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A NOTE ON CONTRAST CODING VS. DUMMY CODING

John D. Williams
The University of North Dakota

Abstract--A comparison is made between the contrast coding system for
solution to the analysis of variance design presented by Lewis and Mouw
(1973), and the use of dummy coding for solution to the analysis of
variance designs. Some of the limitations and advantages of each
approach are given.

Lewis and Mouw (1973), in an earlier issue of Viewpoints, argued for

the use of contrast coding for the solution to the analysis of variance

(ANOVA) and the analysis of covariance (ANCOVA) designs. They list three

major advantages of contrast coding: (1) the number of predictor variables

in a model accurately reflects the degrees of freedom for the analysis;

(2) the use of contrast coding allows one to ask more specific questions

of interest than the overall main effect; and (3) the main effect in a

two-way ANCOVA can be tested without pooling the error term. The inference

that might be made by reading their article is that the use of "dummy

coding" (i.e., 1 if a characteristic is present, 0 if it is not) inherently

has these three difficulties.

Actually, dummy coding can be made to accommodate most of the concerns

listed by Lewis and Mouw. In their article, Lewis and Mouw discuss four

particular statistical tests reformulated in a contrast coding format: the

t-test, the one-way ANOVA, the two-way ANOVA and the two-way ANCOVA. Rather

than duplicate each of the statistical tests presented by Lewis and Mouw,

the focus of the present note is in regard to the one-way ANOVA and two-way

ANOVA.
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One-Way Analysis of Variance

Lewis and Mouw consider a one-way ANOVA using a contrast coding scheme.

A "dummy" coding scheme that is simpler to execute than the use of the

orthogonal system is

Y=b+bX+bX+bX+e, (1)
0 1 1 2 2 3 3 1

where

Y = is the criterion variable,

b - b = regression coefficients,

X^ = 1 if from Treatment 1; 0 otherwise,

X = 1 if from Treatment 2; 0 otherwise,
2

X = 1 if from Treatment 3; 0 otherwise, and
3

e = the error in prediction with equation 1.
1

It should be noticed that Treatment 4 is apparently omitted from this scheme;

actually, the coding procedure in equation 1 makes treatment 4 an intrinsic

part of the solution. As is shown in Williams (1971), b =X,b = X -X,
04114

b = x - X and b = X - X . It should be noticed that not only does the
2 2 4 3 3 4

approach given by equation 1 result in identifying the correct degrees of

freedom, the researcher automatically receives Dunnett's (1955) test for

comparing one group to several other groups.

If Treatments 1, 2, 3 and 4 are properly viewed as representing equal

units of some treatment, then the linear, quadratic and cubic trends can be

measured. Three easily generated variables can be formed:

X = 1 if from Treatment 1 , 2 if from Treatment 2, 3 if from Treatment
b 3 and 4 if from Treatment 4,

x = X_2, and
o 
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The linear, quadratic and cubic trends can be measured respectively by

Y = + b5X5 + e (fOr linear)> (2)

Y = b + b X + b X +e (for quadratic), and
0 5 5 6 6.3

Y = b + b X + b X + b X +e (for cubic).
0 5566 774

(3)

(4)

If the interest is in representing the accounted variance (in terms of R ),

then
2

^2 (i* e-> from equation 2), gives the linear effect,

2 2
R3 - R^ gives the quadratic effect, and

2 2
R - R gives the cubic effect.

4 3

While the test of the one-way ANOVA is specifically related to Dunnett's

test, it has been shown (Williams, in press) that other multiple comparison

procedures (Tukey's test, Dunn's test and Scheffe's test) can be accommodated

to coding by the dummy coding approach given in equation 1.

The Two-Way Analysis of Variance

Lewis and Mouw present a contrast coding procedure for analyzing a

2X3 factorial design where there are two levels of the A factor and three

levels of the B factor; they give the standard orthogonal coefficients for

constructing their two-way model.

However, the 2 X 3 design can also be accomplished using the binary

(1 or 0) coding format. The full model is given by

Y = b + b X + b X +bX + b X +bX +e, (5)
0 11 22 33 44 55 5

where

Y = is the criterion variable,

X^ =] if from Row 1; 0 otherwise,

X2 = 1 if from Column 1; 0 otherwise,
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X = 1 if from Column 2; 0 otherwise,
3

X = X, . X , and
5 1 3

= the error in prediction with this model.

It can be noticed that X^ corresponds to the A effect, X^ and X^ correspond

to the B effect and X and X correspond to the interaction effect. Three
4 5

more models can be defined to complete the analysis:

Y = b+ bX+bX+bX+e, (6)
0 1 1 2 2 3 3 6

Y = b + bnXn + e , and (7)
0 11 7

Y=b+bX+bX+e. (8)
0 2 2 3 3 8 2 2

If the interest is in generating a summary table, SSA = SST(Rg - Rg),

2 2 2 2 2
SS = SS (R - R ), SS = SS (R - R ) and SS = (1 - R ). It should be

B T 6 7 AB T 5 6 w 5
emphasized that this procedure will generate the two-way analysis of variance

even when disproportionality occurs.

Comparison of Contrast Coding and Dummy Coding

There are logically three situations that the two coding procedures can

be compared: (1) an equal number of subjects per cell; (2) a proportionate

(but not always equal) number of subjects per cell; and (3) disproportionate 

cell frequencies.

When there are an equal number of subjects per cell, the contrast coding

procedure yields a satisfying and direct solution that can, if the

researcher so wishes, pinpoint the source of variation with each degree of

freedom. The dummy coding procedure is somewhat more cumbersome, and for

designs larger than a 2 X 3 table, no simple solution seems to exist for

alloting the variation per degree of freedom for the interaction portion;

the main effects can be accounted for through the use of the equations

like equations 5, 6 and 7.
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If the data is either proportional or disproportional, the contrast

coding procedure will generally fail for the main effects portion of the

analysis; in both cases, the interaction found by restricting the full

model by the non-inclusion of the interaction terms does yield a correct

solution. On the other hand, the model given in this paper does yield a

useful solution (called the fitting constants solution) and is shown in

Williams (1972).

Thus, it can be seen that the contrast coding scheme is particularly

useful in the following circumstances: (1) there are an equal nunter of

subjects in each cell; (2) there is interest in the variance due to each

degree of freedom; (3) there is no interest in any comparisons among the

means that are not orthogonal (such as Tukey's test or Dunnett's test); and

(4) the user is sufficiently familiar with the use of orthogonal coding

systems such as are described in Hays (1963). That contrast coding can be a

useful addition to the repertoire of the applied statisticians is unquestioned;

on the other hand, the flexibility of the use of the various dunrny coding

schemes should be fully exploited.
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Estimated Parameters of Three

Shrinkage Estimate Formuli

Mi chea1 Klein
and

Isadore Newman

Abstract

This paper examines the shrinkage formuli of Wherry, McNemar and

Lord in relation to overcorrection. A table is given which shows the
n

number of times that each formula resulted in a negative value of Rr and

2 2the lowest R which produced a positive R for different numbers of variables 

and sample sizes.
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In an earlier paper, Newman (1973) discussed three shrinkage estim­

ation formuli.

R2 = 1 - (l-R2)Itl
N-K

R2 = 1 - (1-R2)N-1
N-K-l

R2 1 - (1-R2)^-
IN—Ik— JL

(Wherry)

(McNemar)

(Lord) .

where:

R = the corrected estimate of the multiple correlation.

R = the actual calculated multiple correlation.

K = the number of independent variables.

N ” the number of independent observations.

A study was run to determine what estimates would be given by the

three formuli, when the three were used with 2, 3, 5, or 8 variables and

with each set having a N equal to 10, 20, 50, 100 and 200 (see Table 1).

In Case 1 where there were two variables and ten replicates, Wherry's

formula produced four negative R2 estimates, McNemar's formula produced

seven negative R2 estimates and Lord's formula produced 14 negative R2

estimates. The lowest R2 that would not produce a negative number when

entered into Wherry's shrinkage estimate was .1333, for McNemar's formula

it was .2333 and for the Lord's formula it was .4666 (see Table 1). As

Case 1 indicates, where you have two variables and ten subjects, Lord's
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Table 1
2

Estimated R 's from Wherry, McNemar and Lord Shrinkage Formuli

Number of
Variables (K) 10

Number of Subjects (N)
20020 50 100

4, 7, 14 2, 4, 8 1, 2, 4 1, 2 1, 1, 1
.1333 .0666 .0333 .0333 .0333
.2333 .1333 .0666 .0333 .0333
.4666 .2666 .1333 .0666 .0333

(Case ill) (Case #2) (Case #3) (Case #4) (Case #5)

7, 11, 18 4, 5, 11 2, 2, 5 1, 1, 3 1, 1, 2
.2333 .1333 .0666 .0333 .0333
.3666 .1667 .0666 .0333 .0333
.6000 .3667 .1666 .1000 .0666

(Case #6) (Case #7) (Case #8) (Case #9) (Case #10)

14, 17, 28 7, 8, 14 3, 4, 7 2, 2, 4 1, 1, 2
.4666 .2333 .1000 .0666 .0333
.5666 .2666 .1333 .0666 .0333
.7666 .4666 .2333 .1333 .0666

(Case #11) (Case #12) (Case #13) (Case #14) (Case #15)

24, 27, 29 12, 13, 19 5, 5, 1( 3, 3, 5 2, 2, 3_
.8000 .4000 .1666 .1000 .0666
.9000 .4333 .1666 • .1000 .0666
.9667 .6333 .3333 .1666 .1000

(Case #16) (Case #17) (Case #18) (Case #19 > (Case #20)

Note:
n^, ^2» n3 = number of terms <0 for Wherry,

McNemar, Lord respectively.

2 2 2
R^, R2, Rj = next R >0 for Wherry, McNemar

and Lord respectively.

The procedure used in this study was simply to generate values of R2 from
0 to 1 in steps of 0.0333. For each step the three shrinkage formulae were
applied and the resulting Rz tabulated in Table 1.
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formula tends to overshrink twice as much as McNemar's and over three times

as much as Wherry's. This is assuming that a negative R2 is due to an

overestimation of the shrinkage.

In Case 20, where there are eight variables and 200 subjects, Wherry's

and McNemar's formula both produced two negative R2 and Lord's formula

produced three negative R2 (see Table 1). The lowest R2 that would not

produce a negative shrinkage estimate for Wherry's and McNemar's formula

was .0666 and for Lord's formula it was .1000 (see Table 1).

Based on the results of the study presented in Table 1, it appears

that when there are 100 subjects for each variable (Case 5) all three formuli

produce the same estimates. When the ratio is less than that, Lord's

formula is consistently more conservative, that is, it shrinks more. As the

variables increase, there seems to be a tendency for McNemar and Wherry to

produce more similar results.
2

Since it is conceptually meaningless to interpret negative R , and
2

since the lowest possible R one can legitimately obtain is 0, it seems

that these formuli need a correction factor added so that they are bounded

9 2on the low end by R‘ = 0.0 and on the high end by R = 1.0. It is therefore

suggested that if one uses any of these three shrinkage estimates that any

negative R2 be interpreted as if it were R^ = 0.

This study was performed simply to obtain an idea of the range of

the parameters as they relate to these three shrinkage estimates. It was

not intended to be definitive. We would like to suggest that further 

research needs to be conducted to obtain the following information:
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1. Mathematically determine and empirically test a correction for
the limits.

2. Study the relationship between these three estimates and Type I
and Type II errors as a function of the number of subjects and
number of variables.

3. Further investigate the accuracy of these three formuli in predicting
from a sample to a population and from one sample to another as a
function of the number of variables and number of subjects.

We believe shrinkage estimates are extremely important to consider

when one is dealing with multiple regression since they are more likely to

improve our ability to accurately generalize the estimated relationships of

the studies being done. However, we can do this more accurately if we know 

more about the parameters of these formuli.
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Complexity in Behavioral Research, as Viewed

Within the Multiple Linear Regression Approach

Ke I th McNeiI
Educational Monitoring Systems

3449 Rentz Road
Ann Arbor, Michigan

Michael McShane
Southern Illinois University

Carbondale, Illinois

The present paper will attempt to clarify the notion of complexity in

research. Perhaps, in the past, researchers have over simplified the

variables and their interrelationships. Thinking of Interaction variance

as bad variance or as producing an undesired result, or lamenting the

complexity of the phenomena under consideration does little or nothing to

advance research in the behavioral sciences. The present paper will

examine two views of complexity which seem to exist: (I) complexity

as indicated by the number of predictor variables needed to account for

a criterion behavior, and (2) complexify as Indicated by the nature of

the predictor variables.

The remaining discussion will attempt to demonstrate that the

second view of complexity is not valid, and that the multiple linear

regression technique provides an easy way to index the first view.

Complexity of the Variables Themselves

One view of complexity in research seems to be concerned with how

complex the variables themselves are. For example, interaction and

polynomial variables are veiwed by most researchers as more complex than

linear terms. Complex terms such as these are often willfully omitted

by researchers. When such terms are found to be significant, researchers

often shy away from interpreting those "complex variables". Perhacm th 
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variables are viewed as more complex because: (I) researchers are not

as familiar with them, (2) additional effort must be put forth to obtain

these variables, or (3) the variables reflect a different state of affairs

than the usuaIly-investigated, not-too-reaiistlc linear relationship.

Unfamiliarity should not be grounds for complexity. Nor should

additional effort. Interaction variables and polynomial variables require

the multiplication of one variable times another. The important point Is

that a single number results, and therein Iles the basis for the argument

that such variables are no more complex than are the originally scored

variables. For a given polynomial or interaction variable, only one

weighting coefficient needs to be calculated from the data.

That a state of affairs existing in the data Is different than the

"expected" one should not be grounds for complexity either. Researchers

have investigated linear relationships so often and for so long that often

they forget that that is the relationship being investigated, or that other

relationships could In fact exist in the data. Pearson correlation only

investigates the linear relationship. When spec!fic trends are investigated

in ANOVA, most textbook authors support the notion that the linear trend

should be looked at more so than the other, "more complex trends".

It is the position of the present authors that more complex models should be

developed to represent those more complex trends.

Complexity of the Predictive System

Each predictor variable in a multiple linear regression analysis has

an associated weighting coefficient. Since these weighting coefficients are

obtained from the sample data, any test of significance must take into

account how many weighting coefficients were determined. In terms of the

"Goals of Research" (McNeil, 1970) researchers are striving for models

which produce high R2 values (the Goal of Predictability) while utilizing 
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score. When this is the case, researchers will come to better '‘understand"

IQ-squared since it maps the construct which is of interest better than

does the variable IQ.

We often forget that every variable in the behavioral sciences is

arbitrarily scaled. Until we can see inside of our subjects, we only have

approximations of the variables. The initial arbitrary way of measuring a

variable often takes on a presence of finality of interpretability. This can

be unfortunate, as in our hypothetical case with IQ. While using IQ in several

situations over a number of years we have developed some expectations about

that variable. These expectations should remain flexible, especially when

the variable is introduced as a predictor of a new criterion. If IQ-squared

Is more predictive of a new criterion than is IQ, then it is ridiculous to

retain the IQ measure.

Nov/ suppose that we had initially developed the IQ-squared measure.

Since we did not realize that it was the square of what other people were

calling IQ, we called it QI. In investigating the "new criterion", we

found QI to be quite predictive, but when the "original criterion" is in­

vestigated we find that the square root of QI is more predictive than is

QI. This example should indicate the arbitrariness of the scaling of

measures.

Summary

The thesis of this paper is that the time and effort of computing each

predictor variable should not determine the complexity of the resulting model.

Complexity in the behavioral sciences should be viewed solely as the number

of predictor variables needed to satisfactorily account for criterion 

variance. 
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a small number of predictor variables (the Goal of Parsimony). Since

some models use more predictor information than others, and since some

models yield higher r2 than others, the differing predictability must be

evaluated in terms of the number of predictor variables used. Indeed

this Is the rationale of the general F test:

(R2| - R2r)/(m| - m2)

FCm| - m2, N — m|) = ---------------------------------- —
(I - R2f)/(N - m,)

Where:

R2f = the proportion of variance accounted for in the full model,

R2r = the proportion of variance accounted for in the restricted model,

rri| = the number of linearly independent pieces of information in
the fu11 mode I, and

m2 = the number of linearly Independent pieces of information In
the restricted model.

A Discussion of the Complex Variable of IQ

Most researchers would consider an IQ score to be a single, simple

variable, although measuring possibly a very complex phenomenon. In reality,

an IQ score is defined as an interaction between Mental (MA) and the

reciprocal of Chronological Age (CA). Whether the score is represented as

IQ or as MA/CA should make no difference as to how complex we think the score

is. Furthermore, we usually do not take into consideration the number of

items that go together to yield the mental age. Some IQ measures have more

items and take more time to administer, but all yield, in the final (data)

analysis, one number for each person.

In addition, it may be that in a given situation, a variable of

IQ-squared may be more predictive of the criterion than is the original IQ
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Modification of Multiple Regression when
an Independent Variable is Subtracted from the

Dependent Variable

Grace Wyshak, Ph.D.
Yale University, Department of Epidemiology and

Public Health

Behavioral scientists are often concerned with regressing some

dependent or outcome variable, Y, on a number of independent or

explanatory variables, X^, i = l,2,...,k. (Model 1). If Y is a

final score or measurement and an initial score, the investigator

may be interested in some measure of change, say Y - X^, and its

relation to the several explanatory variables including X^. (Model 2).

Analyses would be based on two multiple regression equations, one

relating to the regression of Y on X^,Xj,...,X^; and the other to the

regression of (Y - X^) on the same X's.

In this note we call attention to the fact that one analysis

would suffice for the two models because the regression coefficients,

the total sums of squares, deviations sums of squares and regression

sums of squares are readily obtained for Model 2 once the calculations

have been made under Model 1.

The relation between the regression coefficients is as follows:

1

b. i = 2,3,... ,k= b.

= blbl

where b^ denotes the coefficients under Model 1 and b^ under Model 2.

16
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Assume we have n observations of the form

n
Let X <X. . - X. ) (X. . --X. )

y=l X- 3-
by x. x .

1 J
n

. - X ) (Yu - Y. )
y=i

by^ x±y

n
- Y. ? by£y2

V =1 y

Y, X1 .X
2" Xk’

where i,j = 1,2

To find the least squares estimates for (bl'b2' ,b, ), minimizek

si - £> - - - ?A ,2 Model 1.

Under Model 2 we have (Y-X ), X ,X , ...X . To find the least squares112k n

estimate for (b^ ,b2 , ...,b ), minimize

=2 - -«x - aX - ••• -AX f
■ £<v - 0/ ‘ uxj - ... >2

I
The minimum of S2 is the same as the minimum of where b^ = b^ +1,

»
and b. = b. for all i / 1.1 1

The relations between the suras of squares can be shown using matrix

Let

B =
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Then B = C G, and C(X'X) = I, where I is the identity matrix. (Snedecor

and Cochran, 1967J.
f

The relations between the regression coefficients, and tr

can be derived using matrix notation although they were shown more

simply above.

Under Model 2, let Z = Y - X . Then, ^x£z = ^x^y -

>2' = c. !<x2y - /X1X2 = b2

! • I ’ ‘. ; 1 . . - i i
i • • !: i •

‘ Z xiV \

The last step follows;

bl' = Cll[? V ’ X121 + C12^X2y- £-XlX2l + ••• + Clk[? V ’£XlXk]

bi = ^igV^lj + Ci2L;-’ X2y - <?X1X2J + ••• * CikL- V "^XlXk;

Rearranging terms, b;L = £ x^y + c12<_x2y + ••• + \y^

The first term in square brackets is equal to b^ under Model 1; the second

term is equal to 1, being equal to a diagonal term of the identity matrix

resulting from the multiplication C(X'X). Thus, b^ = b - 1.

bi' = [cil V V + ci2 ^X2y + + Cik^Xky7

’ jCil £ Xl2 + Ci2 ^X1X2 + • • -+ Cik'Z-XlXk] 1 = 2'3......... k-

The first term in square brackets is equal to b^ of Model 1; the second

is equal to zero, being equal to an off-diagonal term of the identiy matrix

resulting from the multiplication C(X'X). Thus, b = b , i # 1
i i

II The relations between the sums of squares follows.

When Y is regressed on X^X^ .. ,Xk< Model 1

Regression S.S. = 6 b -'"x v-i j-"
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s 2
> y <Total S.S

Deviation SS =

2

Regression S.S.

k k

? bi^-Xiy
i=l

2Total S.S.

Deviation S.S is obtained by subtraction.

k

is

k

£xx y
i=l

x.y, and is unchanged under Model 2.Deviation S.S.

The difference between the Regression S.S. is the sameTotal

2^ x^y, when the results obtained under

Model 1 are subtracted from those obtained under Model 2

2£

k

x, x.1 1

•v

2x,

xiy

Under Model 2, Z

Total S.S. - Regression S.S.
k
,'P b x. y

Now, it can be shown that

on X,,X„1 2
Y - X^ is regressed

Hence, Regression S.S.

xixi =£xiy

2
1

2
quantity, being X1

xixi -£xiy +£\2-

We now show that

i=l
S.S. and the
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+ . • • •

+ . • • •

*tkiixiytok2^V + + ckk^Vj^xA

‘[Clk^Xl2 * C2kS-XlX2 * •■• * Ckk2-X}Xk] 2v

On the right hand side of the equation the first term in square brackets

is equal to unity; the other terms in square brackets are equal to zero.
k

Thus,

1=1
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VARGEN: A Multiple Regression Teaching Program
Robert G. St.Pierre
BOSTON COLLEGE

VARGEN (Variable Generator) creates sets of data with
known statistical properties by generating user-specified
variables which are functions of uniformly distributed random
numbers for each of a group of subjects. The user specifies
the relative size and location of from one to nine predictor
variables and one criterion variable within a ten by ten matrix
(hereafter called the "universe") and, therefore, the amount of
variance accounted for by each variable. A visual display is
produced showing the size and location within the universe of
any five variables.

While a multiple correlation and regression routine
(Cooley and Lohnes, 1971) has been built into VARGEN to help
the student explore the relationships between the generated
variables, the program has the option to punch the generated
data on cards permitting its input to any data analysis program.
Since the user has specified the relationships between variables
many statistical characteristics of the data are known, and
certain results can be expected from an analysis enabling
the data to be used as part of a learning process.
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Effects of adding or deleting variables and varying rela­

tionships between variables can be observed. By changing the
amount of overlap between variables the user changes the amount
of variance that the variables have in common, and thus changes
the regression analysis. Effects of varying sample size can

also be investigated in terms of stability of the data. Will
replications using sample sizes of 100 give the same results -

or do we need 1,000 cases to get stable answers? Given the cor­
relations between variables, the variable means and the regres­
sion analysis, the student can attempt to construct a picture
(perhaps a Venn diagram) showing the relationships between the

variables and then compare that structure with the visual dis­
play.

VARGEN will create up to ten variables (nine predictors
and one criterion) for each of up to 9,999 subjects in the
following manner. For each subject, 100 random numbers are
drawn from a rectangular distribution which ranges from zero
to one. The random numbers are placed in the cells of the
universe, with the numbers contained in the cells that are

covered by each variable being summed. A variable is thus de­
fined as the sum of equally potent, equally likely, independent
elements, which are either present or absent (McNemar, 1969;
Garrett, 1946). For example, if a variable is defined as being
eight rows by four columns and located at location (2,4) within
universe, the value of that variable is computed by:
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9 7
I S a. .

1=2 >4

where is the random number in the ith row and the jth column

of the universe.

Since the expected value"of a number drawn from a rectangu­
lar distribution with a range of zero to one is .5, and the varia­
ble being discussed is defined as the sum of (8)X(4)=32 random
numbers, the expected value of the variable is (.5)X (32)=16.

Once each variable has been calculated for the first subject,
a new set of random numbers is generated and the value of each
variable calculated for the second subject. Similarly, data
for up to 9,999 subjects can be generated.

A visual display of any five variables will be produced
showing the size and location of each variable within the uni­
verse. While it would be convenient to have the capability of
displaying ten variables, the resulting visual display is ex­
tremely cluttered. It is felt that while a maximum display of
five variables may be a hindrance to some, the readability of
the display more than makes up for the missing variables. The
user can either draw in any remaining variables by hand, or,
as might be the case in a learning situation, confine the ex­
perimentation to problems involving five or less variables.

The main purpose of VARGEN is as an educational tool to
help students deepen their understanding of regression, correla­

tion and the statistical properties of data.



How To Use VARGEN

A. Description of Input
VARGEN requires two input cards. The first card specifies

the number of variables, the number of subjects, and which varia

bles will be displayed. Up to five variables may be displayed

with the following stipulations:

1) the criterion must be displayed;

2) the criterion must be the last
. variable displayed.

Card 1
Col. 1-2 Number of variables (maximum of 10)
Col. 3-6 Number of subjects (maximum of 9,999)
Col. 10-11 The number of the first variable to be displayed
Col. 12-13 The number of the second variable to be displayed
Col. 14-15 The number of the third variable to be displayed
Col. 16-1.7 The number of the fourth variable to be displayed
Col. 18-19 The number of the fifth variable to be displayed
Col. 20 1 to have generated data output to logical unit 7

0 otherwise
Col. 25-29 Random number generator initialization number

(Must be an odd number)
Col. 30 1 to have generated data listed

0 to suppress listing

The numbers of each variable to be displayed refer to the order

user mayin which the variables are defined in Card 2. The
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display as few as one, or as many as five variables. In any
case, please note that the criterion must be displayed and must
be the last variable displayed.

The second input card defines the size and location of each
variable. The size of a variable is determined by the number of
rows and columns of the universe that are covered by the varia­
ble. The location is determined by the upper left hand coordinates
of the variable within the universe.

Card 2
Col. 1-2 Number of rows in the first variable
Col. 3-4 Number of columns in the first variable
Col. 5-6 Upper left hand row coordinate of the first

variable
Col. 7-8 Upper left hand column coordinate of the

first variable
Repeat the format of columns 1-8 for each variable to be defined.
Again note that the criterion must be the last variable defined.
Eight columns are used to define the size and location of each
variable, giving the user room for the maximum of ten variables

on one card.
As an example of input card setup and use of the visual dis­

play suppose we want to create a data set with the following cha­

racteristics :
a) five variables (four predictors plus a criterion)

b) one hundred subjects
c) display all variables
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d) do not output data to logical unit 7

e) random number generator initialization number = 72347

f) list the generated data
g) variable 1 is a 3X3 predictor located at (3,3)

variable 2 is a 3X3 predictor located at (3,6)
variable 3 is a 3X3 predictor located at (6,3)
variable 4 is a 3X3 predictor located at (6,6)
variable 5 is an 8X4 criterion located at (2,4)

Such a data set will be created by the following input cards.

Column -
1 10 20 3,0I I I I

Card 1 050100 0102030405 723471
Card 2 0303030303030306030306030303060608040204

Card 1 calls for five variables on 100 subjects and dis­
plays all variables. Note that the numbers of the variables
to be displayed, 01, ..., 05, refer to the order in which they
are defined on Card 2. See Figure 1 for the actual visual dis­
play.

Card 2 will define the size and location of each of the
five variables called for on Card 1.

VARGEN will create a data set as defined by these two cards,
generate a visual display, and perform a regression analysis.
More than one problem may be entered by simply adding on addi­
tional sets of input cards.

B. Description of Output

1) Number of variables and number of subjects
2) Size and location of each variable, and whether itis a criterion or predictor. z
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VISUAL DISPLAY OF UNIVERSE

3 4 5 6 7 8 9

Figure 1
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3) Visual display of any five variables. Gives a repre­
sentation of the universe and shows the area covered
by each of the specified variables and the criterion.

4) Listing of the data created (optional)

5) Output of data created to logical unit 7 (optional)

6) The mean and standard deviation of each variable

7) Correlation matrix

8) Predictor Inverse
9) Multiple regression analysis

10) Formulas used in regression analysis

C. Language

VARGEN is written in IBM FORTRAN IV G and requires the
subroutine RANDU from the IBM Scientific Subroutine Package.
It was developed on an IBM 37 0 and has been successfully adapt­
ed to a Systems Engineering Laboratory 7200. VARGEN can be
adapted to other computers which have FORTRAN IV G compilers,
but the random number generating subroutine must be specific
to the word length of the particular computer.

D. Availability

A users manual, program listing, sample output and source
deck may be obtained from Robert G. St.Pierre, 224 Newtonville
Avenue, Newton, Massachusetts 02158.
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REGRESSION COMPUTER PROGRAMS FOR SETWISE REGRESSION
AND THREE RELATED ANALYSIS OF VARIANCE TECHNIQUES

John D. Williams and Alfred C. Lindem
The University of North Dakota

ABSTRACT

Four computer programs using the general purpose multiple linear
regression program have been developed. Setwise regression analysis is a
stepwise procedure for sets of variables; there will be as many steps as
there are sets. COVARMLT allows a solution to the analysis of covariance
design with multiple covariates. A third program has three solutions to
the two-way disproportionate analysis of variance: (a) the method of
fitting constants, (b) the hierarchical model and (c) the unadjusted main
effects solution. The fourth program yields three solutions to the two-
way analysis of covariance, with or without proportionality, and with
multiple covariates. The three solutions are similar to those described
for a two-way analysis of variance with disproportionate cell frequencies.

Four different specialized programs have been developed from the

utilization of a general purpose multiple linear regression program. The

programs that have been developed by these authors are described, together

with an indication of the program availability and a description of the

statistical technique.

Setwise Regression Analysis

Setwise regression analysis is a technique which was developed (Williams

and Lindem, 1971a) to allow a stepwise solution when the interest is in sets of

variables rather than in single variables. Thus, the setwise regression

procedure bears a strong resemblance to the stepwise regression analysis, and

a disadvantage of the stepwise procedure is overcome.

The usual stepwise procedure becomes inappropriate when there are more

than two categories being binary coded. A simple example can be made with

religious affiliation. Four categories might be used: Catholic, Protestant,

Jewish, and other. Three binary predictors can be made with the first three
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religious affiliations, and the fourth category can be represented as not

having membership in the first three categories. If religious affiliation

were used in conjunction with other information, the stepwise procedure would

not yield a valid indication of the importance of the set of religious

variables. The setwise procedure, on the other hand, would allow a direct

approach to such a situation.

The setwise procedure drops one set of variables at a time in a stepwise

fashion. There will be as many steps as there are sets. The solution is accom-
2

plished by an iterative procedure that allows the R (multiple correlation

coefficient squared) term to be maximized at each step in a backward stepwise

manner. Once a set is discarded, the set is no longer considered at later

steps. One set is discarded at each step, until there is only one set remaining.

As a recent issue of VIEWPOINTS has included a complete solution to a

setwise problem (Williams, 1973), an example is omitted here. The documen­

tation for the setwise program is given in Williams and Lindem (1971b).

Analysis of Covariance with Multiple Covariates (COVARMLT)

Analysis of covariance programs are typically available, but many of

these programs severely limit the number of covariates, usually to one or two

covariates. This limitation is wholly unnecessary. The analysis of covariance

can be conceptualized as being completed through the use of two linear models,

and a multiple linear regression solution follows in a straight-forward manner.

It is helpful to look at the process of the analysis of covariance as

it can be generated through the use of linear models. Before the linear

models are developed it is useful to set forth a concrete example. Suppose

15 students are split into three groups of five students each and are assigned

to three different methods of learning beginning typewriting. Prior to
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beginning the instructional period, the students are given an intelligence

test and a test of manual dexterity. After the conclusion of the experiment

a timed typing test is given. Table 1 contains the information for this

analysis.

TABLE 1

ANALYSIS OF COVARIANCE WITH TWO COVARIATES

Post-Test Intelligence Score Manual
Dexteri ty

Group 1 = 1
0 otherwise

Group 2 = 1
0 otherwise

35 120 38 1 0
27 98 28 1 0
32 102 32 1 0
29 106 22 1 0
27 94 30 1 0
38 123 43 0 1
25 96 31 0 1
36 108 46 0 1
35 115 40 0 1
31 128 35 0 1
27 90 27 0 0
35 110 31 0 0
19 94 25 0 0
17 95 24 0 0
32 116 33 0 0

Table 1 is constructed so that it might be easily transferred to IBM

cards for a solution through the use of multiple regression. The group

identifiers are binary coded and are found in columns 4 and 5. The group 1

identifier is given by a 1 in column 4, and the group identifier for group 2

is given by a 1 in column 5. A member of group 3 can be identified by having

a 0 in both columns 4 and 5. (If there are k groups, then there will be

k-1 binary predictors for the group identifiers.)

To accomplish an analysis of covariance by regression it is first

necessary to construct a full model. A full model is essentially a model

that contains all the information relevant to a data analysis. The full

model for the present situation is:
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Y = b + b X + b X + b X + b X + e , (1)
0 1 1 2 2 33 44 1

where

Y = the post-test score,

X^ = the intelligence test score,

X = the manual dexterity score,
2

X = 1 if the score is from a member of group 1, 0 otherwise,
3

X = 1 if the score is from a member of group 2, 0 otherwise,
4

b^ = the Y-intercept,

b - b = the regression coefficients for X - X , and
14 14

e = the error in prediction with the full model.

If this model is solved using a multiple linear regression routine, part

of the output will include the multiple correlation coefficient (R). For the

present usage, since a full model is being used, the R value found from the use

of equation 1 can be labeled R .
FM

A restricted model can be developed using only the covariates as

predictor variables:

Y = b+ bX+bX+e, (2)
0 11 2 2 2

where

Y = the post-test score,

X^ = the intelligence test score,

X = the manual dexterity score,
2

b = the Y-intercept (this b. value will, in general, be different than
0 0

the b value from equation 1),
0

b - b = the regression coefficients for X and X (these regression coefficients
12 12

will, in general, be different from the b^ and values in equation 1),

and

e = the error in prediction with the restricted model.
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The restricted model also yields an R value, and it can be labeled R .
RM

The F test for the analysis of covariance is given by:

F ’ <<M -

---- “ ) I 3)

(1 - R2 )/(N-C-k)
rM

where

k is the number of groups,

N is the number of subjects, and

C is the number of covariates.
2

Using the full model, an R_.. value of .88021 is found. Then, R = .77478.
FM FM

For the restricted model, R , = .83961, so that R = .70495.
RM RM

Using equation 3,

F = (.77478 - .70495)/2 = 1.55.
(1 - .77478)7(15-3-2)

This F value can be interpreted in the usual way with degrees of freedom

equal to 2 and 10.

Finding the Adjusted Means

For two covariates the adjusted mean can be found for each group using

equation 4:

V.(adj) = Y- b (X - X ) - b (X - X ), (4)
k k 1 Ik IT 2 2k 2T

where

Y ( adj) = the adjusted criterion mean of the kth group,

rr th
Y^ = the criterion mean of the k group,

b^ = the regression coefficient for the first covariate in the full model,

X = the overall mean on the first covariate,
Ik
b2 = the regression coefficient for the second covariate in the full model,

X = the mean of the k^1 group on the second covariate, and
2 k

X = the overall mean of the second covariate.
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Additional covariates can be added with no difficulty in an analogous manner.

For the present data, Y = 30, Y = 33, Y = 26, X = 104, X = 114,
1  2  3 11 12

x._ = 101, X = 106.33, X = 30, X = 39, X = 28, and X = 32.33.
13 IT 21 22 23 2T

Also, b = .19514 and b = .63027 (their values are found directly from the
1 2

printout for the full model).
Y^(adj) = 30 - (.19514) (104 - 106.33) - (.63027) 00 - 32.33*]  = 31.92.

Y^(adj) = 33 - (.19514) [114 - 106.33]- (.63027) (39 - 32.33*]  = 27.30.

Y^(adj) = 26 - (.19514) [101 - 106.33] - (.63027) {28 - 32.33^ = 29.77.

The process of adjusting the means can be seen as a way to "control" to some

extent the difference on the covariates.

Forming a Summary Table

Forming a summary table for the analysis of covariance when using a

regression approach is a relatively straight-forward process. The sum of

squares within is found directly from the printout from the full model and is
2

118.32. The adjusted sum of squares total is given by SS^.(adj) = SS^(1 - R ^)

where R is the multiple correlation between Y and the covariates (the
RM

restricted model) which, in the present case, is R = .83961; also
2

R nu = .70495. With SST = 525.33, SS (adj) = 525.33 (1 - .70495) = 155.00. •
KM I J

The adjusted sum of squares among SS (adj) can be found as a residual and is
A

155.00 - 118.32 = 36.68. The summary table is given in Table 2.

TABLE 2

SUMMARY TABLE FOR THE ANALYSIS OF COVARIANCE WITH TWO COVARIATES

Source of Variation df SS MS F

Among 2 36.68 18.34 1.55

Within 10 118.32 11.83

Total 12 155.00
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It should be clear from this presentation that any number of covariates could

be employed in an analysis of covariance. Potential researchers should be

cautioned against using the "slop bucket" approach to using a large number of

covariates simply because it is possible. In addition to being non-scientific,

the use of each covariate does entail the loss of one degree of freedom in the

adjusted sum of squares within term. A person could use 25 covariates with

ease; he should be familiar enough with the data to make a reasonable inter­

pretation of that data after the adjustments, however. A program has been

prepared (Williams and Lindem, 1974a) to accommodate up to 20 covariates

(which can be redimensioned to include more covariates if necessary); the

program prints out summary tables for the analysis of variance for the

criterion scores and an analysis of covariance with the multiple covariates

and the adjusted means.

Two-Way Fixed Effects Analysis of Variance with Disproportionate Cell
Frequencies

The solution to the disproportionate case of the two-way fixed effects

analysis of variance is complicated by the existence of more than one

solution, the different solutions being dependent upon the assumptions of

the researcher. The present program (Williams and Lindem, 1972) allows

for the selection of any (or all) of the following least squares solutions:

(a) the method of fitting constants, a commonly accepted solution, described

in Scheffe (1959) and Anderson and Bancroft (1952), a method that adjusts

each main effect for the other main effect; (b) the hierarchical model

(Cohen, 1968), which allows for one effect to take precedence over the

second effect; the first main effect is unadjusted, and the second main

effect is adjusted for the first main effect; and (c) the unadjusted main
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effects method, in which neither main effect is adjusted for the other

main effect. In all three methods, the interaction effect is adjusted

for the two main effects. The three least squares methods and the

previously mentioned approximate solutions are compared by Williams

(1972).

As an example of the solutions to the disproportionate two-way

situation, consider the following data in Table 3.

TABLE 3

DATA FOR DISPROPORTIONATE TWO-WAY ANALYSIS OF VARIANCE

To solve for any of the three solutions, four linear models are necessary:

Effect B
1

Effect
B2 B

3

8
A 6 1 6

1 4 1 2

10 7 10
5 9

A 4 7
2 4 5

3 4

Model I: Y = b + b X + e . (5)
0 11 1

Model II: Y = b + b X + b X + e , (6)
0 2 2 3 3 2

Model III: Y = bQ + b]X] + b^ + b^ + 63, (7)

Model IV: Y = b + b X’ + b X + b X + b X + b X + e , (8)
0 11 22 33 4 4 55 4
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where

Y = the criterion,

X = 1 if the score is from a member of row 1, and 0 otherwise;
1

X = 1 if the score is from a member of column 1, and 0 otherwise;
2

X = 1 if the score is from a member of column 2, and 0 otherwise;

b - b = are regression coefficients (The values for b , b , b and
0 5 0 ]2

b^ will, in general, be different for Models I-IV), and

e - e = are the errors in prediction with their respective models.
1 4

Table 4 contains a formulation for the regression solutions to the two-way

fixed effects analysis of variance with disproportionate cell frequencies.

TABLE 4

REGRESSION FORMULATION FOR THE TWO-WAY ANALYSIS OF VARIANCE

8
6
4
1

1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
1

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1

6
2

10
7
5
4
4
3

10
9
7
5
4

1
1
1
1
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
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The values from the regression program that are useful for completing

the analysis of variance are: the sum of squares attributable to regression

for Models I, II, III, and IV, and the sum of squares for deviation from
2

regression for Model IV. The R values are also included in Table 5. The

total sum of squares is of course available from all four models.

The A effect for the method of fitting constants is the difference

between the sum of squares for attributable to regression for Model III

and Model II: SSn = 80.25 - 37.43 = 42.82.
A

Essentially, this process amounts to finding that part of the A effect

that is independent of the B effect.

The B effect for this method is the difference between the sum of

squares for attributable to regression for Model III and Model I:

SSB = 80.25 - 20.36 = 59.89.

TABLE 5

VALUES FOUND FROM THE REGRESSION ANALYSIS

df SS R2

Model I (A effect)
Attributable to Regression 1 20.36 .15427

Model II (B effect)'
Attributable to Regression 2 37.43 .28355

Model III (Combined A & B effects)
Attributable to Regression 3 80.25 .60796

Model IV (Full Model)
Attributable to Regression 5 80.80 .61212

Deviation from Regression 12 51.20

Total Sum of Squares 17 132.00
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Similarly, this second calculation yields that part of the B effect

that is independent of the A effect.

And finally, the interaction is found as the difference between Model

IV and Model III: SS.D = 80.80 - 80.25 = .55. Thus, the effect found in

this manner is the AB effect independent of the A and B effects.

The sum of squares for within is equal to the deviation from regression

for Model IV. This information for the data in Table 4 can be put into a

summary table (Table 6).

TABLE 6

SUMMARY TABLE FOR THE METHOD OF FITTING CONSTANTS

**p < .01

Source of Variation df SS MS F

A 1 42.82 42.82 10.03**

B 2 59.89 29.95 7.01**

AB 2 .55 .28 .07

Within 12 51.20 4.27

The method of fitting constants is not a partitioning model. That is,

if the sum of squares is totaled, it does not equal the total sum of squares

of 132.00 (The total is 154.46).

The Hierarchical Model

The hierarchical model (Cohen, 1968) is a method similar to the method

of fitting constants. With this approach, a researcher is required to order

the variables in relation to their research interest. For example, a
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researcher may be most interested in the A, or row effect, less interested

in the B, or column effect, and may have little interest in the interaction

effect. With this approach, each effect is adjusted only for those effects

preceding it in the ordering. Thus, the A effect is found directly, the B

effect is adjusted for the A effect, and the AB effect is adjusted for

the combined A and B effect. Unlike the previous model, this model is

additive in the sense that the sum SS, + SS + SS is equal to SS . The
A B w T

values for SS , SS , and SS can be found from Table 5: SS = 20.36, the
A B w A

unadjusted A effect: SS = 80.25 - 20.36 = 59.89, that part of the B
D

independent of A; SS = 80.80 - 80.25 = .55, as previously, and SS = 51.20.
AB w

These values are placed in a usual summary table (Table 7).

TABLE 7

SUMMARY TABLE FOR THE HIERARCHICAL MODEL

Source of Variation df SS MS F

A 1 20.36 20.36 4.77*

B 2 59.89 29.95 7.01**

AB 2 .55 .28 .07

Within 12 51.20 4.27

Total 17 132.00

*p < . 05
**p < .01

The results from this analysis are identical to the fitting constants

method except for the SS^ term. The interpretation would be somewhat

different however, because of the decrease in size of the SS^ term. If, on

the other hand, the researcher had chosen his order of experimental interest



as B, A, AB, then the F values for the A effect and the AB effect would be

unchanged from the fitting constants method, but the B effect would be

smal ler.

The Unadjusted Main Effects Method

A solution similar to the two previous least squares solutions can be

called the unadjusted main effects method. Using this approach, both the

A and B effects are found directly, with the interaction found in the same

manner as the method of fitting constants and the hierarchical model. The

error term (mean square within) is of course the same. The values for

SS , SS , SS , and SS can be found from Table 5: SS = 20.36, the
A B AB w A

unadjusted A effect; SS = 37.43, the unadjusted B effect; SS = 80.80 -
B AB

80.25 = .55, as previously; and SS = 51.20.
w

Table 8 contains the unadjusted main effects method analysis.

TABLE 8

SUMMARY TABLE FOR THE UNADJUSTED MAIN EFFECTS METHOD

Source of Variation df SS MS F

A 1 20.36 20.36 4.77*

B 2 37.43 18.72 4.88*

AB 2 .55 .28 .07

Within 12 51.20 4.27

*p ( .05

If the sum of squares is totaled for Table 8, the total is less

than 132.00 because of the suppressor relationship between A and B

(the total for Table 8 is actually 109.54). The unadjusted main effects
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method is identical, as a solution, to the one proposed by Jennings

(1967). That Jennings1 approach and the unadjusted main effects method

yield the same results was shown by Halldorson (1969).

Two-Way Analysis of Covariance with Multiple Covariates and Proportionate or
Disproportionate Cell Frequencies

The present program (Williams and Lindem, 1974b) is a generalized two-

way fixed effects analysis of covariance program that will allow multiple

covariates and/or disproportionality of the cell frequencies. Because the

program is general, it can be used whether or not there are multiple

covariates and whether or not disproportionality of the cell frequencies

exists. As was true of the program documented for the two-way fixed effects

analysis of variance with disproportionate cell frequencies, three distinct

solutions exist for this analysis of covariance situation: (1) the method

of fitting constants, a solution that adjusts each main effect for the

covariates and the other main effect; (2) the hierarchical model, which

allows one main effect to take precedence over the second main effect; the

first main effect is adjusted only for the covariates, and the second main

effect adjusted for both the first main effect and the covariates, and

(3) the unadjusted main effects method, in which the main effects are

adjusted only for the covariates. In all three solutions, the interaction

effect is adjusted for the covariates and the two main effects. These

three solutions are analogous to the previously documented solutions for

the fixed effects analysis of variance with disproportionate cell

frequencies.

As an illustrative example, suppose the data is cast in a 2 X 3

table with two covariates. Then the following models could be generated:
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Y, X , X , X , X , X and b - b are defined as previously given
1 2 3 4 5 0 5

in the solution for disproportionate cell frequencies for a two-way

(13)

Model V: Y = b + b X + b X + e ,
5

(9)
0 6 6 7 7

Model VI: Y = b +
0

b X 4-
1 1

b X 4-
6 6

b X 4-
7 7

e , (10)
6

Model VII: Y = b 4
0

■ b X
2 2

4- b X
3 3

4 b X 4
6 6

• b X 4- e , (11)
7 7 7

Model VIII : Y = b
0

4- b X
1 1

4- b X
2 2

+ b X
3 3

4 b X 4 b X 4 e , (12)
6 6 7 7 8

Model IX:

where

Y = b +
0

b X 4-
1 1

b X 4-
2 2

b X 4-
3 3

bX 4 b X 4 b X 4 b X 4 e .
44 55 66 77 9

analysis of variance,

X, = the score on the first covariate for each subject,
o

X? = the score on the second covariate for each subject,

b - b? = are regression coefficients for X and X? respectively, (b^ - b?

will, in general, be different for Models V-IX), and

e - e = the errors in prediction for Models V-IX.
5 9
Then, for the fitting constants solution,

For the hierarchical solution with primary interest in the A effect;

SS = the SS
A

for attributable to

for attributable to

regression

regression

for Model

for Model

VIII -

the SS VII, (14)

SS =
B

the SS for attributable to regression for Model VIII -

the SS for attributable to regression for Model VI, (15)

SS =
AB

the SS for attributable to regression for Model IX -

and

the SS for attributable to regression for Model VIII, (16)

SS =
w

the SS for deviation from regression for Model IX. (17)
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= the SS for attributable to regression for Model VI -

the SS for attributable to regression for Model V, (18)

= same as equation 16, and

SS = same as equation 17.
w

For the unadjusted main effects solution:

SS = same as equation 18,
A

SS = the SS for attributable to regression for Model VII -

the SS for attributable to regression for Model V, (19)

= same as equation 16, and

SS = same as equation 17.
w

%

The fitting constants solution for the analysis of covariance can be seen

as analogous to the fitting constants solution for the two-way analysis of

variance, except that the covariates are also removed as a source of variation;

thus, the A effect in the fitting constants solution is that portion

independent of both the B effect and the covariates. In the hierarchical

solution, the effect of primary research interest is adjusted for the

covariates only; in the unadjusted main effects solution, the main effects

are adjusted for the covariates only, and not adjusted for the other main

effect. The interaction effect and within term are the same for all three

solutions.

The solutions for COVARMLT (the analysis of covariance with multiple

covariates) and the two-way analysis of covariance described here do not

include a test for the homogeneity of the regression on the covariates.

Future revisions of these two programs will include options for running

these tests if the user so desires.
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ABSTRACT

MASHIT - For Ease In Regression Program Communication

Robert L. Mason
Science Applications, Incorporated

2109 W. Clinton Avenue
Huntsville, Alabama 35805

This regression system is an intermediate result of a project to develop
a comprehensive regression computer system as a foundation for a
complete statistical man-machine interface. The outstanding features of
the system can be condensed into two principle concepts. First, the
program dynamically allocates core resulting in no limits on title cards,
question cards, etc. Secondly, "English type" user commands are used in
a free format mode to save computer instruction time. The resulting
system is two phase constructed in such a manner that additional capabilities
can be added efficiently.
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MASHIT (Mason’s Automatic Statistical Hypothesis Interpreter and
Tester) is a computer program written in high level programming languages
to facilitate the interaction between the computer and the researcher. The
primary unique aspect of MASHIT is that the program performs regression
analysis based on conversation language research hypotheses. Ultimately,
other statistical techniques will be incorporated into the system; however,
the current version handles that wide range of research hypotheses that can
be tested using MLR. Indeed, any least squares hypotheses concerned with
a single criterion can be tested with MASHIT. The program readily handles
"analysis of covariance” questions.

After studying several available regression programs, a composite
of shortcomings was compiled. There was no one system that offered all the
features that the researchers and students desired to test their hypotheses.
In addition, the only systems that allowed free form input were the interactive
terminal programs, whereas the majority of researchers must cope with
"batch mode" computer systems. MASHIT is a system directed toward
researchers desiring ease and flexibility in accessing a "batch mode" computer
system. The following is a list of the outstanding program features:

(a) Analysis of natural language regression questions.
(b) Free format (no column restrictions with the one

exception of any optional FORTRAN transformation
statements desired).

(c) Virtually unlimited number of variables.
(d) Virtually unlimited number of models.
(e) Virtually unlimited number of research questions.
(f) Virtually unlimited number of title cards.
(h) Any size variable labels.
(i) The program will dichotomize all "A" or "I" field

(discrete) variables. The user does not have to
keep track of newly created variables.

(j) Any FORTRAN transformation statements allowed.
(k) No parameter card necessary.
(1) All double precision calculations.
(m) Multiple returns from transformation subroutine.
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MASHIT was written for the IBM 360/370 series computers.
Constructed in two parts, the program first reads and analyzes the res­
earchers instructions, and passes this information to the second stage
which performs the regression and test calculations.

The first stage actually creates the second stage program resulting
in a "tailored" regression program for each individual user. Storage sizes
can be expanded or contracted to fit the researchers program requirement
and the desired machine region (core) request. This flexibility of the
program does not affect the number of variables which can be processed,
however, the machine CPU time is decreased as the core storage size is
increased.

In order for a computer program to interpret natural language,
established criteria must be met. They are (1) variables must be prelabeled
if referenced by labels in a hypotheses, (2) only specific phrases from a list
of keyword can be used and (3) certain syntactical rules must be followed.
These rules are discussed in a later section.

The flexibility of the program allows the user to input his "control
deck" as though it were written in a manner similar to a paragraph. There
are no column restrictions with the one exception of FORTRAN trnasforma-
tions. MASHIT searches for keywords and labels; therefore, blanks are
placed between coded words.

The program reads the entire "control deck" as if it were one long
card. Therefore, coding can skip from card to card, even with the option
of inserting blank cards in the control deck. Slashes, periods, or question
marks are delimiters indicating the end of one type of control information
within the control deck. There are presently eight types of control cards as
follows:
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(a) Title Card(s)
(b) Label Card(s)
(c) Transformation Card(s)
(d) Special Command Card(s)
(e) Question Card(s)
(f) Model Card(s)
(g) Test Card(s)
(h) Format Card(s)

All the control cards are optional with the exception of a format. If
the format is the only card included, MASHIT prints the means, standard
deviations and the correlations. A summaiy of the rules for each type
control card is included as a "mini reference guide" at the end of this paper.
To facilitate the remainder of the discussion, example deck setups are shown
to illustrate the features of MASHIT.

Example 1

This is a rather limited application of MASHIT. One question is
asked without the use of labels. The program recognizes the word "PREDICT"
and uses the variable that follows as the criterion. The first variable and
the unit vector are employed as predictor variables. Since there are no

2
covariates, the restricted model is inferred to have an R value of zero. The
number of subject and numbers of linearly independent vectors are calculated
and the F test is evaluated. The next page contains the printout as generated by
the program.

// (Job Card)
// EXEC MASHIT
Does XI PREDICT VAR 2?
(2F3.0)

Data Cards



• DUMBER UF OBSERVATIONS--------------------------------------------- 12

NUMBER OF VARIABLES READ------------------------------------- 2

NUMBER OF VARIABLES AUER TRANSFORMAT I ON— 2

NUMBER OF VARIABLES - CONTINUOUS-------------------— 2

NUMBER OF VARIABLES - DISCRETE--------------------------- 0

INPUT UNIT NUMBER---------------------------------------------------------5

FORMAT (2F3.O1

52

variable
NUMBER

TYPE OF
VARIABLE

NUMBER UF
DIFFERENT

VALUES
MEAN
• ••*

STANDARD VARtAOLE
DEVIATION NAME

1 CONTINUOUS 31.50000 19.80951
2 CONTINUOUS 56.63333 26.73273

CORRELATION MATRIX

11 I 2

variable I II
II
II

1.00QUO

-VARIABLE Z I 1
II
II
II-

*0.48373 1.00000 • .

DOES XI PREDICT VAR 2 7

. CRITERION NUMBER - 2
MODEL R-SOUARE...- 0.23399T4O

INDEPENDENT VECTORS ■
NUMBER OF ITERATIONS ■

2
1 • •

VARIABLE
NUMBER

RAN SCORE
WEIGHTS

VARIABLE
NAME

1
-REGRESSION

CONSTANT -

-0.65279252

77.39629787

FULL MODEL.......... MODEL FROM ABOVE

-RESTRICTED MODEL...- ZERO RSQ MODEL

I RSQ F - RSQ R > / OF1

I 1.0 - RSQ F J f OF2

I 0.23400 - 0.0 ) / 1
—-------------------------------------------------------------- 3.054787
< 1.0 - 0.23400 > / 10 ••••••••

ROND IRECT IONAL PROBABILITY - 0.1084337

DIRECTIONAL PALPABILITY
(IN HYPOTHESIZED 0IREC1ICM

0.0542168
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This example illustrates the use of the "title", "model", "label", and
"test" cards. Note that the title is two cards in length and each variable label
is placed on a seperate card. This is not necessary as a title can be any num­
ber of cards in length and labels only have to be seperated by a delimiter.

// (Job Card
// EXEC MASHIT
THIS STUDY USES LABEL CARDS, TWO MODEL CARDS AND
A TEST CARD /
LABELS:

RUNNING SPEED FOR 100 YARD DASH:
AGE:
MOTIVATION /

MODEL A: AGE AND MOTIVATION PREDICTING SPEED FOR
100 YARD DASH /

MODEL B: AGE PREDICTING RUNNING SPEED FOR 100 YARD
DASH /

TEST MODEL A AGAINST MODEL B /
(3F3. 0)

Data Cards

The structure in this example is similar to that used in other hypothesis
testing regression programs with the exception that the variables have been lab­
eled and referenced in natural language in the delineation of the models. This
technique is used when testing many restricted models against the same full
model. A simpler structure is available especially if only one F test were being
computed. By use of the "question" card as in example 1 with the attachment
of a covariate phase, one question can replace two models and a test as the
following:

DOES MOTIVATION PREDICT RUNNING
SPEED FOR 100 YARD DASH OVER AND ABOVE AGE?

Since all least squares hypothesis can be phrased in covariance ter­
minology as above, the "question" card has much potential for resealchers. The
printed output is shown on the next two pages.
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THIS STUDY USES LABEL CAROS*  TWO MODEL CAROS*  AHO

A TEST CARO /

s
NUMBER OF OBSERVATIONS----------- --------------------------- — 12

NUMBER OF VARIABLES READ---------------------------------------- 9 . 3

NUMBER OF VARIABLES AFTER TRANSFORMATION— 3

NUMBER OF VARIABLES - CONTINUOUS---------------------- 3

NUMBER OF VARIABLES - DISCRETE---------------------------0

INPUT UNIT NUMBER-------------- ----------------------------- --- 5

. FORMAT (3F3.OI

NUMBER OF
VARIABLE TYPE UF DIFFERENT MEAN STANDARD variable

NUMBER variable VALUES •••• DEVIATION NAME

1
2

CONTINUOUS
CONTINUOUS

490.16667
484.41667

2d5.29570
265.58597

RUNNING SPEED FUR 100 YARD DASH
AGE

3 CONTINUOUS 642.05333 274.91831 MOTIVATION

<

CORRELATION MATRIX

II 1 2 . 3

VARIABLE 111
II 1.00000
I I
| l » — — — ■ * 1 II —— — ■ '■» ■ ■ ■■ » — ~ — — — — .

VARIABLE- 2 II
|| 0.2610b 1.00000
II
J |---------------------------------------------------------------------------------------------------- ------

VARIABLE 3 II
II 0.07457 0.21081 1.00000
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CRITERION VAAUAtC NAME ■ RUNNING SPEED FUR 100 YARD DASH

, CRITERION NUMBER • I INDEPENDENT VECTORS ■ 3
HOOtL R-SCUAAE... « 0.06*55190 NUMBER OF ITERATIONS - 2

VARIABLE RAW SCORE variable
NUMBER WEIGHTS NAME * ’

2 0.275C0396 ' AGE
3 0.O2L21b45 MOTIVATION

REGRISSION
constant « 342.V3B61958 •

MODEL 8 : AGE PREDICTING RUNNING SPEED FOR 100 YARD DASH /

CRITERION VARIABLE NAHE ■  RUNNING SPEED FOR 100 YARD OASH

CRITERION NUMBER ■ 1
MODEL R-SOUAHE..0.06*15249

VARIABLE . RAW SCORE
NUMBER WEIGHTS

s INDEPENDENT VECTORS 2
NUMBER OF ITERATIONS • 1

VARIABLE
NAHE

2
REGRESS I UN

CONSTANT ■

0.28043419

354.31967218

AGE

TEST MODEL A AGAINST MODEL B /

MODELFULL MODEL

BMODELRESTRICTED MODEL

DFl O.OO386O

F 1 / DF2RSO

0.9505624PROBABILITYNONOIRECTTONAL

0.4752812probabilityDIRECTIONAL
(IN hypothesized direction)

( RSQ F - RSO R ) /
( 0.06855 “ 0.06815 1 /

7 1.0 “ 0.06855 > /
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Example 3

Here is featured the input of nominal data, FORTRAN transforma­
tions and a "covariate" question. Three variables are read and a fourth is
created as the square of the third variable.

// (Job Card)
// EXEC MASHIT

X (4) = X (3) ** 2
IS VAR 1 PREDICTED BY X 2
GIVEN KNOWLEDGE OF X (3), X 4 ?
(F5.0, Al, 4X, F5.0)

Data Cards
/ *

Also, the A-format for variable two implies that it is discrete.
MASHIT then automatically constructs and maintains the mutually exclusive
group membership vectors. When variable two is referenced in the research
question, the group membership vectors are substituted.

Notice in the printout (next pages) that the program reports the number
of observations, how many variables were read, how many were created by
transformations and the number of mutually exclusive vectors that resulted.

Further Documentation

MASHIT was developed by Robert L. Mason as part of a doctoral
dissertation under the direction of Dr. Keith McNeil. The dissertation
(Mason, 1973) has complete documentation. Also, a 65 page "MASHIT)
user's guide is available. The following is a summaiy of the users manual.
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number OF observations--------------------------------------------- l»

number of VARIABLES READ---------------------------------------- 3

number of variables after transformation— *

number of variables - CONTINUOUS---------------------- 3

number of variables - DISCRETE---------1

input unit number------------ --------------------------------------------5

number of DICHUIOmUED VARIABLES---------------------- 2

FORMAT IFS.O.AIMX.FS.OI

VARIABLE
kwber

TYPE OF
VARI ABLE

NUMBER OF
DIFFERENT

VALUES
MEAN STANDARD

DEVIATION
VARIABLE

NAME

1 CONTINUOUS Al.66667 29.12883
2 DISCRETE 2
3 CONTINUOUS 53.ZOOOO 21.22326
4 CONTINUOUS 3280.66667 2415.94944 •

CREATED 8Y
ABLE TYPE UF VARIABLE KEAN STANDARD VARIABLE

NUMBER variable NUMBER •••• DEVIATION VALUE

5 DICHOTOMOUS 2 0.66667 0.47140 A6 DICHOTOMOUS 2 0.33333 0.47140 B



CORRELATION MATMIX

VARIABLE

VARIABLE

VARIABLE

VARIABLE

VARIABLE

VARIABLE

II I.00000

1
I -0.3B035
1

1.00000

1

1
0.96756 1.00000

•

I
1 0.03560 ••«•••••
1

-0.10662 -0.17225 1.00000

I —0.03560 ••••••••
1

0.10662 0.17225 -1.00000 1.00000

IS VAR 1 PREDICTED BY X 2 GIVEN KNOWLEDGE OF X ( 3 I • X*  7

CRITERION NUMBER ■ I’ INDEPENDENT VECTORS - 4
MODEL R-SOUARE..0.10111067 NUMBER OF ITERATIONS " 5

VARIABLE
NUMBER

RAW SCORE
WEIGHTS

variable
NAME

2 - 5 3.00240070
VALUE - A

2 - 6 0.0
VALUE • B

*
4

REGRESSION

-1.55778456
0.00946970

CONSTANT • 91.41B87092

CRITERION NUMBER » 1
MODEL R-SOUARE...« 0-17U83439

tNOCPENOONT VECTORS -
KUHdSR OP ITERATIONS -

variable
NAME

3
. Z

VARIABLE
NUMBER

RAW SCORE
WEIGHTS

J' -1.49366987

-——
4 0.00062175

REGRESSION • a
CONSTANT - 92.18067231

FULL MODEL MODEL FROM ABOVE

RESTRICTED MODEL...- MODEL FROM ABOVE

( RSO F - RSO R I / 0F1 < 0.10111 - 0.17003 ) / X

I 1.0 -KSQF I / DF2 I 1.0 - 0. 1811 11". "

NONUMECT lUffAL PROBABILITY ■ 0.0503112

01RECTIUMAL PRUBAttlllTY - 0.4291556
(IN HTPUTHl SHtll DIHECTIUNl
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"MASHTT" MINI GUIDE

Program MASHTT (Mason's Automatic Statistical Hypothesis
Interpreter and Tester) was developed to aid the researcher in his ever
losing battle with the computer. The program is written in SNOBOL and
FORTRAN TV to run on the IBM 360-370 series computers. Presently
only regression type questions can be interpreted.

This Mini reference guide is intended to be a summary for the
computer user. If questions arise, the user should refer to the "MASHIT"
users manual, which is complete with examples (Mason, 1973).

CONTROL CARD RULES

The program looks for keywords in the statement made to the
computer. Care with the spelling and spacing of input words is necessary.
Space must be maintained between words and data input can be continued
from card to card freely as the computer thinks the deck is one long card.
The following are general types of cards with the limited rules necessary.
An important point to note is that the only card absolutely necessary besides
the data is a FORMAT card. Just placing the FORMAT card before the data
results in the printing of means, standard deviations, and correlations.

A. TITLE CARD(S) - Optional
1. Any number of cards
2. Must use keyword "TITLE" or "PROJECT"

or "STUDY".
3. Must end with slash or period.

B. TRANSFORMATIONS - Optional
1. The rules of FORTRAN apply.
2. Refer to variables in the Array X.

EXAMPLE: X(22) = X(l) *X(3)
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C. LABEL CARD(S) - Optional
1. Must start with keyword "LABEL” or

"LABELS" followed by a colon or
semicolon.

2. Separate names by colons or semicolons.
3. Can indicate or change variable number.

Otherwise they are thought to be sequential.
This example labels variables 1, 2, 10
and 11.
LABEL: SEX RACE:
VAR 10: GRADE POINT: EDUCATION /

4. Must end entire variable labeling series
with a slash or period.

D. SPECIAL INSTRUCTIONS - Optional
1. The following are instructions that the program

understands:
a. READ IN 20 VARIABLES
b. READ DATA FROM UNIT 4
c. READ IN 120 OBSERVATIONS
d. REGION SIZE = 132K
e. THERE ARE 514 VARIABLES AFTER

T HANS FORMATIONS.
2. Must end with slash or period.

E. MODEL(S) - Optional
1. Must have a model name that includes keyword

"MODEL".
2. Model name must be followed by colon or

semicolon.
3. Model structure follows the colon delimiter.

Model structure is discussed later.
4. Model structure must end with a period or slash.

F. TEST CARD(S) - Optional
1. Must have keywords "TEST" and "AGAINST" or

"WITH".
2. Must have at least two model names that were

previously defined.
3. Must end with period or slash.

G. QUESTION(S) - Optional
1. Must use the model structure that is defined

. elsewhere.
2. Must end with period or slash.
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H. FORMAT CARD(S) - Necessary
1. Can start the card with "(" or "FORMAT ’
2. Must have balanced parentheses.
3. Program will count the number of variables

by the format.
4. F type variables considered continuous

variables.
5. A type or I type variables are considered

discrete and are dichotomized for the
researcher.

model structure

All questions and models must be formed in regression terms. That
is, all predictor (independent) variables and the criterion (dependent) vari­
ables must be separated by a key word or phrase. Examples of this are:

A. DOES SEX, EDUCATION LEVEL, AND IQ PREDICT
GRADE POINT AVERAGE ?

B. . VAR 5, VAR 7 AND VAR 9 PREDICTING Xl.
C. IS THE VARIANCE IN Xl ACCOUNTED FOR BY

SEX?

The keywords are underlined in the examples. The present list of
keyphrases consists of:

INFLUENCED BY

PREDICT EXPLAIN
PREDICTS EXPLAINS
PREDICTING EXPLAINING
PREDICTIVE OF EXPLAINED BY
PREDICTION OF ACCOUNT FOR
PREDICTED BY ACCOUNTED FOR BY

OTHER CONCEPTS

Two other concepts regarding the structure must be mentioned. The
first is that of covariates, and the second is naming and grouping variables.
In asking a question, input can include covariate variable(s) in the question
by the use of one of the following keyphrases:
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OVER AND ABOVE
WITH KNOWLEDGE OF
GIVEN KNOWLEDGE OF
IN CONJUNCTION WITH
IN THE PRESENCE OF
WITH - list - AS COVARIATES

An example is:

DOES GROUP MEMBERSHIP PREDICT VAR 1 OVER AND
ABOVE SEX?

The other concept is the naming and grouping of variables. Variables
can be denoted by an assigned name, or using "X" or "VAR” notations. A
comma or the word "AND" between two variables names means to use only
those two variables. A dash (-) or one of the keywords (TO, THRU, THROUGH)
indicates the use of those variables and all variables between. The example:

VAR 7, VAR 9-11

refers to the four variables 7, 9, 10, 11. For further information and
examples, the user is referred to "MASHIT" users manual (Mason, 1973)
describing the program.
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deck setup

The following card order is used in making a run on program
MASHIT.

// (Job Card)
// EXEC MASHIT

Consists of the following types of cards
m any order:
A. TITLE
B. TRANSFORMATIONS

CONTROL DECK C. LABELS
(All Optional) D. INSTRUCTIONS

E. MODELS
F. TESTS
G. QUESTIONS

FORMAT CARD(S)
Data Cards

/ *
Example

// (JOB CARD)
// EXEC MASHIT
THIS STUDY MEASURES THE CURVILINEAR EFFECT OF AGE
ON RUNNING SPEED /
LABELS:

RUNNING SPEED FOR 100 YARD DASH :
AGE :
AGE SQUARED, USED FOR CURVILINEAR TEST /

X(3) - X(2) ** 2
MODEL A : VAR 2, VAR 3 PREDICTING VAR 1 /
MODEL B : VAR 2 PREDICTING VAR 1 /
TEST MODEL A AGAINST MODEL B /
DOES X3 PREDICT VAR 3 OVER AND ABOVE AGE?
(2F3.0)

Data Cards
/ *

NOTE: The one question does the same thing as the two models and test
combined.
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The Development and Demonstration of Multiple Regression
, Models for Operant Conditioning Questions

Fred Fanning
Isadore Newman

The University of Akron

Abstract.. .based on the assumption that inferential statistics can make
the operant conditioner more sensitive to possible significant relation­
ships, regression models were developed to test the statistical significance
between slopes and Y intercepts of the experimental and control group
subjects. These results were then compared to the traditional operant
conditioning eyeball technique analysis.
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The Development and Demonstration of Multiple Regression
Models for Operant Conditioning Questions

Fred Fanning
Isadore Newman

The University of Akron

Summarization of research in operant psychology has relied predomi­
nately upon descriptive statistics. Probably the main reason inferential
statistics has been given little attention is that early operant research
yielded such clear-cut distinctions that it was not necessary to resort to
tests of statistical significance. A second reason may be the lack of advice
from statisticians regarding limitations of single subject data.

Presently, much research in operant psychology is being done in the
natural environment outside the laboratory, as applied behavior modification.
In these settings, the control of extraneous variables is more difficult to
achieve. As a result, data may fail to exhibit the clear magnitude of effects
observed in data from a laboratory manipulation. When this occurs, signi­
ficant results may not be immediately obvious even though the expected trend
seems to be present. When some doubt exists concerning the outcome of an
experimental manipulation using behavior modification procedures, consideration
should be given to the use of inferential statistics. A number of inferential
statistical models are currently available that may assist the operant researcher
in analyzing his data. These models are essentially specific applications
of the generalized analysis of variance using multiple regression procedures
to partial variance.

The purpose of this paper is to develop and demonstrate regression models
that may be useful to operant conditioners for statistically analyzing their
data. A comparison will be presented between a regression approach to
answering operant conditioning guestions and traditional operant analysis and
interpretations of the same data.

The research questions dealt with here are only examples of the many
possible kinds of questions which can be dealt with effectively using multiple
regression procedures. Models will be developed to test the following questions:
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1. Is there a significant mean difference between Control Group 1 and
Control Group 2?

2. Is there a significant difference between the slope of Control Group 1
and Control Group 2 above and beyond individual differences?

3. Is there a significant mean difference between Control Group 1 and
Control Group 3?

4. Is there a significant difference between the slope of Control Group 1
and Control Group 3 above and beyond Individual differences?

5. Is there a significant mean difference between Control Group 2 and
Control Group 3?

6. Is there a significant difference between the slope of Control Group 2
and Control Group 3 above and beyond individual differences?

7. Is there a significant mean difference between Control Group 1 and
Experimental Group 1 above and beyond individual differences?

8. Is there a significant second degree curvilinear relationship for Control
Group 1 and Experimental Group 1 above and beyond a linear relationship
and any individual differences?

9. Is there a significant mean difference between Control Group 2 and
Experimental Group 2 above and beyond individual differences?

10. Is there a significant second degree functional relationship for Control
Group 2 and Experimental Group 2 above and beyond a linear relationship
and any individual differences ?

11. Is the mean of Control Group 3 significantly different from the mean of
Experimental Group 3 above and beyond any individual differences?
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12. Is there a significant second degree functional relationship for Control
Group 3 and Experimental Group 3 above and beyond a linear relationship
and any individual differences?

13. Is there a significant difference between the slope of Control Group 1
and Experimental Group 1 above and beyond any individual differences?

14. Is there a significant difference between the slope of Control Group 2
and Experimental Group 2 above and beyond any individual differences?

15. Is there a significant difference between the slope of Control Group 3
and Experimental Group 3 above and beyond any individual differences?

METHOD

Subjects. The total subject group consisted of twelve male and female

students selected from a pool of names referred for chronic tardiness behavior

by the school psychologist, teachers, and counselors at Westland High School,

population 1,700, near Columbus, Ohio. Selection was made on the basis

of the highest reported frequency of tardiness behavior.

The sample included one male freshman, four male and one female

sophomores, two male and one female juniors, and three male seniors. All

subjects were white, from approximately middle class socioeconomic back­

ground .

Material. The behavioral instruction program used in this design was

a modification of Hall's book (19 71, Pt. II) describing the basic principles

of behavior modification.

The content of the control group Instruction for both the teacher's daily

lesson plans and the course outline, was taken from the general psychology

text (Engle and Snellgrove, 1969), which students were given to use during 

this instruction.



70

PROCEDURE

During the initial phase of this design, the control period, the twelve

subjects were assigned to three groups, four subjects to each group. Groups

1,2, and 3 received a control treatment consisting of classroom instruction

in general psychology. Immediately following the control period, the four

students in Group 1 began receiving behavioral instruction treatment, consis­

ting of classroom instruction in behavioral principles and their application.

Group 2 continued receiving classroom instruction in general psychology, and

Group 3 received general psychology instruction. When a decelerating trend

in Group I's tardiness behavior was noted, following instruction in behavioral

principles, then Group 2 began receiving instruction in behavioral principles,

and no longer received instruction in general psychology. When a decelerating

trend in Group 2's tardiness behavior was noted, general psychology instruc­

tion was terminated with Group 3, and they began receiving instruction in

behavioral principles. Group 1 and 2 continued receiving behavioral instruc­

tion throughout the remainder of the four week class.

ANALYSIS

The data was analyzed using two techniques:

(1) A multiple baseline design was used to demonstrate the effectiveness
of the group instruction in behavioral principles (independent variable)
on decelerating tardiness behavior (dependent variable). The multiple
baseline design used for analysis of data is illustrated in Figure 1.
Further information concerning the use of this type of design can be
obtained by reference to Baer, et. al. , (19 68); Hall, et, al. , (197Q).
and Hall, (1971, Pt. I). Additional data representing the total
frequency of tardiness for the 3 groups is illustrated in Table 1.
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TABLE 1

TOTAL FREQUENCY OF TARDINESS BEHAVIOR TO SCHOOL AND CLASS
FOR THREE GROUPS

Week 1 1 Week 2 Week 3 Week 4

Group 1
Control

41

| Beh. Inst.

1 17

Beh. Inst.

18

Beh. Inst.

6

Group 2
Control

17

Control

18

Beh. Inst.

13

Beh. Inst.

6

Group 3 Baseline^

26

Control

31

Control S

35 fe

Beh. Inst.

23
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(2) Multiple regression was used to test the same hypothesis as the
above traditional method for analyzing the data (see 1 above).
For an example of how the data is set up, Figure 2 presents the
hypothesis and models used to test them.

Research Hypothesis 1:

EXAMPLE MODELS

The control group mean (C^) is significantly higher

than the experimental group mean (E^) above and
beyond person differences (P) + E.

Model 1: Y = aQU + a (C ) + a (E ) + a (P ) + a (P ) + a (P ) + a (P ) + E
X XX Ct X O X Ct 0 v“

ai = a2

Model 2: Yl=a0U + a3(Pl)+a4(P2)+a5(P3)+a6(P4) + E

Research Hypothesis 2; The slopes of the experimental group (D ) is
el

significantly different than the slope of the

control (D ) group above and beyond person
C1

differences (P).

Model 3: Y = aU + an (CJ + a _(E) + a ,(D ) + a (D )+a(P) + ...+ac(P.) + Error
1 0 11 21 3Cj 4 e^ 51 64

Model 4: Y = a U + a (C ) + a (E ) + a (Day) + a (P ) + + a (P ) + Error
10 112 17 5 1 6 4

In this example P ). During the control

condition (cp each was measured on three consecutive days (D). The same

there were four persons (P , P , P , and
1 2 3

four persons were again measured on three consecutive days during the experi­

mental condition (E^).
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An exam
ple of data set up. 

(N
=24) 

There are four persons. 
Each is m

easured 6 tim
es , 

3 tim
es for the contro

condition and 3 tim
es for the experim

ental condition.

QC
CD
bo
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RESULTS AND DISCUSSION

Table 2 presents the results of the regression analysis testing each

of the fifteen questions. The operant analysis of these questions is

presented in Table 3. In comparing these tables one should note that there

is only disagreement on question five.

One major advantage of using the regression procedure, rather than

the traditional eyeball technique is that probability estimates can be attri­

buted to the accuracy of the statements.

Another advantage of the regressions procedure used is ability to test

the curvilinear relationships above and beyond linear ones, which is not

feasible with the eyeball technique on multiple baseline analysis. Similarity,

one cannot test to see if the slopes of the control group are significantly

different statistically.

In addition, as demonstrated in this paper we can also test to see if

the functional relationship of one treatment is significantly different from the

functional relationship of some other treatment (across some area of interest).

These advantages represent only some of the additional information 

which can be obtained through statistical analysis of operant data.
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Table 3

THE FIFTEEN TESTED QUESTIONS

Hypothesis Number _____

1. There appears to be a significant mean difference between Control
Group 1 and Control Group 2.

2. There is no apparent slope difference between Control Group 1 and
Control Group 2 above and beyond individual differences.

3. There appears to be a significant mean difference between Control
Group 1 and Control Group 3.

4. There is no apparent slope difference between Control Group 1 and
Control Group 3 above and beyond individual differences.

5. There is no apparent mean difference between Control Group 2 and
Control Group 3.

6. There is no apparent slope difference between Control Group 2 and
Control Group 3 above and beyond individual differences.

7. There appears to be a significant mean difference between Control
Group 1 and Experimental Group 1 above and beyond individual
differences.

8. Not applicable.

9. There appears to be a significant mean difference between Control
Group 2 and Experimental Group 2 above and beyond individual
differences.

10. Not applicable.

11. There appears to be a significant mean difference between Control
Group 3 and Experimental Group 3 above and beyond individual
differences.

12. Not applicable.

13. There appears to be a significant difference between the slope of
Control Group 1 and Experimental Group 1 above and beyond individual
.differences.
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Table 3 Continued,

Hypothesis Number

14.
„ a sianificant difference between the slope of

ConUolcroup 2 and Experimental Group 2 above and beyond individual

difference.

15.
There appears to be a significant difference between the slope of
Control Group 3 and Experimental Group 3 above and beyond individual

differences.
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