + is tbe predicted value for Person 2 at A^B^. The meaning of the

remaining expressions is completely analogous and should be obvious. It

may be of interest to note that if one imposes the set of restrictions^'^

on Model 1, Model 2 also obtains:

*1: al ~ a4 “ k

a2 - = k

a3 - a6 = k

9
When the least squares solutions of Models 1 and 2 are obtained, RJ -

2
.95150 and R2 = .74788. An 1? ratio may be computed using the following

formula (Bottenberg and Ward, 1963):

(rJ - r|) / df-L
F = 

(1 - R*) / df2

where:

df^ •» the number of linearly independent vectors in Model 1 (mp
minus the number of linearly independent vectors in Model
2 (m2);

df2 ■ the dimension of the vectors (N) minus mj.

= the squared multiple correlation coefficient of the Full
model.

R2 - the squared multiple correlation coefficient of the
Restricted model.
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In Model 1 there are 8 linearly independent vectors and in Model 2

there are 6 linearly Independent vectors. Since N = 12, df^ “ 2 and df2 ■

It. The obtained value of F is 8.3967.

The restrictions imposed on Model 1 generate an F ratio that is

equivalent to that obtained by traditional computing formulas for the

test of "no interaction" (Myers, 1968). Note also that the df's are the

same as those obtained by classical "rules of thumb": dfj ■ (p-1)(q-1),

df2 ■ p(n-l)(q-l).

The restrictions on Model 1 that generate the F ratio associated

with the B main effect are as follows:

xj : a + a, + b, + a + a + b„ a + a, + b_ + a + a, + b,M2 o 1 1 o 1 2 , o 4 3 o 4 4‘  + - k  

2 2

a_ + a, + b. + a_ + ao + bo a_ + ac + bQ + a + ac + b.o z 1 o z z o 5 3 o 5 4 .. + ■ k

2 2

a + a- + b, + a + a_ + b0 a + a, + b, + a + a, + bzO 3 1 O 3 z o 6 3 O 6 4
  + - k

2 2

Imposing on M°del 1 (by solving for a-^, a2> and 33) yields Model 3:

Y - aQU + c(X1>1 + X1>2 + xl,3^ + a4^x2,l “ X1,P + a5^x2,2 ~ Xl,2^

a6^X2,3 ~ Xl,3^ ^1^1 + ^2^*2 ^3P3 ^4^4 ^3

where c -1/2 (2k - b. - b, - b, - b, - 4a ).1 2 3 4 o
The R2 obtained from Model 3 Is .70909, and when Model 3 is compared

to Model 1 using the F ratio as defined above, F = 9.9962 with df^ - 2 and

^^2 “ This is the same F value, dfj, and df2 obtained by traditional 

computing formulas for the B main effect.
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A Main Effect

A problem occurs when one attempts to compute the A main effect.

It may seem reasonable to generate from Model 1 a restriction which

forces the average predicted value for A^ to equal the average predicted

value for A2. However, this procedure does not work. It is easy to see

that it will not work because whatever restriction one imposes on Model 1

df2 will always be 4, whereas df2 must be (n-l)p =■ 2 if the MLR procedure

is to be strictly equivalent to the traditional procedures. However,

consider Model 4:

Y2 = aoU + alAl + alA2 + E4

where:

Y2 is a vector of criterion scores. The ith element of Y2
is the sum (or average) of the q scores in the original data
matrix for Person i, i = 1, 2, 3, 4;

U is the unit vector;

Aj contains a one if the corresponding element in Y2 was obtained
by a person in treatment Aj , zero otherwise;

ao, a^, and a2 are the least squares weights; and

E4 is the error vector.

If the restriction a^ = a2 is imposed on Model 4, the unit vector model

2 2obtains. This model has an associated R4 of 0.0. By comparing the R of Model

4 (.58273) to an R^ of 0.0 using the F. ratio, one obtains an F value of

2.7931, where df^ = 1 and df2>= result is identical to that obtained

by traditional computing procedures when computing F_ for the A main effect.
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A Hierarchical Model

Groups Within Treatments

In the type of hierarchical design considered here, p levels of the

treatment variable (A) are administered to groups of Ss. At each level

of A there are g groups; each group is composed of n Ss. It should be

noted that Groups is not factorial to Treatments because the g groups

at treatment level j are not the same groups at treatment level k.

In the usual ANOVA procedure, the Treatment Mean Square is divided

by an error term called Groups within Treatments (G/A). However, under

certain conditions (Myers, 1972, Chap. 11) the significance of Treatments

is assessed relative to a pooled error term. Both procedures can also be

accomplished with the framework of MLR.

The following data matrix is from Myers (1972, p. 233).

”1 A2

bll b21 b31 b12 b22 b32

5 7 16 24 9 17

6 18 5 21 23 26

18 4 9 12 28 24

12 11 14 16 19 19

41 40 44 73 79 ' 86

Following the standard procedure for the assessment of significance

of treatment effects (i.e>, G/A is considered the proper error term), we

define Model 5:

Y3 “ aou + alAl + a2A2 + e5 [5]

where:

?3 *8 a vector of sum. scores. The elements of Y3 are the sums of the
ndlyidual subject scores in the six groups (i.e., the dimension of Y3

IS OJ• J
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U Is the unit vector;

•Aj contains a one if the corresponding element in Y^ came from a group
belonging to treatment level j; zero otherwise;

aQ, a^, and a2 are least_squares weights; and

E5 is the error vector.

If the restriction a^ = a2 is imposed on Model 5, the unit vector model obtains.

The R for Model 5 is .95799. If Model 5 is compared with the unit vector

model using the ratio as defined previously, the resulting value of F is

91.208 with dfj ■= 1 and df2 = 4. One obtains the same F, dfp and df2 using

traditional formulas (the value of F that Myers reports in his Table 9-4 Is'

wrong due to arithmetic and round-off errors.)

Subjects within Groups within Treatments

One may also determine if the variability of groups within treatments

contributes significantly to the total variability. To do this Model 6 is

created:

Y4 “ aoU + alGl,l + a2G2,l + a3G3,l + a4Gl,2 + a5G2,2 + a6G3,2 + E6

where:

Y4 is a vector of criterion scores. Each element of Y4 is the
score obtained by an individual Sj

U is the unit vector;

G^j contains a one if the corresponding element in Y^ was made
by a subject in Group k, Treatment j (k=l, 2, 3;j=l, 2),
zero otherwise;

ao, aj,,.., ag are least squares weights; and

E& is the error vector.

If the following restrictions are made,

ai = a2 “ a3 

a4 = a5 = a6
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Model 7 obtains:

Y^ ■ aQU + a^A^ + a2A2 + E7 P]

where:

A, contains a one if the corresponding element in was made
by a subject of Treatment level j (j » 1, 2), zero otherwise.

Comparing Model 7 to Model 6 via the F ratio yields a value of F of 

0.1679 with dfi • 4, df2 - 18. The values of F, dfj, and df2 obtained

with the MLR procedure are identical to those obtained with traditional

computing formulas.

When the Groups within Treatments source of variation is not

significant at a fairly high significance level (e.g., C( = .25) and

if the experimenter has no a priori reason to suspect that groups

within treatments should be a significant source of variation, then some 

authors suggest a pooling of error terms for the evaluation of the treatment

variable (Kirk, 1968; Myers, 1972). One effect of pooling is to increase

the number of degrees of freedom in the denominator of the F test; this may

increase the power of the test*

The MLR procedure for pooling for the hierarchical design under consid­

eration is as follows: Model 7 is considered to be the appropriate full model.

The restriction on Model 7 is a^ = a2. Imposing this restriction on Model 7

yields the unit vector model, and the associated value of F in the comparison

of the two models is 18.046 with df^ ■ 1, df2 ■ 22.

What has been presented represents another area of equivalence of MLR and

traditional statistical analysis. Formulation of these and other designs

using MLR procedures should help emphasize what starting conditions (full

models) are assumed and what restrictions on these starting conditions are

sufficient to produce F ratios and dfs that are the same as those obtained

using traditional computing formulas.
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AN EMPIRICAL COMPARISON OF RESIDUAL GAIN ANALYSIS
AND THE ANALYSIS OF COVARIANCE

Ronald C. Buzahora and John D. Williams

The University of North Dakota

Summary - An extensive comparison of the analysis of covariance and the
residual gain analysis was made. Using subtests of the Iowa Tests of
Basic Skills, the School Attitude Inventory and School Sentiment Index
independently at each grade level, grades 3-8, 258 analyses were compared.
While the analysis of covariance gave some indication of being more
powerful, this result was not uniform over the various analyses.

Two similar techniques for statistical analysis, residual gain

analysis and the analysis of covariance, have been mentioned by different

researchers as useful measures of change. Perhaps because of their similarity,

applied researchers have sometimes mistakenly concluded that the two tech­

niques were in fact identical. Jennings (1972) contrasted the linear models

for the two different analyses; Williams and Others (1972) presented

limited data for comparing two groups at each of six grade levels, usina

the two measures of change. In both of the mentioned presentations, a

regression approach was used to clarify similarities and dissimilarities

between the two approaches. The present research effort'has been directed

toward a more extensive comparison of the two techniques.

Method

The sample for this investigation was selected from students enrolled

at Carl Ben Eielson and Nathan Twining Elementary Schools in Grand Forks,

North Dakota, who participated in a project entitled Human Awareness

Through Self Enhancing Education. These schools were located adjacent to

the Grand Forks Air Base, and served the children of those military personnel
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living on or near this establishment. Students in grades three throuqh

eight from each school participated in this study. They were tested

initially in the Fall (October) and retested using the same instruments

near the close of the school year (April). Only those students who parti­

cipated in the study for the entire treatment period were included in the

data analysis. The number of students involved were: Grade 3, N = 119;

Grade 4, N = 73; Grade 5, N = 103; Grade 6, N = 58; Grade 7, N - 95; and

Grade' 8, N = 80. The instruments used in this study were: The Self

Appraisal Inventory (SAI), the School Sentiment Index (SSI) and the Iowa

Test of Basic Skills (ITBS). Separately at each grade level, subgroups were

formed (High, Middle, Low) on the composite score on each of the three tests.

Using the high, middle and low groups on the ITBS, each of the 15 subtests

on the ITBS, the 5 subtests of the SSI and the 6 subtests of the SAI were

analyzed using the analysis of covariance and the residual gain analysis

using the pre-test on the corresponding subtest as the covariate. A similar

procedure was used, finding the high, middle and low groups on the composite

score for the SAI and comparing the two techniques on each subtest of the

SAI and SSI. Finally, each subtest on the SSI was analyzed using the high,

middle and low groupings on the SSI composite pre-test score.

At a given grade level, the analysis of covariance was accomplished

by the use of two linear models:

rn Y = b + b X + b X + b X + e , (Model 1) and
" 0 1 1 2 2 3 3 1
LU Y = b^ + b^. (Model 2)

where

Y = the score on a given post-test score,

b = the regression coefficient for the particular model (b for Models

1 and 2 are in general different),
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X = the pre-test score,

X = 1 if a score is from a member of the high group; 0 otherwise,
2

X = 1 if a score is from a member of the middle group; 0 otherwise,
3

b - b = are regression coefficients, and
1 3

e and e are the error in prediction respectively for Model 1 and
1 2

Model 2.
2 2

The use of Model 1 allows the finding of R ; this value is denoted here as R .
2 . . 1

Similarly, the second model yields R . The test of significance is given
2

by

D] f JR, - Rz>Z2
2 ’

(1 - R )/df
1 w .

where df is the degrees of freedom for within for a particular analysis.
w

The use of equation 3 assumes homogeneous slopes of the regression lines

for each group; if it is desired to test this assumption, Jennings' article

contains the necessary test.

with two linear models,

from Model 2 become

and

~ 2
This model also yields a squared multiple correlation coefficient R

3
Results

Tables 1-3 report the summarized results of usinq the groupings made

on the ITBS composite score for the subtests of the ITBS, the SAI and the SSI

respectively. Tables 4-5 report the summarized results of using the groupings

residual gain analysis can be accomplished

the first of which is Model 2. The residual values

the criterion scores for the following model:

Y' = b + b X + b X + e , (Model 3) *
0 2 2 3 3 3

where

Y1 = the residual from Model 2 for each score,

e = the error in prediction with Model 3.
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made on the SAI composite score for the subtests of the SAI and SSI res­

pectively. Table 6 reports the summarized results of using the groupings

made on the SSI composite score for the subtests of the SSI. Table 7

summarizes the results of Tables 1-6. While the original analyses were

made separately at each grade level, the tables combine the results from

the six grades. Each table includes the nurriber of significant results

found by each method; also included is an indication of a comparison of
2 2 2 2 2 2

R - R to R . In Table 4, R, - R was equal to R_ three times; in Table
12 3 12 3

5, they were equal twice.

TABLE 1

SUMMARY OF SIGNIFICANCE LEVELS FOR THE IOWA TEST OF BASIC SKILLS
SUBTEST RESULTS—GROUPED (HIGH, MIDDLE AND LOW) ON THE

IOWA TEST OF BASIC SKILLS COMPOSITIVE SCORE

, 2 2 2V
(R - R„ to R )

8 O

Level Analysis of Covariance Residual Gain
Analysis

Nonsignificant 22 87

Significant at .05
♦ •

but not at .01 11 2

Significant at .01 57 1

2 ,
Higher R value 75 15
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SUW4ARY OF SIGNIFICANCE LEVELS FOR THE SELF APPRAISAL INVENTORY
SUBTEST RESULTS—GROUPED (HIGH, MIDDLE AND LOW) ON THE

IOWA TEST OF BASIC SKILLS COMPOSITIVE SCORE

Level Analysis of Covariance Residual Gain
Analysis

Nonsignificant 20 29
Significant at .05

but not at .01 7 1

Significant at .01 3 0
2

Higher R value
2 2 2(R? - R to Rd)
1 2 3

20 10

TABLE 3

SUMMARY OF SIGNIFICANCE LEVELS FOR THE SCHOOL SENTIMENT INDEX
SUBTEST RESULTS—GROUPED (HIGH, MIDDLE AND LOW) ON THE

IOWA TEST OF BASIC SKILLS COMPOSITIVE SCORE

Level Analysis of Covariance Residual Gain
Analysis

Nonsignificant
Significant at .05

35 32

but not at .01 1 4

Significant at .01 0 0
2

Higher R value
.2 2 2
(R - R to R J

12 24

12 3 .
TAfeLE 4

SUMMARY OF SIGNIFICANCE LEVELS FOR THE SELF APPRAISAL INVENTORY
SUBTEST RESULTS—GROUPED (HIGH, MIDDLE AND LOW) ON THE

SELF APPRAISAL INVENTORY COMPOSITIVE SCORE

Level Analysis of Covariance Residual Gain
Analysis

Nonsignificant
Significant at .05

29 29

but not at .01 0 1
Significant at .01 1 0

2
Higher R value
,22 2
(R - R to R )

19 8

1 2 3
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TABLE 5

SUMMARY OF SIGNIFICANCE LEVELS FOR THE SCHOOL SENTIMENT INDEX
SUBTEST RESULTS--GROUPED (HIGH, MIDDLE AND LOW) ON THE

SELF APPRAISAL INVENTORY COMPOSITIVE SCORE

, 2 2 2
(R. - R to R )

1 2 3Z

Level Analysis of Covariance Residual Gain
Analysis

Nonsignificant 32 33
Significant at .05

but not at .01 4 3
Significant at .01 0 0

2
Higher R value 7 27

? 2'2(r; - < to r )
1 2 3

TABLE 6

SUMMARY OF SIGNIFICANCE LEVELS FOR THE SCHOOL SENTIMENT INDEX
SUBTEST RESULTS-GROUPED (HIGH, MIDDLE AND LOW) ON THE

SCHOOL SENTIMENT INDEX COMPOSITIVE SCORE

Level Analysis of Covariance Residual Gain
Analysis

Nonsignificant 30 34

Significant at .05
but not at .01 5 2

Significant at .01 1 0
2

Higher R value
.22 2
(R - R to R )

21 15

TABLE 7

SUMMARY OF SIGNIFICANCE LEVELS FOR ANALYSIS
AND RESIDUAL GAIN ANALYSIS ON TABLES

OF COVARIANCE
1-6

Level Analysis of Covariance Residual Gain
Analysis

Nonsignificant 168 244

Significant at .05
but not at .01 28 13

Significant at .01____________ 62 1
2

Higher R value 154 99
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Discussion

Only Tables 1 and 2 show any marked differences in significance levels,

both showing a greater degree of significance with the analysis of covar-
2 2 2

lance. On the other hand, when R - R is compared to R_ (the amount of
! 2

accounted variance by the group merrbership variables in each instance),

Tables 3 and 5 favor the residual gain analysis, with the remaining tables

favoring the analysis of covariance. The major difference in the success of

the two approaches occurs in Table 1 in which the ITBS composite scores on

the pre-test were used for classification into the high, middle and low groups

for analyzing the 15 subtests of the ITBS on the post-test. The effect of this

grouping is to create a treatments X levels design; for the covariance

analysis, the level was being covaried, in the sense that the grouping was

based on ITBS composite scores; for the residual gain analysis, a treatments

X levels design was executed on the residual gain data. For the covariance

analysis, the adjusted means generally followed the pattern where in the high

group was highest, the middle group was in the middle, with the low group

being the lowest. No general pattern seemed to emerge for the residual

gain analysis. Interestingly, the pattern for the covariance analysis

held least when the criterion was the composite score.

Coming to conclusions in the present analysis "is, at the least, tenuous.

Considering the conceptual and computational difficulties attendent to the

residual gain analysis, there is a tendency to dismiss this technique in

deference to the analysis of covariance, or perhaps some other measure of

change. The results of Table 5 are strong enough to give the residual

gain analysis at least one reprieve. While there are undoubtedly good

reasons to choose the residual gain analysis over all other methodologies
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for some applications, the situations that would best be analyzed by the

residual gain method would seem to be severely limited.
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JUDGMENT ANALYSIS AND PORNOGRAPHY

Judith A. Houston and Samuel R. Houston
University of Northern Colorado

ABSTRACT

Judgment Analysis (JAN) was used as a methodology for determining what
is pornographic by testing this technique with three groups concerned
with this issue. These groups included doctoral students majoring in
Psychology, Counseling and'Guidance (PCG) at the University of
Northern Colorado, lawyers and police officers from the city of Greeley,
Colorado. JAN proved to be an effective technique In the identification
of policies. The problem of what is pornographic is Indeed a complex
one as evidenced by the many specific categorical and complex policies
present in'the PCG Judges, lawyers and police officers.

INTRODUCTION

For nearly as long as man has existed there has been confusion
and concern for what Is pornographic or obscene. This confusion has
greatly increased in recent years in the United States because of vague
and poorly defined decisions handed down by the Supreme Court. To the
layman these decisions often appear to be contradictory and confusing in
nature.

A technique for both capturing and clustering raters’ policies,
Judgment Analysis (JAN), was suggested by Bottenberg and Christal (1961)
and Christal (1963). JAN utilizes a multiple regression model and a
hierarchical grouping technique which clusters raters on the basis of
the homogeneity of their raw score regression vectors (their prediction
equations).

The primary purpose of this study was to determine if a policy­
capturing methodology (JAN) which has been successfully utilized in
military and educational research could be adapted for use as a procedure
in identifying pornographic material. This attempt to use JAN techniques
was considered significant in that it represented a first application
of this procedure to an area of investigation which appears of concern
today.

METHOD

Sample; The Ss were 28 doctoral Psychology, Counseling and
Guidance (PCG) majors at the University of Northern Colorado,21 lawyers and
25 police officers, both from the city of Greeley, Colorado. These
individuals were Identified by use of a table of random numbers and were
requested to serve as judges on a voluntary basis.

In»trumanCi The instrument contained an 11-item profile for each
°f u ° P^ccorial representations. The reason for using 11 Items on
each profile and having 100 profiles available for each judge stems
from the research of Dudyiha (1970) who found that it was difficult to
c uster judges or raters when fewer than 100 observations exist. Further.
Dudycha found that the clustering technique is far more effective when
at least 10 predictor or profile items are used.
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A sample of the profiles used in this study appears below. Each
of the 100 profiles was generated by using a table of random numbers.
This guaranteed maximum variability in the distribution of profile
descriptors, which is essential for the valid use of JAN. In addition,
the use of the table of random numbers also guaranteed low intercorrelations
between the profile variables. This feature was important for a clean
interpretation of policy in the policy analysis stage of the study.

SAMPLE PROFILE OF PICTORIAL REPRESENTATION

Descriptors Yes No

1.
2.

Appeals to prurient interest
Goes beyond contemporary community standards

X
X

3. Has redeeming social importance X
4. Involves uncovered adult human genitalia X
5. Displays human sexual intercourse X
6. Displays masturbation X
7. Displays anal intercourse X
8. Displays flagellation or torture X
9. Displays homosexuality X

10. Involves interracial sexual relationships X
11. Displays group sex activity X

Judge’s Rating (Circle only one) 1 2 3 4 5

Code

1. Should be banned from society
2. Allowed only for professional (medical and/or scientific) study
3. Available only to interested adults
4. Available to all adults
5. Unrestricted use in society

Procedure and Design; The investigators contacted a total of 74
individuals in the three groups. These individuals were requested to
serve as judges for the study and each was presented with a set of 100
profiles descriptive of pictorial representations which were generated
for this study by the investigators. Each judge was requested to rate
each of the profiles on a five-point scale.

The JAN procedure was applied to the results of the ranking process
to ascertain the feasibility of the process as well as to determine the
number of policies which were present in each of the three groups.

The JAN procedure consisted of two basic stages. In the first
stage, a least-squares solution of a multiple regression equation was
computed for each judge, which predicted the criterion decision he had
made. This determined how consistent the judge was in his use of specific
variables in arriving at an over-all decision by giving his decision­
making equation and the R , the square of the multiple correlation 
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coefficient from his multiple regression analysis. Those judges whose R
(multiple R value or predictive efficiency value which is a measure of
the judge's intrarater consistency) value in their multiple linear
regression equation exceeded.70 were deemed to be making consistent
policy and were included in the JAN analysis.

A hierarchical grouping of those judges who were identified as
expressing a consistent policy (R value in excess of .70) was undertaken
in order to determine the number of policies which were present. The
investigators inspected the stages of the grouping according to the Ward
and Hook (1963) recommendation of looking for a break in the objective
function (over-all R in this case). A determination of whether one or
more judgmental systems are present among the judges was made for each
o£ the three groups of judges by looking for a drop of .05 or more in the
R between successive clusters of judges in the category of judges under '
consideration. This procedure enabled the investigators to specify the^
number of policies present in each group. The researchers used multiple
linear regression according to Ward (1962) to determine the significance
of the unique contribution of each predictor variable (X. ......,X^)
and other specific subsets of variables in order to explain the captured
policies.

The unique contribution of a variable to prediction may be measured
bg the difference in the square of the multiple correlation coefficient,
R , for the regression model in which all predictor variables are
used and the R for a regression model in which the variabxe under
consideration has been removed. The first model is called the full
mgdel (FM) , and the second is called the restricted model, (RM). The
R for the RM can2never be larger than the R for the FM. The difference
between the two R s may be tested for statistical significance with the
variance ratio test, or the investigator may set a level drop which she
is willing to accept. The former course of action was chosen and the
significance level was set at .05.

RESULTS

The means and standard deviations for the*profiles are given in
Table 1. A variable received a score of 1 if the characteristic was
present and a 0 if the characteristic was absent.
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TABLE 1

MEANS AND STANDARD DEVIATIONS OF PREDICTOR (PROFILE) VARIABLES

(N = 100)

Table 2 presents the intercorrelations between predictor or
profile variables. An inspection of the intercorrelations in Table 2
shows that the vast majority of them are quite low.

TABLE 2
INTERCORRELATIONS OF PREDICTOR (PROFILE) VARIABLES

Variable Abbrev­
iation

Mean Standard
Deviation

1. Appeals to prurient interest API 0.50 0.50
2. Goes beyond contemporary community

standards
BCS 0.54 0.50

3. Has redeeming social importance RSI 0.48 0.50
4. Involves uncovered human adult

genitalia
UAHG 0.49 0.50

5. Displays human sexual intercourse HSI 0.42 0.49
6. Displays masturbation DM 0.44 0.50
7. Displays anal intercourse DAI 0.56 0.50
8. Displays flagellation or torture DFT 0.47 0.50
9. Displays homosexuality DH 0.47 0.50

10. Involves interracial sexual
relationships

1SR 0.46 0.50

11. Displays group sex activity GSA 0.62 0..49

Variable 1 2 3 4 5 6 7 8 9 10

1. API
2. BCS .00
3. RSI .04 .08
4. UAHG -.06 .02 .02
5. HSI .04 .05 .07 -.15
6. DM .08 .01 -.17 -.10 .27
7. DAI -.08 .11 .13 -.06 .26 .18
8. DFT .02 .11 -.19 -.12 -.16 .09 -.13
9. DH .06 -.10 -.02 .08 .01 .09 .07 .03

10. ISR -.08 .09 .08 -.06 .03 .07 -.11 .05 -.15
11. GSA .00 .02 .05 -.02 .46 .24 .14 .00 .08 -.02

PCG Judges; Of the 28 PCG judges contacted, 26 of the judges were
used in the analysis. Two had to be eliminated because of incomplete
responses. Nine of the PCG students had very specific policies and were
not included in the JAN procedure. These nine judges included two judges
who checked column 5 for each of the 100 profiles. This policy represented
the position that the identified profiles should have unrestricted use in
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society. One judge checked column 4 on each of the 100 profiles—this
policy represented the position that the profile materials should be
available to all adults. Finally, 6 judges checked column 3 which was a
statement that the profile materials should be made available only
to interested adults.

The remaining 17 judges who had expressed complex policies (i.e.,
they checked more than one column) were included in the JAN procedure
to determine how many different policies were present. In this JAN
analysis, nine judges had to be eliminated because their multiple R value
was less than .7. This low R value suggested that the judges were not
expressing a consistent policy.

2In Table 3 are presented the R and R values for the eight PCG
judges who were retained in the final JAN analysis. The values of R
range from a high of .9646 for Judge 5 to a low of .7586 for Judge 6.

TABLE 3
2R AND R VALUES FOR PCG JUDGES EXPRESSING COMPLEX POLICIES

Table 4 gives t^e stages for the JAN procedure for the group of
eight judges and the R value associated with each stage. For.example,
in Stage 1 the eight judges remain ungrouped and the overall R2 value
for this system is .8416. The first two judges who are grouped together
are Judges 2 and 5. They have been identified as having the most
homogeneous policy between two judges in the system. The overall R2
dropped only .0088 in going from Stage 1 to Stage 2. In Stage 6, three
separate judgmental groups of judges have been formed. Judges 1,2,5,6,7,8
form one group; Judge 3 forms a second group; and Judge 4 forms the third
group.

Judge 2R value Multiple R value
1. .9116 .9547
2. .5889 .7673
3. .7642 .8741
4. .6736 .8207
5. .9305 .9646
6. .5755 .7586
7. .7501 .8660
8. .6712 .8192

2
At Stage 5, the R has dropped .0588 from Stage 4. Thus, by the

criterion adopted in this study, Stage 4 gives the clustering of judges
into five policy systems which are characteristic of the eight judges.
Judges 1, 6, and 7 form the first system; Judges 2 and 5 form the second
system; Judge 3forms the third system; Judge 4 forms the fourth system-
Judge 8 forms the fifth system. 7
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STAGES OF THE JAN PROCEDURE FOR EIGHT PCG JUDGES

TABLE 4

Stage Judges R2 Successive
Drop in RZ

Collective
Drop in RZ

1
2

12345678 .8416
.83281,(2,5),3,4,6,7,8 .0088 .0088

3 (1,7),(2,5),3,4,6,8 .8033 .0295 .0383
4 (1,6,7),(2,5,)3,4,8 .7701 .0332 .0715
5 (1,2,5,6,7)3,4,8 .7113 .0588 .1303
6 (1,2,5,6,7,8)3,4 .6279 .0834 .2137
7 (1,2,3,5,6,7,8)4 .4861 .1418 .3555
8 (1,2,3,4,5,6,7,8) .1610 .3251 .6806

For an explanation of the five PCG judgmental policies, a
subjective analysis of the predictor variables was made. It was
conjectured that they formed a hierarchical pattern as displayed in Table 5.
The groupings identified in this table were used in Table 6 in which the
unique contribution of specific subset of variables was tested for
statistical significance in explaining individual policies. The five
PCG policies displayed in Table 6 were determined by the following
grouping of judges: Policy I—Judges 1,6, and 7; Policy II--Judges 2
and 7; Policy III--Judge 3; Policy IV--Judge 4; and Policy V--Judge 8.

TABLE 5

SUBJECTIVE HIERARCHY OF PREDICTOR (PROFILE) VARIABLES

Impact Variables: Appeals to prurient interest (1)
Goes beyond contemporary community standards (2)
Has redeeming social importance (3)

Content Variables:
Natural:

Involves uncovered human genitalia (4)
Displays human sexual intercourse (5)
Displays masturbation (6)
Involves interracial sexual relationships (10)

Unnatural:
Displays anal intercourse (7)
Displays flagellation or torture (8)
Displays homosexuality (9)

> Displays group sex activity (U)



TABLE 6

★Significant beyond the .05 level
Policy I was concerned with both the subset of impact variables and the

subset of content variables. Specifically, Variable 1—Appeals -to purient interest,

FIVE PCG POLICY TABLE

Policy I II III IV

Judges 1,6,7_________ _2x5___________ 3 4 ____ 8
Unique
Contribution

Unique
Contribution

Unique
Contribution

Unique
Contribution

Unique
_ Contribute

Impact
Variables (1-3) .0499* .5078* .0107 .5837* .0617*
Variable 1
API .0487* '.0004 .0067 .0082 .0004
Variable 2
BCS .0000 .0033 .0018 .3061* .0050
Variable 3
RSI .0003 .4934* .0031 .3063* .0576*
Content
Variables (4-11) .3288* .0706* .7210* .0197 .4940*
Natural
Content(4,5,6,10) .0327* .0200* .0090 .0065 .0128
Variable 4
UAH G .0161* .0028 .0003 .0017 .0049
Variable 5
HSI .0038 .0007 .0008 .0035 .0031
Variable 6
DM .0082* .0042 .0071 .0024 .0062
Variable 10
ISR .0046 .0106* .0005 .0000 .0006
Unnatural Content
(7,8,9,11) .2928* .0411* .5907* .0160 .4247*
Variable 7
DAI .0152* .0221* .5848* .0006 .0053
Variable 8
DFT .2706* .0197* .0000 .0117 .4150*
Variable 11
GSA .0014 .0021 .0001 .0038 .0000
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Variable 4--Involves uncovered human genitalia, Variable 6--Displays
masturbation, Variable 7—Displays anal intercourse, Variable 8--
Displays flagellation or torture, and Variable 9—Displays homosexuality
were important considerations for Judges 1,6,7, who expressed Policy I.

Policy II again was concerned with both the subset of impact
variables and the subset of content. The specific variables involved or
attended to by Judges 2 and 5 who authored Policy II were different from
those identified in Policy I. The specific significant variables
identified in Policy II include Variable 3--Has redeeming social importance
Variable 10—Involves interracial sexual relationships, Variable 7—
Displays anal intercourse, and Variable 8—Displays flagellation or torture.

The third policy expressed by PCG doctoral students, Policy III,
was determined by a single judge (Judge 3). Policy III was not concerned
with the impact variables but rather focused on the subset of content
variables. The one specific variable which was significant in this policy
was Variable 7—Displays anal intercourse.

Policy IV also was determined by a single judge--Judge 4. This
policy was concerned with the subset of impact variables and not the subset
of content variables. Specifically, Variable 2--Goes beyond contemporary
community standards, and Variable 3—Has redeeming social importance, were
important considerations for this judge.

The final and fifth policy which was captured by the JAN procedure,
Policy V, was determined by a single judge (Judge 8) as was the case for
Policy III and Policy IV. The policy identified both impact and content
variables as important considerations. The specific variables attended
to in this policy include Variable 3—Has redeeming social importance, and
Variable 8--Displays flagellation or torture.

Lawyer Judges: Of the 21 lawyers in the city of Greeley, Colorado
who volunteered to participate, 19 were used in the analysis. One judge had
to be eliminated because the secretary volunteered that she had filled
out the instrument instead of the lawyer. Still another was not usable
because of incomplete items on the instrument. Of the 19 usable cases,
nine of the lawyer judges had very specific policies and hence were not
included in the JAN procedure. Four lawyers stated that their policy
relative to the profiles was that all the profile materials should be
made available only to interested adults, while three lawyers felt that
the profile materials should be made available to all adults. Only two of
the lawyers checked column five which indicated that all the materials
should have unrestricted use in society.

The remaining ten lawyer judges who expressed complex policies were
included in the JAN procedure. In this JAN anlaysis, six of the lawyer
judges had to be eliminated because their multiple R value was less than .7.

In Table 7 are presented the and the R values for the four lawyer
judges who were retained in the final JAN analysis. The values of R
range from a high of .8425 for Judge 3 to a low of .7061 for Judge 4.
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TABLE 7

R2 AND R VALUES FOR LAWYER JUDGES EXPRESSING COMPLEX POLICIES

Judge R2 value Multiple R value

1.
2.
3.
4.

.6284 -7927

.5628 -7502

.7098 .8425

.4986 .7061

Table 8 gives the stages for the JAN procedure for the group of
four lawyer judges and the RZ value associated with each stage. By the
criterion adopted in this study, there are fgur different policies being
expressed by the four lawyer judges as the R drop from Stage 1 to Stage 2
was .0547 which exceeded the .05 criterion.

TABLE 8
STAGES OF THE JAN PROCEDURE FOR FOUR LAWYER JUDGES

Stage Judges R2 Successlvg
Drop in R

Collectivg
Drop in R

1 1,2,3,4 .8205 ’
2 (1,4)2,3 .7658 .0547 .0547
3 (1,3,4),2 .6242 .1416 .1963
4 (1,2,3,4) .1439 .4803 .6766

For an explanation of the four captured lawyer policies, refer to
Table 9. The unique contributions of specific variables are tested in an
attempt to explicate the different policies.

Policy I—expressed by Judge 1—focused on the subset of content
variables while ignoring the subset of impact variable's. The specific
content variables which were significant in Policy I include Variable 6—
Displays masturbation, and Variable 8--Displays flagellation or torture.
On the other hand, Policy II—determined by Judge 2—was concerned with
both subsets of impact and content variables. Important variables for this
policy are Variable 1—Appeals to prurient interest, Variable 3—Has
redeeming social Importance, Variable 5--Displays human sexual intercourse,
Variable 10--Involves interracial sexual relationships,’ and Variable 8--
Displays flagellation or torture. The third lawyer judge policy, Policy III,
was again determined by a single judge (Judge 3). This policy included
both subset of impact and content variables as significant. Specifically,
Variable 1--Appeals to prurient interest, Variable 2—Goes beyond contemporary
community standards, Variable 4—Involves uncovered adult human genitalia,
Variable 7—Displays anal intercourse, and Variable 8--Displays flagellation
or torture, were identified in the policy. The last policy captured, Policy IV,
involved a single judge. Both Impact and content variables were identified as
important in this policy but the specific variables identified were different
from the other three policies. The significant specific variables are Variable 1-
ppea s to prurient interest, Variable 2--Goes beyond contemporary community

standards, and Variable e-Dlsplays flagellation or torture.



27

♦Significant beyond the 0.05 level

TABLE 9
FOUR LAWYER POLICY TABLE

Policy I II III IV
Unique
Contribution

Unique
Contribution

Unique
Contribution

Unique
Contribution

Judge 1 2 3 4

Impact
Variable (1-3) .0136 .2071* .0561* .2628*

Var. 1
API .0025 .0277* .0205* .1389*

Var. 2
BCS .0051 .0026 .0245* .1182*

Var. 3
RSI .0073 .1895* .0119 .0014
Content
Variables (4-11) .6149* .2437* .6894* .1724*

Natural Content
Variables (4,5,6,10) .0780* .0780* .0552* .0197

Var. 4
UAHG .0000 .0076 .0290* .0107

Var. 5
HSL .0008 .0200* .0071 .0031

Var. 6
DM .0727* .0092 .0082 .0060

Var. 10
ISR .0010 .0324* .0118 .0013
Unnatural
Variables

Content
(7,8,9,11) .4697* .1695* .6023* .1420*

Var. 7
DAI .0059 .0000 .4624* .0178
Var. 8
DFT .4266* .1579* .1880* .1244*

Var. 9
DH .0127 .0063 .0009 .0007

Var. 11
GSA .0127 .0014 .0101 .0015
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Police Judges: While 25 police officers were contacted only 15
volunteered to participate in the study. One return was not usable
as the respondent failed to complete all the items on the Instrument.
Four of the members of the Greeley Policy Department who participated
in the study had a very specific policy. One felt that all the
profile materials should have unrestricted use in society; another
believed that the materials should be available to all adults; two
officers expressed the position that the profile materials should be
allowed only for professional study. The remaining 10 police judges
who had expressed complex policies were included in the JAN procedure.
In this JAN analysis, five of the police judges had to be eliminated
because their multiple R values were less than .7.

2
In Table 10 are presented the R and R values for the five police

judges who were retained in the final JAN analysis. The values of
R range from a high of .9484 for Judge 3 to a low of .7407 for Judge 1.

TABLE 10
RZ AND R VALUES FOR POLICE JUDGES EXPRESSING COMPLEX POLICIES

Table 11 gives the stages for the JAN procedure for the group
of five police judges and the R value associated with each stage.
There are four different policies present as the R2 drop from
Stage 2 to Stage 3 was .0508 which exceeded the .05 cutoff criterion.

______________________________ a___________________________________________________________________________________________
Judge R*' value Multiple R value
1. .5487 .7407
2. .7928 .8904
3. .8965 . 9484
4. .8575 .9260
5. .6774 .8230

TABLE 11
STAGES OF THE JAN PROCEDURE FOR FIVE POLICE JUDGES

Table 12 indicates the four policie

Stage 2
Judges R Successive Collectivg

1
2
3
4
5

----------—_____________________________ Drop in R_______ Drop in R
1>2,3,4,5 .8628 ______ ______

.8300 .0328 .0328
'7792 -0508 .0836

H’«’n(;<3,5) -6272 .1520 .2356
(1.2,3,4,5) .1084 .5188 .7544

s captured by the JAN technique.
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*Slgnifleant beyond 0.05 level

TABLE 12
FOUR POLICE POLICY TABLE

Policy I II III IV

Judge 2,4 1 3 5
Unique
Contribution

Unique
Contribution

Unique
Contribution

Unique
Contribution

Impact
Variables (1-3) .1252* .0196 .8399* .0308*
Var. 1
API .0000 .0123 .0027 .0045
Var. 2
BCS .0041 .0025 .8255* .0224*
Var. 3
RSI .1229* .0057 .0004 .0051
Content
Variables (4-11) .2115* .5006* .0090 .6752*
Natural Content
Variables (4,5,6,10) .0075 .0566* .0078 .0244
Var. 4
UAHG .0053 .0040 .0020 .0227*
Var. 5
HSI .0001 .0020 .0038 .0010
Var. 6
DM .0021 .0465* .0001 .0001

Var. 10
ISR .0002 .0056 .0002 .0021

Unnatural
Variables

Content
(7,8,9,11) .1982* .3550* .0029 .6387*

Var. 7
DAI .0000 .0461* .0005 .3749*
Var. 8
DFT •

.1821* .0485* .0001 .3269*

Var. 9
DH .0002 .2435* .0004 .0029
Var. 11
GSA .0051 .0011 .0017 .0000

Policy I--formulated by Judges 2 and 4--emphasizes both the impact and
content subset of variables. The important specific variables include Variable 3-
Has redeeming social importance and Variable 8--Displays flagellation or
torture. Policy II was determined by Judge 1 and it focused on the
content variables while ignoring the subset of impact variables.
Variable 6--Displays masturbation, Variable 7--Displays anal intercourse,
Variable 3—Displays flagellation or torture, and Variable 9--Displays 
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homosexuality, were important contributors to this policy. The third
policy captured from the police judges, Policy III, was expressed by
Judge 3. This policy ignored the content variables and emphasized
the subset of impact variables with specific emphasis on Variable 2—
Goes beyond contemporary community standards. The final policy--
Policy IV(expressed by Judge 5)--identified both the impact and content
subsets as important. Specifically, Variable 2—Goes beyond contemporary
community standards, Variable 4—Involves uncovered adult human genitalia,
Variable 7--Displays anal intercourse, and Variable 8—Displays flagellation
or torture, are important contributors to this policy.

Based upon the analyses of the data for the three groups the following
results are reported:

1. JAN techniques were successful in capturing 39 out of 59 usable
policies (66 percent effective) present in the three groups of judges.

2. The PCG judges were found to be clustered in eight judgmental
systems. Three of the policy systems were specific categorical policies
while five were more complex.

3. The lawyer judges were found to be clustered in seven judgmental
systems. Three of the policy systems were specific categorical policies
while four were more complex.

4. The police judges were found to be clustered in seven judgmental
systems. Three of the police systems were specific categorical policies
while four were more complex.

5. The complex lawyer-judge policies were more concerned with
impact characteristics of the material than were the policies expressed
by the PCG judges and the police judges.

6. The complex PCG-judge policies were more concerned with whether
the material had redeeming social importance than were the lawyers and
the police.

7. Variable 8—Displays flagellation or torture--was an important
content variable in the majority of complex policies regardless of the
group source.

8. Variable ll--Displays group sex activity--was not an important
content variable in any of the complex policies captured from the three
groups.

9. Variable 4--Involves uncovered adult human genetalia, Variable 5-
Displays human sexual Intercourse, Variable 6--Displays masturbation,
Variable 9--Displays homosexuality, and Variable 10—Involves interracial
sexual relationships,were less frequently Identified as important in the
complex policies which were captured.

SUMMARY

The JAN technique was successfully utilized in capturing the policies
(specific and complex) of 39 out of 59 judges selected from doctoral PCG
students, lawyers and police officers from the city of Greeley. The

effectlve I" explaining the different policies.
with a Blmnli1-ies present suggest that this is not a simple problem

area with a simple solution readily available.
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IDENTIFYING FACULTY POLICIES OF TEACHING EFFECTIVENESS
Samuel R. Houston

University of Northern Colorado
ABSTRACT

Judgment Analysis (JAN) was employed to capture the teacher effectiveness
policy (les) of College of Education faculty at the University of Northern
Colorado (UNC). Fifty-seven judges evaluated 60 hypothetical faculty members,
each on four characteristics. Results Indicated that possibly three different
judgmental systems or policies existed. •

INTRODUCTION

A merit system has recently been Introduced at the University of Northern
Colorado in which faculty members are evaluated In terms of their teaching,
advising of students, service to the Institution, and professional activities.

The primary purpose of this study was to determine If Judgment Analysis (JAN)
could identify what policy (or policies) were present in the faculty members of
College of Education relative to the importance of the four areas or categories of
evaluation. JAN, as a technique for both capturing and clustering raters' policies,
was suggested by Bottenberg and Christal (1961) and Christal (1963). JAN utilizes
a multiple regression model and a hierarchical grouping technique which clusters
raters on the basis of the homogeneity of their raw score regression vectors (their
prediction equations).

METHOD

Sample: The Ss consisted of 150 faculty members in the College of Education
at the University of Northern Colorado. These faculty members were asked to serve
as judges on a voluntary basis. Of the 150 faculty members who were contacted
during the Summer Quarter, 1973, 57 completed the Instrument and returned It before
the spcified deadline.

Instrument: The Instrument consisted of 60 hypothetical profiles of university
faculty members. Each faculty member was described in terms of his classroom
teaching, advising of students, service to the university, and professional
activities. Each of the dimensions was scored as outstanding (0), above average (AA),
satisfactory (S), or unsatisfactory (U). A copy of the Instrument appears in Table 1.

The profile scores for the 60 hypothetical faculty members were determined
y , kin. °t 8 ta random numbers. This procedure guaranteed maximum

v .a. . y u?r».e<C^ ° tbe profile variables and minimum correlation between the
TnyirniZr»MHl8hflntiTCOrreiatl?n8 between variables (multicollinearity) makes the

p°Ucy and p°ycy deferences especially difficult. For that
reason, the table of random numbers was used in the construction of the Instrument.
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TABLE 1

PROFILES OF SIXTY HYPOTHETICAL FACULTY MEMBERS
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1. S U U S 31. S S AA S
2. S S U S 32. o S O 0
3. O U S O 33. o O 0 AA
4. AA S S AA 34. s S S AA
5. O u U AA 35. 0 O AA S
6. U AA u AA 36. u AA U AA
7. O O u AA 37. AA U AA U
8. u AA s S 38. U S O O
9. AA S s AA 39. O S U AA

10. AA S o O 40. s AA U U
U. AA AA AA O 41. u AA u U
12. S AA s O 42. o U AA AA
13. S S o AA 43. u AA O O
.14. AA AA s O 44. AA U u U
15. S AA s O 45. O O s O
16. o AA o o 46. AA S o AA
17. u AA o s 47. AA S u O
18. u S u AA 48. U U s O
19. u AA o S 49. O U s AA
20. o AA u s 50. AA U AA O
21. o U u s 51. U U AA S
22. AA S o AA 52. U AA U U
23. AA U s U 53. U AA O u
24. U u s U 54. S AA O U
25. AA o s S 55. S AA U AA
26. AA s s AA 56. AA S AA O
27. U s u U 57. AA AA O O
28. AA o s S 58. S O S AA
29. O AA u U 59. AA AA S S
30. U U AA O 60. S U s O
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Procedure and Design: A total of 150 College of Education faculty members
at we were contacted by campus mail. Fifty-seven volunteered to serve as
judges and were requested to assign an overall rating to each of the 60
hypothetical faculty members by checking one of the four categories after each
of the profiles.

The JAN procedure was applied to the results of the ranking process in
order to determine the number of policies which were present. Judgment
Analysis Is not a procedure for either validating the dimensions used
(variables) or methods of obtaining Information on the dimensions (profile
scores). It Is assumed that the variables used have some validity and
that there Is an objective ^ay available in which the variables can be
quantified. ,

RESULTS '

The means and standard deviations for the profiles are given in
Table 2. A variable received a score of 4 if the dimension was scored
as outstanding, 2 if the dimension was scored as above average, 1 if the
dimension was scored as satisfactory, and _1 if the dimension was scored
as unsatisfactory. The independent or predictor variables used include
Variable 1--Teachlng, Variable 2--Advising of Students, Variable 3—
Service to University, and Variable 4--Professlonal Activities.

TABLE 2

MEANS AND STANDARD DEVIATIONS (N=60)

Table 3 presents the intercorrelations between the independent variables.
An inspection of Table 3 shows that the correlations are quite low. None
of the correlation coefficients were significant (N=60) at the 0.01 level.
Thus, the objective of generating variables with low intercorrelations was
realized by using the table of random numbers.

TABLE 3

Variable Mean Standard
Deviation

1 (Teaching ’ 1.50 1.12
2 (Advising) 2.33 0.98
3 (Service) 2.32 1.13
4 (Professional) 2.72 1.08

Correlation Matrix For Profile Scores
Variable 1 2 3 4

1 1.00 .02 -.02 .202 .02 1.00 .06 - .043 -.02 .06 1.00 . 264 .20 -.04 .26 1.00
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Of the 57 faculty members who participated In the study, six
expressed a specific policy (Policy I) which can be interpreted as a
policy which is opposed to the evaluation system. These six judges checked
a single column (five checked the column headed "satisfactory" while one
judge checked the column headed "unsatisfactory") which is probably the
only way to participate in the study and still express opposition to the
concept of evaluation for merit pay.

Two additional policies (Policy II and Policy III) were expressed
by the remaining fifty-one judges. The existence of two policies was
made by Inspecting the various stages of the hierarchical grouping of
judges according to the suggestion of Ward and Hook (1963) who recommend
looking for a brejk in the Objective function (sequential R differences).
The two systems R (2 policies) value is .76 while the one system R
(1 policy) value is .73. This .03 t drop is statistically significant
(F-test) and represents a drop three times as great (.01) as the previous
drop.

Table 4 presents the validity coefficients for each of the fifty-one
judges who expressed a complex policy. To determine the specific policy
for each judge one can look across the four validity coefficients for the
judge in question. Each of these validities represents a correlation of
the independent variable with the overall ranking of the sixty hypothetical
faculty members. Judge 1, for example, has determined Variable 1 (Teaching)
to be important (significant at .01 level) in his policy while Variables
2,3, and 4 are not significant contributors.

For a clearer representation of Policies II and III which were
captured by the JAN process, refer te Table 5 and Table 6. Table 5 presents
the important variables (significant at .01 level) for judges who were
identified as expressing Policy II. The important variables for the judges
expressing Policy III are presented in Table 6. •

Policy II was expressed by 27 judges (Table 5). This policy places
heavy emphasis on Variable 1 (Teaching) and Variable 4(Professional Activities)
and no emphasis on Variable 3 (Service). Variable 2 is considered important
by seme of the judges in this policy. On the other hand, Policy III (Table 6),
also emphasized the importance of Variable 1 (Teaching) awd Variable 4(Professlonal
Activities) while placing some emphasis on Variable 3 (Service) which was
ignored in Policy II. Variable 2 receives some support in Policy III. Usually
the judges in Policy III were attending to either Variable 2 or 3 but not both.

SUMMARY

The JAN technique was successfully utilized in capturing the policies
(specific and complex) of fifty-seven faculty members in the College of Education
at UNC who volunteered to serve as judges. Three policies were captured.
Policy I which was expressed by six judges can be interpreted as a policy which
is opposed to the evaluation system for merit pay for faculty members. Policy II
(expressed by twenty-seven judges) placed heavy emphasis on Variable 1 (Teaching)
and Variable 4 (professional Activities) and no emphasis on Variable 3 (Service).
Variable 2 (Advising of Students) was considered to be important by some of
policy makers in Policy II. The final policy, Policy III, also emphasized
Variables 1 and 4. However, the policy makers of Policy III were also attending
to Variable 3 which was ignored in Policy II. Variable 2(Advislng of Students)
was considered important by some of the decision makers in Policy III. In general,
Variables 1 and 4 were important variables in both policies, while Variables
2 and 3 received less support.
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TABLE 4

TABLE OF VALIDITY COEFFICIENTS
Judge

1
1

.94*
2

.19
3

.09
4

.32
2 .82* .29 .38* .32
3 .90* .21 .13 .31
4 .64* .32 .41* .53*
5 .71* .43* .36* .40*
6 .85* .27 .18 .39*
7 .94* .16 .11 .32
3 .87* .13 .15 .30
9 .68* .23 .14 .43*

10 .83* .31 .19 .37*
11 .48* .42* .42* .37*
12 .85* > .35* .21 .36*
13 .73* .22 .34* .58*
14 .78* .22 .35* .36*
15 .83* .14 .24 .54*
16 .75* .25 .27 .38*
17 .93* .11 .19 .26
18 .81* .35* .13 .31
19 .54* .65* .15 .29
20 .87* .24 .17 .38*
21 .61* .39* .29 .29
22 .79* .32 .22 .33*
23 .58* .18 .31 .77*
24 .88* .22 .22 .32
25 .74* .21 .38* .51*
26 .62* .17 .48* .57*
27 .68* .35* .22 .40*
29 .78* .32 .21 .43*
29 .65* .27 .35* .60*
30 .64* .17 .29 .75*
31 .71* .38* .38* .45*
32 .76* .38* .23 .34*
33 .82* .35* .19 .35*
34 . 66* .34* .42* .52*
35 .83* - .38* .15 .29
36 .72* .50* .07 .16
37 .76* .30 .25 .39*
38 .65* .26 .43* .51*
39 .84* .27 .27 .38*
40 .42* .76* .15 .21
41 .75* .22 .33* .52*
42 1 .87* .22 .23 .42* ’
43 .71* .37* .34* .35*
44 .71* .44* .22 .35*45 .81* .22 .23 .35*46 .82* .32 .18 .36*47 .84* .33* .09 .34*48 .77* .43* .20 .35*49 .60* .44* .42* .54*50 .88* .25 .16 .36*51 _ .99* .06 .00 .20

*Slgnlfleant at .01 level (N=60)
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TABLE 5
IMPORTANT VARIABLES IN POLICY II

$um§er
Variable

1 2 3 4
1 *
3 *
6 * *
7 *
8 *
9 * *

12 * ★ *
16 * *
17 ‘ *
18 ’ * *
19 \ * • *
20 * » *
22 •. * *
24 ' *
27 * * *
32 * * *
33 1 * * *
36 * *
37 * *
39 * * ★
40 * * *
42 * *
45 * *
46 * *
49 * * * *
50 * *
51 *

TABLE 6
IMPORTANT VARIABLES IN POLICY III

Judge Variable
Number 1 2 3 4
2 * *
4 * ★ *
5 * * * *

10 * *
11 * * * *
13 * * *
14 * * *
15 * ★
21 * *
23 * *
25 * * *
26 * * *
28 * *
29 * * *
30 * *
31 * * * *
34 * * * ★
35 * *
38 * * *
41 * * *
43 ★ * * *
44 * * *
47 * * *
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MULTIPLE LINEAR REGRESSION MODELS FOR ANALYSIS OF COVARIANCE
INCLUDING TEST FOR HOMOGENEITY OF REGRESSION SLOPE

PART 1 - ONEWAY DESIGNS WITH ONE COVARIATE.

By M.A. BREBNER

UNIVERSITY OF CALGARY
CANADA

The objective of the paper is to describe the multiple linear

regression models which correspond exactly in all respects to the

classical analysis of covariance and tests for homogeneity of regression

slope. The models described by Bottenberg and Ward (1) are certainly

sound in the context they are given, but none of the models given

correspond to the standard test for homogeneity of regression slope,

though Bottenberg, Ward and Jennings have given the regression equations

for this case(|). In my opinion the approach pioneered by Bottenberg and

Ward gives a much clearer and more meaningful understanding of analysis

of covariance than the classical method, and I hope this paper will extend

the insight of education research workers on this matter.

Let £ be the criterion vector, z_ the covariate vector, and

ff-jj <7o-» ... g be the categorical vectors for mutually exclusive

groups 1,2, ... s . It is assumed that group r contains subjects

and that the total number of subjects N is given by

Z7 « n, + n + ...+« .12 8

The elements y. and z. of the vectors y and z are the criterion and

covariate scores for subject i and the corresponding elements in the

vectors g are unity if subject i is in group r, and otherwise zero.

As in Bottenberg and Ward (1) the product gr2 is a vector z? containing

the covariate scores for group r in the appropriate positions and all 

other elements are zero. For example if
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The models to

£2

be used are now stated as follows:

~ o’ and •3 65 “s' , then ^2- a "0
z

1
1
0
0

•

I
c
m 

m 
j-

N 
N 

N 
n
J

____________________
1

2
Z3

0
0

Model 1 Full Model

y = a q +a q + ... a q + b q z + b g z+ ... b 9 z +- 1-1 2^2 SiS 1—1 — 2~2- S-S- ----

Number of linearly independent vectors = 2s

Model 2 Restriction of Model 1 with b, = b = ... = b = b
1 2 8

(2)y = a a + a g + ... + a q + ba + E~ 1—1 ji.2 sis - —

Number of linearly independent vectors = s+1

Model 3 = as

y = an +

Restriction of model 1 with Sj = a2

b g z + b q z + ...1-1- 2^-2- + b q z +

where u = _g1+_g2 + ... + g is the unit vector.

Number of linearly independent vectors — s+1

Model 4 Restriction of model 2 with a=a = ... =a=a
12 s

(Alternatively, though, less meaningful, the restriction
of model 1 with a - a for i=l,2, ... ,s and
b£ " b for 1=1,2, ... ,S)

y = an + bz +_ •—

Number of linearly independent vectors ** 2
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It should be pointed out that the least squares estimates of

a± and bi will, in general, be different for eachjnodel.

For the classical test, of homogeneity of regression slope the

error sums of squares ^U) and j(2)T ^(2) foj_ mo<Jelg x

and 2 are compared. This corresponds to the within groups sum of

squares for slopes,and the sum of squares assuming the regression

slopes are equal for all groups. See for example figures 1(a) and

1(b).

Fig. 1(c)

It will be proved later in the paper that the comparison of models 1

and 2 does yield exactly Che same F ratio and degrees of freedom as the

classical analysis for testing homogeneity of slope.

The F ratio to test the hypothesis is given by



(ESS? - ESS1)/(2s - (s +.1))

F " ESS^CN - 2s)

and has (s - 1) and (N - 2s) degrees of freedom.

A similar comparison using models 2 and 4 yields the classical analysis

of covariance result, the F statistics being computed as

(ESS. - ESS9)/((s + l)-2)
9  l

ESS2/(N -(s + 1))

and having (s - 1) and (N - s - 1) degrees of freedom.

The following notation will be adopted for group suras and overall sums

r> (r) T’
I z a sum of the covariate scores for group r - a z_ t

v(r) T
2, y “ sum of the criterion scores for group r = a^y ,

^y «= sum of the product of covariate and criterion scores

for group r - y_ ,

V V T
L z “ I 01£ 2 ,

i=i 1
N ■

I y - y y » uT & ,
i=l 1

V V TL “ l z.y. “ 2. IL and

N
I-2 - I 4=/^.i=i i

Let the N x s matrix

G " £2 • ‘ • • £s3

and the N x s matrix

Z “ 1 Z ? 2 £ . . . . s Z1 ,
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then the regression models can be written in matrix notation as follows

Model 1

= [G Zlfal + E^
g

Model 2

i£ = G« + bz + e(2)

Model 3

iL ■= au + Zb + E^

Model 4

y_ = an + bz + E^

The least squares extimates for model 1 are obtained by solving for the elements 

of o_and b the linear equations 

where D^2^ and are diagonal matrices.

The diagonal elements of and are given by

n

(r)

and <r) 2
z

d(1>

d(3)

d<2>



The equations have

I

the form

I

It is seen that the 2s linear equations ate s pairs of uncoupled equations

of the form

nr ar + (J(r\)br - ---------------------(r)

and (^r^z)ar + ($/r\2)br = —-----------(s +-r)

As noted these are the r^ and (s + r)^ equations of the set• r = 1,2 s.

Using appendix II

b «=r

c(r)£>
__
ss(r)

z

and

ar - 7W .
br

Hence the regression equation for model 1 is

or

s
z •

r=l
- z<r) b ) g + b z

r r_r r -r

y *=
r=l
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This separates into the r independent regression equations

-^r
y(r) + \(z - z(r)),£

i

r - 1, 2, .... s

These a equationscorr?spond to the equations (12.9) in Meyers (2),and

(2)the regression coefficients correspond to b) given by equation (12.9'),

The least squares equations for model 2 are

or 0 0 J<»2
. al L3 I(1)y

0 n2 .

• • •

« •

• •

J<2)z
a2

•

I‘2>y

• • •

• • •

• •

0

•

•

•

•

0 0 ns as
I<s)y

• i(s)2 b2 b Ezy

The first s equations have the form

nr ar + (I^2)b = ^y

or % “ <I(r)y)/nr - ((i(r)z)/nr)b

" y(r) - z(r)b r ■= 1,2,
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, - ( r)where y is the mean of the y scores for group r, etc.

The final equation is

*■ (X^2^7-)a2 + ••• + (^S^z)as + Qz2)b “ £zy

and substituting for each a gives the equation

g
I (n “ r/r\) + (Jz?)b = £zy

r=l

which can be solved for b.

Hence

-( j n t(r> ;(r’)b + (^2)1. - - I n S(r) yM .

r=l r=l 1

or = bw

IIP
fi(rM - „r ;(t)

W
L—

q 
IIP

1

____
*____

i

s(r)Szy
--------- II

- nr J(r)

r

K II H
- z

following the notation of Appendix I.

Note the regression coefficient in this case is a pooled within groups

estimate of the regression slope. This result gives the group r intercept

a asr

- a = y^r) - z(r) b where r = 1,2 s.
r 3 w

Hence the regression equation for model 2 is

y ° Z <y(x) - z<r) bw)?r + bw ~
— r=l -

or

y = g +



This is exactly the regression equation given in Meyer(2) aa equation

(3)(12.10) and b corresponds to b given in equation (12.10').w
Hence we have shown that the regression equations for model 1

and 2 do correspond exactly to the classical regression equations with

(1) different slopes for each group, and (2) a common slope for all

groups respectively. The regression equation for model 4 clearly

corresponds to the classical case when data from all groups is pooled

to give a single regression equation (see fig. 1c). As the regression

equations for models 1, 2 and 4 are the same as the classical case,

the sums of squares ESSI and ESS2 correspond exactly to the appropriate

within groups sums of squares, and ESS4 will be the total sum of squares.

By examining the second to fourth pages, we see the degrees of freedom

computed by the regression approach also correspond exactly to the

degrees of freedom for the classical analysis of covariance (see for

example Meyer (2) pages 309 to 310 or Ferguson (3) pages 332 and 338).

The comparison of models 2 and 4 corresponds to the second test given

on page 68 of Bottenberg and Ward.
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APPENDIX I (used in Appendix II)

m m
Let S - I (x. - ijty. - y). * ■ ( I,XJ/ ” and y = l.j yj/" .

xy i 1 1=1 1=1

m m m
then m S = m( £ x y ) - ( £ x ) ( J yjj

xy 1=1 11 i=l i=l

m 2> er 2
Note (a) m SS = m S = m( £ x.J - [ £ x.J ,

x i=l 1=1

m .mm
and (b) s = (I xy) -- (Ix)(Iy) .

3 i=l 1=1 1=1

Proof m m m m msxy = Hxi - x)(y. - y) = ( I x y ) - x( £ y ) - y( £ x ) + (J xy)
y i=l 1 1 i=l 1 i=l 1 i=l 1=1

m
= ( I x-yj “ x(my) - y(mx) + m(xy)

i=l 1 1

m m , m m

1-1 1=1 . 1=1 1=1

using the definitions of x and y.

Multiply by m to give the required equation

m S = m
xy

m
( 2 x.yj
i=l 1 1

m m
( y X ) ( y y )
i=l 1 i=l 1
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APPENDIX II

Consider the pair of equations

Aa + Bb - D -------- (i)

Ba + Cb = E -------- (ii)

m m m m
where A = m, B - £ z , C = £ z2 D = £ v and E = V z.y, .

i°l 1 1=1 1 1=1 1 1=1 1 1

To find b combine the two equations as follows
g

equation (if) - — x equation (i)

Cb - B2 b ° E - BD
A A

using Appendix I

m m mSimilarly

in SS z

m $zy
m SS z

1=1 1 1=1 1 1=1 1 1=1 1 1

szy
SSz

CD - BE
AC - B2

m SS z

m
(I
i=l

m . m m . m m m
4)( l y£} - 1 ^)2( 1 I s yj - (i

1 1=1 1 m i=l 1 1=1 1 m 1=1 1 1=1 1 1=1
zi'J f I ziyJ

1 i=l 1 1

m m , m m . ■ m m m

i°l i=l i=l i=l 1=1 1=1 i=l
m SSz
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my{ss7} + mz{-SZy} c  zfszy] = y - zb
~. cc SSm bbz z

using appendix I and formula for b derived above ,

Hence the predicted value is given by

± = (y - zb) + bzi

or “ y = b(z£ - z).
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and

ABSTRACT

Introductory texts in measurement and statistics typically

present the topic of regression by providing examples of bivariate

distributions in which extreme scorers on the independent variable (X)

there is no systematic relationship betweenthe limiting case, where

X and Y, the predicted Y (Y) values, for all values of X, equal the

hand, when the correlation between X and Y

perfect prediction of Y, and whenimplies that knowledge of X allows

both X and Y have been transformed

are assumed to take on absolute values

In this discussion, raw scores have been transformed to standard 

When analyzing data which deals with repeated testing, one may
find that extreme scorers on a pretest regress away from the mean
upon post test, contrary to what one would expect from the regression
effect. This paper discusses regression effects and presents the
argument that when contrary results occur, they are indicative of
violation of an underlying assumption of rectilinearity for the
Pearson r. Therefore it is recommended that one should look for
nonlinear relationships when interpreting such data. In addition,
three methods for determining if nonlinear relationships exist in
data, are suggested and briefly discussed.

Isadore Newman
University of Akron, Akron Ohio

John T. Pohlmann
Southern Illinois University, Carbondale

mean of Y. On the other

were derived. This notion is presented graphically in Figure 1.

tend to score closer to the mean on the dependent variable (Y) . In

is perfect, the regression effect is, by definition, absent. This

to Z scores, Zv “ Zv for all valuesJ A

of Zx. Predicted Z„ scores, then,x y

that are either equal to or less than the Zx value from which they 
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scores since differences in means and/or variances between X and Y

can camouflage the regression phenomenon.

-X -X o i 2
1 H H

-2. -X O 1 Z

-Z -1' ©12..

X, -X -1 0 12

Figure 1

a 1* o i a
T*.oo

The projection of Z to Z under various degrees
of association. X

This conception of the regression phenomenon has implications in

many areas where correlation is employed in analyzing and inferring

from data. In covariance analyses, control is exerted on a covariate

while comparing the performance of treatment groups against a criterion.

and group means are adjusted, in accordance with regression

notions. When extreme groups in pretest - post-test designs are studied,

rol group is recommended so that change scores are not

y attributed to intervening treatments, when the regression pheno-

real source of change. In repeated testing paradigms where

are the object of interest, expectations about changes by

extreme scorers are uan ased on the regression phenomenon. A study

reported by P. e. Vernnn ' ) provides an example of expectations based

on ths regression phenomenon falUng hoid

paradigm, in that t- aS U 7 chan8es in IQ were being studied as a function

of repeated testing. Tt expected that, upon repeated testing, high 
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scorers would score lower and low scorers would improve. Such ex­

pectations have been suggested by Campbell & Stanley (2), Kerlinger (5),

Borg & Gall (1) and others. Vernon found, however, that high scorers

scored even higher upon re-testing, gaining even more than low scorers.

When rXy is not one, there is error about the least squares

regression line relating X to Y. This error has two possible sources,

(1) pure error, and (2) lack of fit error. Pure error is error that

exists when the expected Zy, given Zx equals Zy for all values of

X in the population. Lack of fit error is characterized by expected

Zy values that are different from Zy values over certain ranges of

X. It should be stressed here that these departures must be significant

at some specified alpha level before the presence of lack of fit error

can be entertained when inspecting sample data.

The fitted regression line for rxy has been calculated using a

model that assumes the relationship between X and Y is linear. If

the assumption of linearity is accurate, then error about the regression

line is pure error. If, on the other hand, the assumption of linearity

is not correct, error about the regression line is composed of both

pure error and lack of fit error.

If a straight line is the best fitting regression line, and if

r„, is not unity, then regression to the mean of Y must occur. On

the other hand, if the relationship between X and Y can best be

represented by a curved line of any sort, the standard phenomenon of

regression toward the mean will not result. For example, in Figure 2,

data points have been drawn such that the relationship between Zx and

Zy is clearly non-linear. Regression line I has been drawn through the
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scatter plot using the least squares criterion, and a certain amount of

error has been realized. The model that reflects line I in Figure 2 is

as follows:

MODEL 1: Y = a0 U + a^ Xj_ + E-^

where:

Y is the dependent variable
U is a unit vector when multiplied by

a0 yields the regression constant
a^ is the regression weight

E^ is the error vector

Xj is the dependent variable

Admittedly, the magnitude of error in this model is small, but note

what has occurred in our data. The subjects who scored 8 on X have

an average score of 64 on Y. The Zy value of 64 is greater than the

Zx value of 8. In other words, these subjects have "regressed"

away from the mean of Y instead of regressing toward the mean of

Y, as would be expected according to the regression phenomenon.

The reason for this, of course, is that the relationship between

X and Y is best represented by a regression model which allows for

a quadratic relationship between X and Y. Model 2 is just such a

model.

MODEL 2: Y = aQ U + a^ + a2xj + E2

where: Y is the criterion score

U is the unit vector

X^ is the X value
2

X]_ is the X value squared

a-., a2, and ao are the regression weights
assigned to U, X, and X respective y, an

E2 is the vector of residuals
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Since U and X will receive zero weights, a more parsimonious model would

be Model 3.

MODEL 3: Y - a2x| + E

where: Y is the criterion

a2 is the weight for Xj
2

X^ is the X score squared, and

E is the vector of residuals

Model 3, then, is the best model for representing the relationship

between X and Y. Regression line II in Figure 2 reflects the use of

Model 3 in fitting the data points.

A COMPARISON OF LINEAR (MODEL 1) AND QUADRATIC (MODEL 2) REGRESSION
LINES FITTED TO DATA REFLECTING A CURVED RELATIONSHIP BETWEEN X AND Y

FIGURE 2

Since the relationship between X and Y that is depicted in

Figure 2 is curved, the assumption of rectilinearlty is not correct.

Consequently, expectations based upon the regression phenomenon would

be in error and might mislead the researcher in interpreting his results.

This example is particularly noteworthy, since the linear model reflected

in MODEL 1 did an excellent job of accounting for variance in Y, but

MODEL 3 did a much, better job.
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The fact that the scores did not distribute themselves in

the bivariate distribution as the regression phenomenon predicted

should have served as a cue for the researcher to attempt a non­

linear fit to the data. By determining the kind of curvalinear

relationship that existed, inferences might be made as to the under­

lying causes for that relationship.

Methods for Detecting Curvature

Various procedures exist for screening paired observations for

possible non-linear trends. Oftentimes inspection of the scatter

plot is sufficient to note the presence of curvature in the relation­

ship. Inspection methods, though, lack certainty when there are

few data points or if the correlation is rather small. The following

methods are offered as suggestions to assist the researcher in

determining if a non-linear trend is present in his data.

METHOD I: If there are only a few observations, fewer than

25 or so, the observations on X can be divided at each quintile and

the mean Y values can be calculated for each group on X. The plot

of these means could then be inspected for curvature. The researcher

should recognize that for a set of data this small only distinctly

non-linear trends will approach significance. If a researcher suspects,

as a result of this inspection, that a non-linear trend is present he

may want to test the significance of that trend.

NgTHOD II: a researcher could also calculate the correlation

ratio or Eta2 for his set of data.l Eta2 could then be compared to

2
r to test if a significant non-linear trend exists in the data.

An F-ratio could be generated as follows:
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F (EtaXy - r^y I df^

(1.0 - Eta2) / df2

where: Eta^ is the Eta2 for our data
2rjy is the Pearson r for the same data

df-^ is the number of linearly independent

variables or scores on X used to calculate
Eta2, minus 2 and,

df£ is the number of paired observations minus
the number of linearly independent
variables or scores used to calculate
Eta2.

If this F-ratio is found to be significant, a researcher may

entertain the assumption that a non-linear trend is present in his

data, but due to the nature of Eta2, he cannot, from these analyses,

describe the type of relationship that exists. Eta2 could be signifi-

cantly greater than r because of any departure from linearity.

METHOD III: The most direct method of ascertaining not only

if the relationship between X and Y Is significantly non-linear,

but also describing the nature of the relat ionship is a curve fitting

approach employing multiple regression methods. Various functional

relationships can be tested for and the partial regression weights

may be used to describe Hie nature of the relationship. The use of a

multiple regression approach which allows the researcher to try out

various data transformations and the possible linear combinations among

them is particularly useful.2

■^-Edwards (3) presents the method for calculating Eta2 PP • 139
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CONCLUSION

One of the underlying assumptions necessary for the regression

phenomenon to be accurate is that there is a linear relationship

between X and Y. If the relationship is linear, all error will result

in extreme scorers on X scoring closer to the mean of Y. But if the

relationship between X and Y is non-linear, the regression phenomenon

will not represent the true state of affairs in our data. Indeed,

if researchers note that expectations based on the regression pheno­

menon are not supported by their data, it would behove them to seek

out the nature of the curved relationship that exists. In fact, the

nature of the curvature may serve as a clue for the researcher in

determining why the regression phenomenon was insufficient for explaining

his data.

2
See Kelly, Beggs, McNeil, Eichelberger, and Lyon (1969) for

a etailed discussion of a multiple regression approach such as this,
specifically chapters 6, 7, & 8.
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A GENERAL LEAST SQUARES APPROACH TO THE

ANALYSIS OF REPEATED MEASURES DESIGNS

George H. Olson

Dallas Independent School District

Abstract

Two procedures for computing general least squares analyses of repeated

measures designs are discussed. The first procedure, appropriate for small

N, is a straight-forward application of the usual regression approach to the

analysis of variance. The second approach, appropriate for large N, also

utilizes the regression approach but requires some minor calculation in

addition to that typically performed by most computer programs.
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The analysis of designs in which repeated observations are taken on each

subject (split-plot designs, partially hierarchical designs, repeated-

measures designs, ere.) sometimes cause problems for the researcher who desires

a general least squares solution. A least squares analysis of such designs is

particularly important when the researcher has either designed his experiment

such that the levels of his "between-groups" factor contain sample sizes

proportional to various strata in his population or has lost subjects for

reasons related to his experimental treatment. In either of these cases a

least squares solution, rather than an unweighted means solution, should be

used.}- Although most intermediate-level textbooks on analytical procedures for

experimental designs present the necessary equations for obtaining least squares

solutions to repeated-measures designs (e.g. Kirk, 1968, p. 280; Winer, 1962,

p. 600)-, they do not discuss the practicalities of obtaining such a solution

via a general linear hypothesis or multiple regression computer program. On

the other hand, intermediate-level textbooks which treat regression analysis

and the general linear model (e.g. Draper & Smith, 1966; Li, 1964) have not
. 2

considered repeated-measures designs.

The purpose of the present paper is to Illustrate two approaches a

researcher may take to obtain a general least squares solution to repeated-

measures designs. These approaches assume that the researcher has at his

disposal a general linear hypothesis, or regression analysis, computer program.

The first approach, appropriate when the total number of subjects is

small, is a straight-forward extension of the typical regression approach to

the analysis of variance. The second approach, appropriate when the total

number of subjects is large, requires some minor computation in addition to

that usually provided by most regression programs.
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represent the j’th measure (B^) being taken on the k’th subject (Sk) in the 

the researcher), a least squares solution is easily obtained in a straight­

forward manner.

When the total sample size, N (=EK^), is relatively small (a judgement left to 

J (=4) measures with (=3, 2) subjects in each of the I (=2) treatment groups.

i'th treatment group (A^). For the example illustrated in Table 1, there are

Approach 1: Small _N

For the discussion in this section, let Table 1 represent a general 2 x 4

treatment by (repeated) measures design. In addition, let the notation, Y 

TABLE 1

somewhere in here

The analysis precedes by treating the data as having been obtained from

a nested design, with one observation per cell, in which "subjects" constitutes

the nested factor. A so-called structural model for this design may be written

as

hjk ■ “ + “i + Yk(1) Bj + «By + + eiJk <»

where

(1) V represents the grand mean effect,

(ii) ax represents the treatment effect,

(iil) Yk(i) rePresents the subject-nested-within-groups effect (i.e. the

"between-groups" error term ) ,

(iv) represents the measures effect,
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(v) a^ij represents the treatment by measures interaction,

(Vi) BYjk(i) rePrescnts tlic subjects by measures-nested-within-groups

effect (i.e. the "within groups" error term), and

(vii) E.represents unaccounted-for sources of within-cell variation
XIK-

A general regression analysis using this model would require a minimum of

NJ analysis of variance (ANOVA) design variables for a complete analysis,

including tests of interactions. Since the design for which this model is

appropriate is assumed to have only one observation per cell there can be no

suras of squares due to

alternative model

(2)

onlyused advantageously since it requires

I(J - 1) + Writing (2)ANOVA design variables for a complete analysis.N as a

general linear model for the data in Table 1 yields

zero. For this reason, the

within-cell variation. Therefore, the

Y.U+a1 + Yt(1)

where Ej^?
IjK %k(l) + Eljk- “ybe

Eljk (1-e

SSp ) is

+a6ij+ ESk

Y “ uXj. + a!x2 + C1(1)X3 + C2(1)X4 + C1(2)X5 + blX6 + b2X7

+ b X + ab X + ab X n + ab.X +
O O J- 7 X. X.VJ J XX

(3)

where the terras in (3) are more completely described in Figure 1. The model

Figure 1

somewhere in here

given in (2 or 3) may then be used as the "full model" in completing the

regression analysis of the design given in Table 1. If the structural analogue 
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for each of the appropriate "reduced models is written as follows;

621 62)Yljk ” y + Yk(l) + BJ + “61J + Eljk (ul,er0 Cljk ’ “1 + 6Yjk(l)):

63) 63)Yljk * ” + “1 + PJ + “61J + eijk twhore Cljk * Yk(l) + 8Yjk(l)>!

Yijk " V + “1 + Yk(1) + «Si3 + e<*> (where + BYJk(1));

Yljk “ P + ai + Yk(l) + 6 J + Eljk <uhsre eijk “ o6lj + 6Yjk(ip’

then the final steps in the analysis involve' computing estimates of the terms shown

algebraically in Table 2. The analysis of variance of the data in Table 1

was computed by using the computer program, BMD05V (Dixon, 1967).
X

The results of this analysis are given in Table 3.

TABLE 2

somewhere in here

TABLE 3

somewhere in here

Approach 2j Large N

It should be obvious by now that the approach described above, in which

subjects are coded as a main effects factor, can quickly become tedious as H

Increases, For N subjects, I treatments, and J repeated observations on each

subject, a minimum of I(J - 1) + N AN0VA doslgn varlaMas would b(. ncadad t0

the analysis tor the model given in (2) . The approach described in this

section, however, requires fewer AHOVA design variables with the subsequent 
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advantages of requiring less coding effort: and less computer storage.

fully-crossed factorial design, the structural model for anaccording to a

could be written asrandomobservation at

(4)

the sums of squares due to the components in (4) with those inBy contrasting

(2), as has been done in Table 4; it can be seen that the sums of squares due

TABLE 4

somewhere in here

Yijk

Basically,, this approach takes advantage of the similarities between the 

analysis of variance of crossed factorial designs and repeated-measures designs

If, for the moment, the data in Table 1 are considered as having been obtained

p + a± + + aB^ +

to the components a., B., and aB.. are identical.
i J ij

Therefore, as could easily be demonstrated, Ss/6) • SSy. ... + SSRft
E k(i) PQjk(i)

In other

words, the error sum of squares obtained by using a model for a fully crossed

design is equal to the sum of the between-and within-group error sums of squares

obtained by applying a repeated-measures model to the same data.

A general linear model, corresponding to the structural model given in (4)

may be written as

Y “ uXl + alX2 + blX3 + b2X4 + b3X5 + ablX6 + ab2X7 + ab3X8 + ' <5)

(see Figure 2 for a more complete description of these terms)•
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Figure 2

somewhere in here

Using (5) as the ’'full model,” the sums of squares due to effects are found by

first computing the reduced models:

Yijk “ u + + a3ij + eijk <Where " eijk + ai);

Yijka y + ai+ a&ij+ eSk(where eljk.= eijk+ 3j);

Yijk E V + (where eijk = eijk + a\p'

The appropriate component sums of squares are then obtained as follows:

ssa “ SSe(7) " sse(6)’

ss3 “ ssc(8) " sse(6)»

SSaB ‘ SSe(9) " sse(6)*

There remains only the problem of computing the between- and within-group

error terms (SS and SSft , respectively) . From Table 3 the sum of
Yk(i) PYjk(i)

squares due to the combined betvzeen sources of variance is given by

SSbetaeen * •’Vk^k "

"¥k1Vk/J-y--- / jZiKr

Given this term, it is a simple matter of subtraction to find the sum of

squares due to error between subjects. Hence,

SS c SS, - SS„.
between a
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A convenient way of obtaining SSbetwccn ifi t0 comPutc Che error sum of

squares associated with the model

Yi-k “ 11 + E<10) <6>

In terms of general linear model, (6) may be written as (see Firgurc 3)

Y-uX+e(1C>. <’>

Figure 3

somewhere in here

It is a simple matter to show that this model leads to the following value 

forSS^10):

SSe(10)- J%^(Y.ik-Y,.,)2

V , 0 p
■ WYi-k “r

Note that this term is exactly equal to J x SS,  . Therefore, the betweenbetween ’

error term may be obtained from

S\(i) “ SSe(10) 7 J ’ SS“’

The remaining sum of squares component, SSB , is also obtained by subtraction
PYjk(i)

ssBa " SSe^) ~ SSYjk(i) Yk(i)

The data in Table 1 were analyzed according to the techniques presented in

this section. The program, B!<D05V, was used first to compute the error sum of

squares associated with the model given in (7). This gave SS ■ 50.000.
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The model given in (4) was run next. This resulted in the following error

sums of squares for the full and reduced models: sse(6) = 24.833,

sse(7j ’ 3o-o42> ssew ■ 125-992> SSe(9) ‘ 25-252- Fr™ these, the necessary

treatment and measures sums of squares were computed: SS^ •- 5.208,

SSg= 101.158, SS^g = .758. Finally, the two error terms were computed:

%1) ' SSe(10) Z 4 - SS« “ 7-292: SSSYjk(i) “ SSe(6) - SSYfcw - 17.541.

All terms are> within rounding error, indentical to those given in Table 3.
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Footnotes

■^The problem of whether to use a multivariate, or univariate analysis is

not relevant to this paper. Throughout this paper, the assumptions underlying

the univariate analysis (e.g. homogenicty of within variance and covariance)

are assumed. Concise treatments of these assumptions as well as additional

references may be found in most intermediate level textbooks on statistics

and experimental design. '

2
Although Li did treat split-plot designs in the later chapters of his

volume, he did not show how these designs could be analyzed within a general

regression framework.
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TABLE 1

2 x Treatment x Measures Design

Treatments Subjects

Measures

I

B1 B2 . B3 B4

S1 2 3 8 10

A1 S2 7 5 7 9

S3 3 4 7 9

A2 .. S1 2 2 5 9

•

S2 3 5 7 8
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TABLE 2

Sums of Squares Components for the

Repeated Measures Design Given in Table 1

Source of Variation d. f. Sums of Squares

Between Subjects N - 1

Treatment I - 1 SSe(2) - SSe(i)

Subj. within Treatment N - I SSe(3) " SSe(l)

Within Subjects N(J - 1) •

Measures J - 1 SSe(4) “ SSe(1)

Treatment x Measures (I - 1)(J - 1) SSe(5) " SSe(D

Subj. x Measures w. Treatment (N - I) (J - 1) SSe(1)
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TABLE 3

Least Squares Analysis of Variance for the

Design Given in Table 1

Source of Variation d. f. Sums of Squares

Between Subjects 4

Treatment 1 5.208

Subj. w. Treatment 3 7.292

Within Subjects 15

Measures 3 101.158

Treat, x Measures 3 .758

Subj. x Measures w. Treat. 9 17.542
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Y X1 x2 X3 X4 X5 X6 X7 X8 x9 xio X11

Ylll 1 1 1 1 0 1 1 1 1 1 1

Y112 1 1 -1 0 0 1 1 1 1 1 1

Y113 1 1 0 -1 0 1 1 1 1 1 1

Y121 1 1 1 1 0 -1 0 0 -1 0 0

Y122 1 1 -1 0 0 -1 0 0 -1 0 0 u.

Yx123 1 1 0 r-1 0 -1 0 0 -1 0 0 al

Y
131

1 1 1 1 0 0 -1 0 0 -1 0 cl(l)

Y
132 1 1 -1 0 0 0 -1 0 0 -1 0 C2(D

Y133 1 1 0 -1 0 0 -1 0 0 -1 0 X Cl(2)

Y141 1 1 1 1 0 0 0 -1 0 0 -1 bl

Y142 1 1 “1 0 0 0 0 -1 0 0 “1 b2

Y143 • 1 1 0 -1 0 0 0 -1 0 0 -1 b3

Y
211 1 -1 0 0 1 1 1 1 -1 -1 -1 abl

Y
212 1 -1 0 0 -1. 1 1 1 -1 -1 -1 ab2

Y
221 •

1 -1 0 0 1 -1 0 0 1 0 0 ab.j

Y
222 1 -1 0 0 -1 -1 0 0 1 0 0

Y
231 1 -1 0 0 1 0 -1’ 0 0 1 0

Y232 1 “1 0 0 -1 0 -1 0 0 1 0 •

Y241 1 -1 0 0 1 0 0 -1 0 0 1

Y242 1 -1 0 0 -1 0 0 -1 0 0 1

e(1)
elll

(2)
e112

(1)
e242



Y X1 X2 X3 X4 X5 X6 X7 X8

*111 1 1 1 0 0 1 0 0

*112 1 1 1 0 0 1 0 0

*113 1 1 1 0 0 1 0 0

*121 1 1 0 1 o ■ 0 1 0

*122 1 1 0 1 0 0 1 0

*123 1 1 0 1 0 0 1 0 u

*131 1 1 0 0 1 0 0 ■ 1 al
e

*132 1 1 0 0 1 0 0 1 bl 111

*133 1 1 0 0 1 0 0 1 b2 e<6>
112

*141 ■ i 1 -1 -1 -1 -1 -1 -1 X b3 +
Y

142 i 1 -1 -1 -1 -1 -1 -1 abl e<*>
242

*143 i 1 -1 -1 -1 -1 -1 -1 ab2
— —

*211 i -1 1 0 0 -1 0 0 ab3

Y*212 i -1 1 0 0 -1 . 0 0

Yx221 i -1 0 1 0 0 -1 0

Y*222 i -1 0 1 0 0 -1 0.

Y231 i -1 0 0 1 0 0 1

*232 i -1 0 0 1 0 0 1

*241 i -1 -1 -1 -1 1 1 -1

*242 i -1 -1 -1 -1 1 1 -1
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Y X e

Yl.l 1
-(io)

el«l

Y1’2 1
(10)

el«2

YV3 El 1 x u + (10)
1-3

Y2*l 1
e(l°)
e2-l

Y2*2 1 •
.(10)

2-2
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List of Captions

Figure 1. One of many possible matrix representations of the model given

in equation (3).

Figure 2. One of many possible matrix representations of the model given

in equation (5).

Figure 3. Matrix representation of the model given in equation (7),
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