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METHOD FOR COMPARISON OF NON-INDEPENDENT MULTIPLE CORRELATIONS

Jack R. Haynes and Ronald G. Swanson
North Texas State University

In the Isst severe! years, multiple linear repression and

multiple correlation have been utilized in a wide variety of

research situations. Multiple linear repression models have teen

found applicable to curve fitting problems (Chrlstal, 1967) and

classical analysis of variance problems (Bottenberg & Ward, 1963)

as well as problems requiring prediction equations, correlational

values, and communality estimates.

A typical situation is one in which an Investigator is

trying to measure the relationship between a criterion and a

set of predictor variables. Usually an R is computed and a

procedure such as stepwise multiple regression Is employed to

determine if some subset of the predictor variables Is as effici­

ent in prediction as all of the predictors. Since the amount of

predictable variance is readily obtained from R^, the decision

can be made vla an F test comparing the magnitude of difference

between two R^ values. Since the form of the distribution of R

is known, the significance of a given R is also available by use

of the F test.

Types of Problems

Ko technique has been presented for the comparison of two or

more non-independent correlations. A search of the literature, 

plus queries to e number of eminent statistic0! theorists and 
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rractlticners, made evident the fact that this particular tyre

of comparison had not been dealt with yrevlously. Such a

comparison could he useful in solving two types of research

problems.

Problem one is to determine if the multiple correlation

between a criterion and a set of predictors is significantly

different from an R between the same criterion and a different

set cf predictors within the same sample. For example, an

investigator may wish to find out if a set of personality

measures correlated higher with job performance than a set of

demographic variables in the same group of workers.

Problem two deals with the question cf the differential

predictive ability of a set of predictors from population to

population. In this situation the criterion measures on the

subjects would be constant, but the measures on the predictors

would be obtained from different groups of subjects. An example

would be where different groups such as subordinates, peers, and

superiors were all evaluating the same subjects on a set of

measures. If the multiple correlations were significantly

different Irom each other, there would be differential predic­

tive ability among the three groups. This problem differs from

the situation where the Rs are computed on totally different

samples, for In problem two the same subjects and criteria are

used In the computation of each R. if t: t rs arfe coxputed on

independent samples, the multiple correlations c°n Ha +„.

as zero order correlations and a test of °itniiicance can be 
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made with an r to z transformation (Kendall 4 Stuart, 1961).

The r to z transformation cannot, however, be used where

non-independent samples are involved.

Rationale for a Comparison Procedure

Although problems one and two differ in some respects, they

are similar in that the subjects' measures on the criterion are

the same in the computation of all the multiple correlations.

Thus estimates cf any differences must consider the interrela­

tionships among the measures. In problems one and two, the basic

consideration is the degree cf accuracy in predicting the cri­

terion which is reflected in the multiple correlation and the

amount of residual variance. Since R is a correlation between

a criterion and a linearly weighted combination of variables,

the whole matrix of correlations between the variables dees not

need to be considered (Fisher, 1928). Thus, the differential

contribution of the individual predictor variables is not a

consideration; only the sum cf their linear combination, for

different weighted combinations of sets cf variables, could pro­

duce eoual rredictebllity. Therefore, the situation having the

highest multiple correlation would logically be the one which

produced the best prediction. The best prediction would also

yield the lowest residual variance and the smallest difference

between the actual and predicted criterion scores. The analysis

of difference scores would indicate differences in predictability

and, thus, differences between non-independent multiple correlations.
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Procedure for Comparison

The technique for the comparison of related Rs is based on

the residual criterion scores rather then directly on the R or

R2 values. The procedural steps are: (a) generate predicted cri­

terion scores for each set of predictor variables; (b) for each

set of predicted scores, obtain the absolute difference betv.’een

each predicted and corresponding actual criterion scores;

(c) analyze these difference scores by a single classification

analysis of variance for repeated measures. Absolute difference

scores are used in the interest of maintaining a relatively

conservative test of tr.e error residuals. Squaring large

difference scores would result in biasing the test in favor of

lesser deviation values, l.e., an error residual of two when

squared equels four, but an error score of ten squared equals

one-hundred. Hence, an Inordinate amount of supposed error for

larger error scores would be subject to the scrutiny of the ANOVA,

biasing tr.e tt't of differences. Lach set of difference scores

arc thus treated as a sample of dependent measures from different

treatments, and since the criterion measures are the same for the

computation of all difference scores, the residual scores would

be considered correlated or non-independent, For problem one the

treatments would be different predictor sets, and for problem

two the treatments would be the different sources of prediction,

l.e., subordinates, peers, and superiors. In addition, the mean

of each treatment condition is the mean of the deviation values

for that condition, If a significant F is obtained from the ANOVA

some or all of the multiple correlations would be considered

different. Multiple comparisons to determine which Rs differ
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from each ether are then conducted using techniques such as the

Newman-Keuls studentized range statistical test.

The assumptions necessary to use such a comparison technique

would involve the already established assumptions inherent in the

use of any multiple linear regression model or single-classification

repeated measures ANCVA. This proposed technique is seen as a

simple and logical approach to an important mode of comparison

not previously dealt with.
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THE MULTIPLE REGRESSION APPROACH FOR ANALYZING
DIFFERENTIAL TREATMENT EFFECTS - THE REVERSED GESTALT MODEL

Joseph F. Maola
Graduate Assistant in Guidance and Counseling

The University of Akron

Many times in educational and psychological research the same

experimental treatment is provided by different people. An example of

this effect would be a comparison of Behavioral vs Gestalt group coun­

seling where there may be three different counselors providing each

treatment. Since the individuals providing the treatments are unique

then each treatment, no matter how objectively defined, becomes for

the most part a different treatment effect. The three counselors providing

the Gestalt group counseling all present the treatment to the subjects in

a way which is uniquely theirs while the subjects will perceive the

treatment differently from each counselor. The purpose of this paper

is to present a statistical procedure for examining differences in criteria

above independent differences. The theoretical position underlying the

approach is that "the sum of the parts is greater than the whole." Since

this position is directly opposite that of the Gestaltists, the model will

be referred to as the "Reversed Gestalt Model." Before the reader begins

dismembering, hoping his body will function more effectively, keep in

mind that this is a statistical position for examining differences.

For the sake of explanation, the following model will be used: A

researcher is trying to determine whether the Gestalt method or the 



Behavioral method of group counseling is more effective for increasing

the self concept of a certain population. The models for testing this

hypothesis are:

8

Full Model 1: Y = a U + a (X ) + a JX J + E
10 11 2 2

restriction: a = a
1 2

Restricted Model 99: Y = anU + E
1 o

where: Y = self-concept score

= Gestalt Treatment (1 if Gestalt, 0 otherwise)

X - Behavioral Treatment (1 if Behavioral, 0 otherwise)
2

Whether or not significant differences are found may lead the researcher to

ask questions whether the effects can be maximized by covariance of

differential effects of the treatment.

In order to begin the comparison the researcher would first determine

if there are significantly different treatment effects. The model for testing

the hypothesis of differences among counselors for the Gestalt group treat­

ment would be:

Full Model 2: Y = a U + a (X ) + a_(XJ + a,(Xc) + E10 13 24 35

restriction: a1 = a2 = a3

Restricted Model 99: Y = a^U + E

where: Y1 = self-concept score

Xj - Xg + X4 + X5 (1 if Gestalt, 0 otherwise)

X = Gestalt Counselor A's group (1 if Gestalt Counselor A,
0 otherwise)
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X = Gestalt Counselor B's group (1 if Gestalt

Counselor B, 0 otherwise)

X = Gestalt Counselor C's group (1 if Gestalt
Counselor C, 0 otherwise)

If significant differences are found the researcher will now want to determine

whether a significant amount of variance is accounted for by the differential

effects above and beyond treatment differences. The model (Reversed Gestalt

Model) would be:

Full Model 3: Y} = aQU + a (X£) + a^) + a3(X ) + a4(X5) + E

restriction: a3 = a3 - a^

Restricted Model 4: = a^U + a^(xp + + E

where: Y - self-concept score

X^ = Xg + X^ + X$ (1 if Gestalt, 0 otherwise)

X^ = Behavioral Treatment (1 if Behavioral, 0 otherwise)

X = Gestalt Counselor A's group (1 if Gestalt Counselor A,
3 0 otherwise)

X = Gestalt Counselor B's group (1 if Gestalt Counselor B,
4 0 otherwise)

X = Gestalt Counselor C's group (1 if Gestalt Counselor C,
0 otherwise)

This model allows the researcher to look at the Independent Gestalt Counselor

differences above and beyond the knowledge of being in the Gestalt or

Behavioral group. Since the restriction implies that all the regression weights

are equal, then if they are not, there will be significantly more variance 

accounted for by the counselor differences.



Testing Full Model 3 against Restricted Model 4 permits the researcher

to determine whether a significant amount of variance is accounted for by

the differential effects than from the total Gestalt treatment. The reversed

Gestalt model, therefore, allows the researcher to determine whether a

significant difference exists between the different applications of a treat­

ment (the 3 groups) above and beyond the subject knowledge of the overall

group treatment. The method should also be repeated for the behavioral

group counseled treatment to determine whether differential effects are also

significant.

After determining whether significantly greater variances are accounted

for by the differential treatment effects as compared to the total treatment

effect,then there are two applications the researcher may make. One

application would be using the procedure for allowing the researcher an

opportunity of generalizing not only to the criteria but also to the effect of

independent differences of providing treatment. Another application of the

procedures may be using the Full Model with the differential effects, accounting

for more variance, as the Gestalt Counseling criteria in order to maximize

the Gestalt treatment effect.

This paper was written in order to demonstrate a method of using multiple

regression for determining the effect of independent differences of providing

treatment. The procedures involves a model of comparing differential treat­

ment effects to the total treatment and was, therefore, named the "Reversed

Gestalt Model" because of its theoretical base. The writer is hopeful that

the reader will find this procedure useful for future research.
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THE USE OF REGRESSION EQUATIONS TO DEMONSTRATE CAUSALITY

John F. Byrne
Behavioral Research Department

Westinghouse Electric Corporation
Pittsburgh, Pennsylvania 15235

A universal objective of scientists involved with explanations

of behavior or phenomenon is to demonstrate their knowledge of what is

causing it. Explanations of causality usually entail knowledge of a

number of elements or underlying variates that interrelate to produce the

phenomenon.

Causality may exist at three levels, at least. It is important

that a brief mention of the philosophy of knowledge be made since the

value of regression equations to demonstrate causality can be lost in the

shuffle between types of causal explanation.

Science generally acknowledges that a causal explanation can

exist independent of human perception and that the purpose of research

is to develop a human picture or understanding of what exists "out there"

which comes as close as possible to what is really out there. For our 

purposes we can accept three levels of causality,— the first being what

is really causing the phenomenon, the second being what we think is

causing the phenomenon, and the third being what our measurements and 

analysis of variance stare is causing the phenomenon. This can be 

pursued further with Simon (1971).
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An assertion that causality is understood must be defended

at the second level by means of reason, interpretation, consensus

and subjective reliability among scientists. An assertion that causality

is understood at the third level can only be defended with a high

R Square, low probability of chance occurrence, and replication.

Of the three terms introduced to defend the assertion of

causality at the statistical level, R Square is the one which requires

the greatest amount of explanation. A number of formal statistics

texts written in the language of regression analysis such as

Kelly et.al (1969) can take the reader through basic mathematical operations

and other operational aspects of R Square. The purpose of the present

digression is to focus on the meaning of R Square in a larger than

mathematical sense, e.g. once it has been computed, what does it mean to

the research project?

R Square (R2) is a term which summarizes the effectiveness of

the experimental search for causality. A high R2 indicates that the k

interrelationships among the measurements can be statistically connected

to changes that take place in the phenomenon being studied.

R2 values range from 1.00 to 0.0. An R2 of 1.00 means that

100X of the change that takes place in the phenomenon has been numerically

connected to changes that take place among the variables and experimental

manipulations controled by the scientist. As the R2 value approaches

0.0, it means that more and more things outside of the comprehension of

the scientist are appearing which cause the phenomenon. At 0.0 R2, the

scientist is farthest from a statistical explanation of causality. Still, one

may only guess, and not too emphatically, as to his grasp of level one or level

two causality from this statistical fact.
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Unfortunately It is not unusual to find statistical analyses

which omit R2 from the report. Many researchers mistakenly believe

it meaningful to report that some manipulation of variables was shown

to have a significant effect upon a behavior or phenomenon. It must be

underlined that a significant effect of unspecified magnitude communicates

very little to the reader or to the scientist himself. It has been

argued that the purpose of science is not to demonstrate that effects of

unknown magnitude can be caused, but rather the purpose of science is to

demonstrate that what causes a phenomenon is completely understood or

completely connected to a set of measurable variables which are subject

to the knowledge and/or manipulation of the scientist. When you consider

a research report which reports only the alpha level significance of

an effect, you must realize neither you nor the author understands (level 3)

what he does and does not know about the behavior he is affecting. It is

well known that an R2 of .05 can be associated with a t or F ratio which

could only have occurred one time in a thousand by random sampling error

or chance. In such a case the scientist can be relatively certain that

he produced an effect, but he must admit he knows very little about the

thing he is affecting. However, it is also likely that the

short course in statistics and short-cut formulae which have been overly

popular have simply omitted the role of R2 since the typical scientist

is foremost concerned with causality as it appears at the substantive (level 2)

or knowledge level. The fact is, however, that when the scientist puts

his human grasp of causality to an experimental test Involving measurements
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and the analysis of variance among those measurements, there is a

statistical term in the statistical realm of causality which he must

regard, e.g. R2.

Friedman (1969) provides a table for converting variance

ratios such as t,Z,X2, and F to R2. The following equations from

McNeil, Kelly and McNeil (1974) can be used to calculate R2 when the

reader happens upon an incomplete statistical report.

R2
(dfn)
(dfd)

1 + F (dfn)
(dfd)

(1.1)

R2 = ------- (1.2)
df + t2

Where

dfn = degrees of freedom numerator

dfd = degrees of freedom denominator

df = degrees of freedom

Note that the main point to this presentation is that R2 must

be taken into consideration when one is interpreting the practical

significance an experimental undertaking. For example, a recent study

the effect of Scanned Illumination upon perceptual motor behavior

by Ramage (1974) reported a t value of 4.05 with 6 degrees of freedom and 
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an alpha level less than .01 to summarize the statistical analysis of

variance between two types of illumination and one behavior. That

statistic found it highly probable that a correlation existed between

a change in illumination and a change in behavior.

The reader who wants to know what the experimental finding

was must still ask another question, "What was the magnitude of the

correlation between the change in treatment condition and the change in

the dependent variable?". Somehow many researchers do not seem to

realize that a t test is also a test of the significance of the

correlation between treatment change and change in the dependent variable.

Of course, correlation also refers to shared,variance. R2, the percent

of variation which is shared between the independent variables and the

dependent variable happens to be the mathematical square of the correlation

or multiple correlation as the case may be. It must be emphasized that

analysis of variance, a procedure which sets out to separate the variation

which is shared between the independent and dependent variables, from the

variation in these variables which is not, is definitely concerned with

determining the amount of shared, explained, or caused variation, e.g. R2.

A researcher who attempts to communicate the practical significance of

his experiment, but does not understand how close he is to understanding

causality at the experimental level, must experience an uncomfortable

moment while searching for the words (level 2).

A comparison of the researcher's interpretation without knowledge

of R2, with an interpretation based on knowledge of R2 will clearly point 
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to the value of R2. The author states in conclusion that "The results

of this experiment tend to confirm previous work with scanning light

sources in that motor responses are better sustained under scanning

light than under steady light." I submit this is an incomplete statement.

What does "better sustained" mean? Let’s look at the R2 associated with

the correlation between the change in illumination source and the change

in motor response. Using Equation 1.1

2
R2 = —---  = .73217

6 + 4.052

R2 for this experiment is .73. Seventy-three percent of the

variation in motor response that occurred during the experiment is

attributable to the experimental effect of scanned light! The reader

now knows the magnitude of the experimental effect, and he knows that

27% of the variation was due to causes still unmeasured by the researcher.

R2 has also given the reader a means of evaluating the significance of

the researcher’s knowledge. With this knowledge the reader might

even be interested in studying the experimental methodology apparatus,

etc., and even funding further development of scanned lighting!

R2 has been described as the statistical description of

causality which is at the heart of the goals of research. To

understand R2 more fully, one must also realize that it is an index

expressing the degree to which a regression equation has determined

relationships between a dependent variable and one or more independent



17
variables. The statistical language of regression equations enables the

modern statistician to write specific analysis of variation equations

for specific research questions.

Again, the purpose of statistics is related to determining

how much variation that occurs among the independent variables and the

dependent variables is correlated as well as the alpha level significance

of the correlation. This purpose can be concealed in short cut formulae

applications such as the t test where the basic regression equation has

been concealed. To illustrate this, we can again look at the statistics

which were used in the scanning light project. This project used a t test

for repeated observations on the same subjects, but if we look at the

author's definition of research design, we see that this ready-made

technique only partly reflects his design. It is possible that relationships

within his experimental design, but which remained outside of his statistical

analysis could change the statistical finding. Unless the full experimental

model is reflected by the statistical treatment, a conservative reader

could not feel secure in interpreting the statistical analysis.

The researcher expressed his research design as follows:

FIGURE 1
Conducted Research Design

Subjects group A

Steady Light Scanning Light

First Second

Second FirstSubjects group B
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The above design was described as a counterbalanced design

in which each participant experienced both light levels. The two levels

or types of illumination were experienced by each group in a counter­

balanced order so that learning or practice effects would be theoretically

cancelled out. By pooling the data in a statistical simplification such

as the t test which was used, the researcher analyzes his data as if

he conducted a different experiment. The experiment which he reports

in his analysis does not map the Figure 1 design. The reported experiment

is presented in Figure 2.

FIGURE 2

Reported Experimental Design

Steady Light

Subject 1
etc

Subject n

t - 4.05, df =

(R2 = .73)

Scanning Light

Subject 1
etc

Subject n

6, alpha = .01

A complete analysis of the actual experiment looks very different

from the crunched analysis presented in Figure 2. A full statistical

equation written for the Figure 1 design produced the following results.
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FIGURE 3

Summary of Analysis of Variance

Source
SS DF MS R2 F ALPHA

Factor A Down .00 1 .00 .00 .00 1.0000
Factor B Across 11.52 1 11.52 .72 26.59 .0007
Interaction .10 1 .10 .01 .22 .652 3
Within cell 4.33 10 .43

Full Model 11.62 3 .73 8.94 .0039
TOTAL 15.95 13

Note that Figure 3 is a standard ANOVA Table with the exception

that R2 has been added and the facts associated by the concealed

regression equation full model are presented.

Figure 3 reports an R2 of .73 just as we computed with

Equation 1.2 for the t test version of the scanning light experiment.

But we can answer from knowledge several questions which were muted by

the t test. Questions such as:

1) Was there a practice effect or learning effect?

Answer: Factor A (Down) found no correlation between the exposure

sequence and behavior. There was no practice effect for

the counterbalanced design to cancel out. If there had been

a practice effect, would it really have cancelled out with

small numbers of very complicated subjects? How would a real

practice effect with unequal amounts have affected the R2 reported

in the t test? The point is, why should the reader be forced 

to guess? Why not do the statistics?
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2) What percent of the variation in the Full Model was attributable

to the correlation between change in treatment and behavior change?

Answer: 72 percent. 1 percent of the 73 per in the Full Model

was attributed to another source.

3) What was the alpha level associated with the R2?

Answer: Not only was it less than .01 as reported with the t

test, it was .0007.

The particular model presented in Figure 3 is fully documented

by Winer (1962) Chapter 7. Because the research design presented in

Figure 1 is a standard design, it is unnecessary to write out the

regression equation behind it. However, it is important to note that

had more knowledge been involved in the experimental design, a unique

equation could be provided so that when the researcher got to the point

of communicating what his experiment accomplished, he could statistically

talk about what happened rather than point to mean differences.

As far as reporting mean differences, which seems to be some

kind of ritualistic zoomorph, you could as well report any points on

parallel regression lines that pass over the same point on the x

coordinate. A two group model is only a special case where there is only

one point on the x coordinate to pass over, e.g. the group membership point.

The problem is, that by reporting on the significance of the distance

between such points to the exclusion of R2, it is obvious that the researcher

has missed the point.
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The magnitude of the experimental effect produced in the

technically excellent Scanning Light experiment has exciting implications.

The excitement generated by an R2 of .72 will encourage thought given

to industrial and educational applications and further research in the

perceptual area. At the statistical level of causality, the R2

associated with the Scanning Light experiment implies that the researcher

knows a great deal about what is causing the behavior he is investigating.

The excitement of an experiment is conveyed through the R2 associated

with each hypothesis the researcher tests.

In attempting to convert the front line scientist to a belief

in R2, statistical causality, and an awareness that there is a regression

equation behind every great experiment, the statistical analysis of the

Scanning Light experiment was unmercifully used as an example of the many

technically excellent experiments which stand to lose if their

statistical counterpart is not complete. I owe a debt of gratitude to

Mr. W. Ramage of the Westinghouse Behavioral Research Department for the

good humored acceptance of the review of the statistical aspects of his

exemplar project. Hopefully, R2 has found a home at Westinghouse.

Who knows, perhaps one day we will say, "You can be sure, if it's 1.00".
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CLASSICAL ANALYSIS OF VARIANCE OF
COMPLETELY WITHIN-SUBJECT FACTORIAL DESIGNS

USING REGRESSION TECHNIQUES

Thomas W. Pyle
Eastern Washington State College

The use of regression analysis in analyzing data obtained from Between-

subject experimental designs is well-documented and easily obtainable

(e.g., Bottenberg and Ward, 1963; Jennings, 1967; Williams, 1970; Ward

and Jennings, 1973). In addition some texts cover the classical analysis

of variance (ANOVA) of single-factor repeated measurements designs (e.g.,

Kelly, Beggs, McNeil, Eichelberger, and Lyon, 1969), and an identification

has also been made of regression models which yield £ ratios (for Main and

Interaction effects) equivalent to those obtained by standard computing

formulas for split-plot factorial and simple hierarchical designs (Pyle,

1973). However, documentation for the standard ANOVA of completely Within-

subject factorial designs using regression analysis is not available as

far as this author is aware. The purpose of this article is to provide

such documentation by means of an example. The regression solution for such

problems is not the most efficient way to generate the desired j? ratios,

at least not the F ratio for interaction. However, the information will

be valuable for the didactic purpose of understanding the models, and

some of the assumptions underlying the analysis of this type of design

will become apparent.



Design Notation and Sample Data

The following example assumes that the dependent variable of interest was

collected for three independent Ss under two levels each of independent

24

variables A and B. Each S receives all levels of all independent variables

and therefore contributes four scores for a total of 12 observations.
Let Y refer to the score made by the itB individual at the level

i j k
of A and the kth level of B. For this example, i = 1

k = 1,2. The design may be represented as follows:

B1 B2

A1 A2 A1 A2

,2,3; j = 1,2; and

£1 Ylll Y121 yH2 y122

-2 Y211 Y221 Y212 Y222

^3 Y311 y321 y312 y322

(1)

For the purposes of the example, assume the following

obtained:

B1 B2

A1 A2 a1 A2

1 3 4 4

^-2 2 2 5 4

-3 3 1 6 6

scores have been



A and B Main Effect’s
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In order to obtain the correct F ratios for the A and B Main Effects,

two different Full models must be constructed. For the A Main Effect

the elements of the criterion vector, YA, will consist of the sum (or

any linear transformation on the sum) of each S/scores at each level of

B for a given level of A. Note that each S will have two scores in YA:

one obtained under treatment Ap and the other obtained under treatment

A2" For example, for Sj his two scores in YA are Y^p + ^112 (1 + 4 = 5)

and ¥^21 + ^122 (^ + 4 = 7). Let Equation (2) be the Full Model for the A

Main Effect:

Ya = ai^i + a2^2 ^1^1 ^2^2 ^3^3 ^2 • (2)

where:

Ya is the vector of criterion scores (defined above);

Xj(j=l,2) contains a one if the corresponding element in YA was

made by a person receiving Treatment Aj; zero otherwise;

P±(i =1,2,3) contains a one if the corresponding element in YA

was made by person i; zero otherwise;

ap a2> bp bj, and b^ are weighting coefficients which minimize

the length of the residual (error) vector;

E2 is the error vector.

For this example the r2 for Model (2) is 0.50943. When the restriction

al = a2 = a0 (a common value) is imposed on (2), the following model obtains:

Ya = agU + b^Pj + b2P2 + ^3P3 + (3)



where:
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U is the unit vector;

E3 is the error vector.

YA» Pl» P2» P3 are defined as in

a0’ bl’ b2’ b3 are weightin8 coefficients which minimize the

the length of E3;

The R? associated with (3) is 0.49057. The JF ratio comparing Models (2)

and (3) may be obtained from the following formula (Bottenberg and Ward, 1963):

„ ■ <«F ~ 4)/dtl

(1 - R|)/df2

where:

2 9Rp is the R4 associated with the Full model [Model (2)J;

rr is the R2 associated with the Restricted model [Model (3) J;

dfy = the number of linearly independent vectors in the Full

Model (m^) minus the number of linearly independent vectors

in the Restricted model (m2);

df2 = the dimension of the vectors (N) minus mT.

Note that m1 = 4 and that m2 = 3. N, for this example, is six, and the

obtained value of F is 0.077. This is precisely what one obtains for the

A main effect using traditional computing formulas (e.g., Myers, 1972,

Chap. 7).

the B Main Effect is structurally quite similar; however,

the values of the on vector are not the same as for the Full Model

for the A Main Effprr some of the predictor vectors are also changed.
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Let the elements of Yg consist of the sum (or any linear transformation on

the sum) of each Sjs scores at each level of A for a given level of B.

Using S-; as an example again, his two scores in Yg will be [from (1) ]

Ylll + Y121 and Y112 + Y122 (i-e., 1 + 3 = 4 and 4 + 4 = 8, respectively).

Define Model 4 as:

yB ” alxl + a2x2 + blpl + b2p2 + b3p3 + e4 (4)

where:

Yg is defined as above;

Xk(k =1,2) contains a one if the corresponding element in Yg was made

by a person receiving Treatment B^; zero otherwise;

P|(i = 1, 2, 3) contains a one if the corresponding element in Yg was

made by person 1; zero otherwise;

ap a2, bj, b2, and b2 are weighting coefficients which minimize the

length of E^;

is the error vector.

If the restriction that a^ => a2 = 3q (a common value) is imposed on Model

(4), Model (5) obtains:

YB = a0U + blPl b2P2 b3P3 "h E5 (5)

All of the predictors in (5) have been defined previously. The R for

Model (4) is 0.92375; the R2 for Model (5) is 0.07625; dfr = 1, df2 = 2

and the obtained value of F is 22.23. Again, this is exactly the same

value of £ one obtains using traditional computing formulas. Notice also

that the values of df^ and df2 (as defined above) are the same as those

obtained by traditional procedures. It can be shown that this will, in 

general, be true.
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correspond to those obtained by traditional computing formulas, one must

create a new Full Model. To obtain this "Full" model, another model must

first be created, which will be referred to as the Largest model. A

restriction will be imposed on the Largest model that will yield the

Full model which allows for AxB interaction. Then another restriction

will be placed on the Full model which will not allow for AxB interaction.

These last two models are the ones which are compared using the £ ratio.

In order to obtain the "Full" model, one must first create the Largest

model, which is defined as follows:
£. A n

L E dijk xijk + e6 (6)

k=l j=l i=l

where:

Y is the criterion vector. The elements of Y are the raw scores from

the original data matrix £see (1)]. The dimension of Y is 12;

contains a one if the corresponding element in Y was made by

person i while receiving Treatment combination AjBk;

The d^jk's are weighting coefficients which minimize the length of E^;

Eg is the error vector.

For the largest model there are 12 linearly independent predictors; since

the dimension of Y is also 12, Eg is null and R2 = 1.0.

At this point on assumption must be made: there is no AxBxS interaction.

When this restriction is imposed on the Largest model (Model 6), the Full

model for the AxB interaction hypothesis obtains.
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In general, there will actually be (A-l)(B-l)(n-1) restrictions imposed on

the Largest model. For the specific example under consideration, two

restrictions will be made; these two restrictions constitute what is meant

bv the term '’no AxBxS interaction":

(dUi - d2n)-(d121 - d221) = (d112 - d212)-(d122 - d222) (7)

(dm - d311)-(d121 - d321) = (dli2 - d312)-(di22 - d322) (8)

Equation (7) can be solved Ln terms of djjj and Equation (8) can be solved

for d311. The actual restrictions imposed on Model (6) are (7’) and (8’):

dlll = d112 " d212 ~ d122 + d222 + d211 + d121 “ d221 <7')

d311 " “d212 + d222 + d211 " d221 + d321 + d312 " d322 (8')

After substituting the expressions on the right side of the equations in (7')

and (8') for d^n and d3n in Model (6), and after collecting vectors that

have like coefficients, Model (9) obtains:

Y = di12(X111 + X112) + d212(*212 " *111 " x311)

+d122<x122 “ xlll> + d221<x221 “ xlll " x311>

+d211<xlll + x211 + x311> + d121<xin + X121)

+d222<xlll + x311 + x222> + d321<x311 + x321>

+d312(x311 + x312> + d322^x322 " x311> + E9

Model (9) is rather complicated, but its important characteristic is that

it does not allow for AxBxS interaction. It does allow for AxB interaction,

however.

The restrictions for no AxB interaction can be formulated verbally as follows:

given Model (9), the difference between the average predicted values for A^B^

and A2B1 equals the difference between the average predicted values for Aj^

and A2B2. For example, from (9) the average predicted value for cell A-^B^ 

is as follows:



[(du2 “ d212 " d122 " d221 + d211 + d121 + d222> + (d21P +

(“ d212 “ d221 + d211 + d222 + d321 + d312 “ d322>]/3>

The expression in the first set of parentheses is the predicted value for

Person 1 at A^. The expression in the second set of parentheses is the

predicted value for Person 2 at A^; and the last expression is the

predicted value for Person 3 at A^B^. The predicted values for the

other cells are obtained in an analogous manner.

Although the initial restriction is rather involved, it eventually reduces

to the following expression:

d211 = d212 “ d222 + d221

When the above restriction is Imposed on Model (9), we obtain the model 

which does not allow for AxB interaction, Model (10):

Y = d112(Xlll + X112) + d212(X212 + X21P + d122(X122 “ X11P

+d22pX221 + X21P + d12pXlll + X12p + d222^X222 “ X21P

+d321(X311 + X32p + d312(X311 + X312J + d322(X322 " X31P

+E10 (10)
The R2 for Model (9) is 0.93418; for Model (10), R2 = 0.93165. For Model

(9), = 10; for Model (10), m2 = 9. Therefore, df^ = 1, and since the

dimension of Y is 12, df2 = 2. The value of F is 0.077. If one calculates

the F ratio for the AxB interaction effect using traditional computing

formulas, exactly the same value is obtained (within round off error).

For the purpose of generality it will be shown that the denominator degrees

of freedom (df2), obtained by the procedure illustrated above, is equal to

(A-l)(B-l)(n-1), which is the general formula for df2 (e.g., see Myers, 1972,

p. 188). Recall that df2 = N-m^, where N is the dimension of the vectors

and mx is the number of linearly independent predictors in the Full Model.

For the Full model used to analyze the AxB interaction, N will, in general, 



be equal to the product nAB. The Largest model will have nAB linearly

independent predictors. When the restriction of no AxBxS interaction is

imposed on the Largest model, the Full model for AxB interaction obtains.

When one imposes the restriction of no AxBxS interaction on the Largest

model, the number of independent restrictions imposed is (A-l)(B-l)(n-1),

and nip for the Full model, is [nAB - (A-l) (B-l) (n-1) ].

Then,

df2 = N - [nAB - (A-l)(B-l)(n-1)];

df2 = nAB - [nAB - (A-l)(B-l)(n-1)];

df2 - (A-l)(B-l)(n-1).

Discussion

In conclusion, several points can be made. (a) Completely Within- '

subject factorial designs can be analyzed in the multiple regression frame­

work. The obtained dfs and F ratios are equivalent to those obtained by

traditional computing formulas. (b) Three different ’'Full" models are

necessary to obtain the correct F ratios. It should be noted that this is

a distinctly different state of affairs in comparison to a completely

Between-subjects factorial design (see Jennings, 1967), but is somewhat

similar to the analysis for the split-plot design, i.e., a design that

has one Between-subjects variable and one Within-subjects variable (see

Pyle, 1973), The regression approach makes it quite clear that different

"Full" models are associated with different aspects of the analysis. This

should be of distinct pedagogical interest. (c) It is particularly

obvious that in order to obtain the correct F ratio for the AxB interaction

one must assume that there is no AxBxS interaction. Similar restrictions

are also made for the analysis of the main effects. For example, Model (2)

does not allow for AxS interaction. (d) An analysis of the AxB interaction 

using the regression approach is rather impractical in the sense that a 



great deal of algebraic manipulation is required to obtain both the Full 32

and Restricted models. It should be noted that the complexity increases

as the number of subjects increases.
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USE OF MULTIPLE LINEAR REGRESSION

IN ANALYSIS OF INTELLIGENCE TEST SCORE
CHANGES FOR VISUALLY HANDICAPPED ADULTS

Dr. Theodore L. Gloeckler

Multiple linear regression was used to analyze complex data assessing
longitudinal changes in IQ test performance of visually handicaoped adults.
Results indicated: (1) patterns of performance similar to those found in
sighted populations, and (2) no influence on IO changes by a variety of
ontological factors.

Although it has been traditionally assumed that patterns of intelligence

test performance of visually handicapped persons are not different from those

of the sighted (Newland, 1963), there is little supporting evidence in the

literature. Longitudinal studies with the blind or the visually handicaoped

have been limited in number and these few have in turn been limited by popu­

lation size, by instrumentation, and by subjects’ (Ss) chronological age spans.

Therefore this study was undertaken to examine longitudinal pre-post intelli­

gence test performances of a group of visually handicapped adults.

Six major hypotheses were posited. Additional hypotheses related to

subtest performance and other variables are not reported here. The six central

hypotheses were:

Hypothesis 2: Changes in pre-post intelligence test scores are not signifi­

cantly related to chronological age at initial testing.

Hypothesis 3: Changes in pre-post Intelligence test scores are not signifi­

cantly related to chronological age at the time to posttest

administration.

Hypothesis 1: For the total sample of visually handicapped adults there will

be a significant relationship between initial test scores and 

subsequent score changes.
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There is no significant relationship between changes in pre­

post intelligence test scores and the length of the time

interval between the two test administrations.

There is no significant relationship between the age of onset

of the visual impairment and changes in intelligence test per­

formance as measured by the pre-post verbal 10 scores.

For the total sample of visually handicapped adults there will

be a significant relationship between the degree of the disa­

bility and pre-post verbal IO score differences.

Method

was an extension of an earlier work on vocational success of 

the visually handicapped by Scholl, Bauman and Crissey (1969). Biographical

and historical data had been gathered on 929 visually handicapped Ss in six

states and approximately one-third of these were retested with instruments

which had been originally used earlier when these Ss were completing their

public and/or private school education. These Ss had taken one of the Wechsler

scales: Wechsler-Bellevue I, Wechsler-Bellevue II, or the Wechsler Adult

Intelligence Scale. From this population 159 Ss were selected. Criteria in

eluded the availability of data central to the investigation and that Ss had

been administered the same form of the Wechsler scale at both pre and post

testings.

The study was limited by several factors. First were the usual restric

tions resulting from ex post facto research. In addition, there was wide

variability in the available data. These included the following: (1) ^ereaS

each S was retested at approximately the same time (Soring, 1968), the time of 

Hypothesis 4:

Hypothesis 5:

Hypothesis 6:

The s



initial testing varied widely. As a result, test-retest time intervals ranged

between 4 and 19 years. (2) Chronological ages of the Ss ranged from 16 to

22 vears on the pretest and from 23 to 40 years on the posttest. (3) IO

ranges were from 57 to 141 on the pretest and from 53 to 145 on the posttest.

(4) Age on onset of the visual impairment ranged from birth (congenital blind­

ness) to 17 years for the adventitiously blinded. The degree of visual acuity

of the Ss ranged from 20/30 in the better eye to total blindness in both eyes.

In addition there were wide ranges within other variables including the

amount and kind of educational experience, socioeconomic indeces of Ss and

their parents, measures of job success, amount of occupational training, gen­

eral health, presence of additional disabilities, financial and counseling

assistance received from agencies, and travel ability of the Ss.

This wide variability of the data plus the fact that the study dealt with

a series of continuous variables resulted in the selection of multiple regres­

sion analysis as the main statistica method used in the study. This method,

as described by Kelly Beggs, McNeil and Eichelberger (1969) provided the

necessary flexibility in dealing with these complex data. In addition, the

method had the capability of providing analyses of variance and analyses of

covariance at a more robust level than the traditional F test, of these six

major hypotheses only No. 1 was not tested with multiple regression analysis.

For this initial hypothesis Person Product Moment correlation and a Chi-Square

were used.

Results

Table 1 presents the chi-square results used for Hypothesis 1. With the

Ss stratified into subgroups on the basis of initial IO scores, an inspection

was made to determine how many Ss moved up or down from one IO group to another.
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The chi-square test was made on these frequencies. As indicated in the table,

an increasingly larger percentage of Ss were able to improve their scores

sufficiently to move to the next higher 10 range as initial 10 scores in­

creased. In addition, a test-retest correlation resulted in a .88. On the

bases of these two indicators Hypothesis 1 was accepted to show subsequent

score changes significantly related to initial IO.

The remaining hypotheses were all tested with multiple linear regression

and Table 2 gives these results. Hypothesis 2 was rejected and it was found

that there was a significant relationship between chronological age at the

time of initial testing and subsequent score changes. As a result of these

two findings both initial 10 and initial CA were covaried on subsequent models.

Hypotheses 3, 4, and 5 were accepted. No significant relationships were

found between longitudinal 10 score changes and either chronological age at

the time of retest, time interval between the two test administrations, or the

age of onset of the visual impairment. Hypothesis 6 was rejected indicating

no significant relationship between the degree of visual impairment and sub­

sequent score changes.

An additional 30 models were tested although no formal hvpotheses were

made for them in the study. Results of these tests ruled out any significant

relationships between score changes and socioeconomic indices of Ss and their

parents, various educational factors, additional training, health, travel

ability, measures of occupational success, and counseling with Ss. Only one

variable (Table 2, Hypothesis A), money spent by rehabilitation agencies on 

the Ss, was found to be related to 10 score change.
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In general, the results indicated that changes in the verbal intelligence

scores, over time, of visually handicapped adults are unrelated to a wide

variety of ontological data. The relationship of such changes to financial

assistance was probably an artifact of the selection process of rehabilitation

agencies which tend to select those with most promising abilities (e.g. high

IQ scores) to receive financial assistance (Scott, 1969). Thus financial

assistance is probably related to initial 10 which, as the data have indicated,

is in turn related to score changes.

In summary, changes in the 10 test performance of these visually handi­

capped adults, over time, appear to be similar to those changes observed in

other, sighted populations.
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Frequencies of Subjects Moving
Between 10 Score Ranges

TABLE 2

IQ
Group

Pretest Moved Up Moved Down Chi-Square
N N % N 7. df Mean Sig.

50-84 24 3 12.5 1 .04 1 .66 NS

85-99 42 25 58.5 2 .02 1 13.6 .001

100-114 54 42 77.7 1 .03 1 16.3 .001

115-plus 38 0 0.0 1 .02 — - -

Models, F ratios, and R2 for Predicting Posttest Scores
Predictor Variabled

Models and Explanations Models R2 df F P

Hypothesis 2: An analysis of covariance
(Initial IQ covaried) to
determine if initial
chronological age is
related to IQ score change.

Model 1: Y2 = a0u + al^l + a3^3 + E

Model 2: Y = agu + a^X^ + E

Full

Rest.

.80

.80
1/157 8.47 .04

Hypothesis 3: An analysis of covariance
(Initial age covaried)
to determine if retest
chronological age is
related to IQ score
change.

Model 1: Y2 “ agu + a^X^ + a^ X4 + E

Model 2: Y = agu + ajX^ + E

Full

Rest.

.80

.80
1/157 8.47 .04
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TABLE 2 (CONTINUED)

Models and Explanations Models R2 df F P

Hypothesis 4: An analysis of covariance
(Initial age and 10 covaried)
to determine if test-retest
time interval is related to
IQ score change.

Model 1: Y2 ■= agu + a^x^ + 33X3 + a^x^ + E

Model 2: Y2 “ ago + aixi + 33x3 + E

Full

Rest.

.80

.80
1/157 1.34 .24

Hypothesis 5: An analysis of covariance
(Initial age and 10 covaried)
to determine if age of onset
in the better eye is related
to IQ score change.

Model 1: Yj " aou + alxl + a3x3 + a5x5 + E

Model 2: Y£ ° agu + a^x^ + 33x3 + E

Full

Rest.

.80

.80
1/157 0.02 .86

Hypothesis 6: An analysis of variance
(Initial age and 10 covaried)
to determine if degree of
disability in the better eye
is related to 10 score change.

Model 1: Y2 = agu + aix^ + 33x3 + agxg + E

Model 2: Y2 = agu + apc^ + 33x3 + E

Full

Rest.

.80

.80
1/157 0.15 .69

Hypothesis A: An analysis of covariance
(Initial age and 10 covaried)
to determine if amount of
money spent by agency is
related to IQ score change.

Model 1: Y2 4 agu + a^x^ + 83X3 + ayXy + E

Model 2: Y2 = agu + a^x^ + 33X3 + E

Full .80
1/103 4.32 .04
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DINNER WITH DR. EARL JENNINGS

Isadora Newman
The University of Akron

At the last A.E.R.A. convention, I had the opportunity to meet and have

dinner with Dr. Earl Jennings. During dinner, a variety of topics were discussed,

which may be of interest to the Viewpoint audience. Some of the ideas are not

fully developed since this was an informal meeting, however, they might provide fuel

for thought. Just a few of these ideas will be presented here.

Since one of my interests is shrinkage, we discussed its appropriateness,

Earl's response was somewhat surprising. "Shrinkage is O.K. if you're interested

in interpreting R ." He then went on to say that he believes it is more useful

to interpret "error mean square." This value can be calculated for any model by

Error Sum of Squares
n - k

where n is the dimension of the vectors and k is the number of linearly independent

predictor vectors. Under certain assumptions the error mean square is an unbiased

estimate of common variance. Even if the assumptions are not met the quantity has

a considerable intuitive appeal. Notice that for any model which has a unit vector

in the space of the predictors the quantity

Error Sum of Squares
n

is the variance of the observed errors.

* I would like to publicly thank Earl Jennings for his very helpful comments.



[Error Sum of Squares = (1-R2)na2y]

The difficulty with this quantity and R2 is that R2 approaches 1 and ESS approaches

zero as k approaches n. However the error mean square does not necessarily

approach zero as k. is increased. The primary disadvantage of the error mean square

is that its value depends on how Y is measured. For example if Y contains annual

budget deficits for the last 20 years the error mena square for a particular model

might be SO million dollars. Although the value sounds enormous the model

probably would predict next year's deficit more accurately than is currently the

case.

Another example Earl used was to assume one was interested in predicting

grade point average (y) from a variety of predictor variables. Also assume that

the R2 was about .4. One could increase the R2 to .6 by taking out the middle

scores in the distribution. This would increase the variability, thereby increasing

the correlation. Earl said that he actually tried this with some data and found

that the weights for the predictor variables did not change and neither did the

error mean square, even though the R2 changed considerably.

For. this reason and others, he feels that the error mean square is more

stable and at least as good an estimate of the equation's accuracy of prediction,
2as is the R . (This argument is further elaborated on in appendix B in Ward a

Jennings Regression Textbook.) I found this rather thought provoking.

Another subject that was briefly discussed was which loss functions should

be minimized in the predictor equation. In other words, the equations are

calculated to minimize E

E=y-y

The loss functions talked about were:

(1) Mean Square Error

(2) Absolute Error

(3) Hit-Miss (one-zero) Error
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The most commonly used is the squared error loss function. For this function

the assumption is made that the innacuracy in prediction is equal to the squared

error of prediction. The purpose is to minimize

(y-y)2-

Most of the statistical literature uses this function in their calculations. The

major reason given for this is that the mathematics that results from such a

function are easier to deal with in more sophisticated calculations.

The major problem with using the mean-square error function is that it

penalizes large errors considerably more since it squares the errors. However,

as long as scores are not very extreme, this makes little difference, and most

data in educational psychology is bounded, so that enormous differences are

generally not encountered (i.e., test scores generally range from 0 to 100, etc.)

The absolute error (/E/) loss function attempts to minimize the magnitude

of the absolute difference between y-y. The major advantage of using this as

a loss function is that large error differences are not overly weighted as they

are in the mean-square loss function. A disadvantage is that when using this

error function, the computations that are required for fitting a regression line

are more complicated. This probably is the reason that it is not used very often.

The 0-1 loss function is appropriate to use when one is interested in

minimizing the error of any miss in prediction, for example, it may be most

appropriate to use if one is interested in predicting the accuracy of artillary

fire, and all misses regardless of how close or far are considered a miss and

any hit is considered a hit.

The point is that the least-square solution (minimizing one mean square

loss function) is not the only solution that can be used in model solving.

However, it is probably so frequently used because it is very robust, especially

when the data is bounded. And the mathematics are much easier to manipulate.



One of the major things that I personally derived from the conversation is

reinforcement of the idea that one should not become functionally fixed by

particular techniques.

The research question should dictate the procedures, whether it be

error mean square, a particular loss function, etc.

P.S. Negative variance accounted for was also discussed, but my recollection

of it was not clear enough for presentation in this note.
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The workshop on regression being presented by Joe Ward is described

below. This workshop has the advantage of being based on an individual

approach. There will be a list of objectives and participants will be

able to proceed at their own pace. This makes it appropriate for both

beginning and advanced work in regression.

Isadore Newman
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SUBJECT: Seminar on Applied Linear Models in Educational Research,
July 8 - 12, 1974, College Inn, Boulder, Colorado

DATE: March 8, 1974

The Seminar on Applied Linear Models in Educational Research will be under
the direction of Joe H. Ward, Jr. from the Air Force Human
Mr. 1  ' 
similar programs throughout the nation.

-- -------- _ ---- - Resource Laboratory.Ward is well known for his work In the field of linear models, having presented
Inr* nr-rtot-amo *-k— --- -  •

This seminar is designed to develop the capability to use the general linear
model as an approach to the formulation and analysis of research problems.
Because of the rapid improvement of computer techniques for the systematic or­
ganization and analysis of data, researchers are presently unable to formulate
problems for computer analyses that will yield answers.

The activities will be divided evenly between lecture-discussion and labora­
tory exercises related to the objectives. Concepts and exercises will be introduced
systematically as they are required in the logical development of the materials.

Specifically, this seminar will enable participants to: Express a question of
interest in a natural language form; formulate and defend a linear model containing
parameters relevant to the question without conforming to experimental designs for
which prescribed computational procedures are available; state the relations among
the parameters of a model required to defend specified conclusions about the
question; test hypotheses about the relations among the parameters of a linear model

WEWzhm
Enclosure

The seminar will be held
Colorado 80302. 7“._
to "live in" during the seminar,

Rates are $13.00 plus tax per person r
J___ r I _ —oxugxe ui uuuuie

Do not send housing payment in advance.
The registration fee will be $125.00 payable to the University of Colorado.

Complete the enclosed form and return it by July 1 to: Bureau of Conferences and
Institutes. AnaHomv 917 o-jn »-------- Univers-f rv , nniM

' 7 e slcy of Colorado, Boulder, Colorado 8030-
' . ^211, extension,6485 at he above address.

at the College Inn Center, 1729 Athens Street, Boulder
The College Inn Center provides an opportunity for the participant

, and also offers free-time recreation.

* — --  r_.. Hciaun per day for either single or double accom­modations, including room and board. Dn ------- ->

The registration fee will be $125.00
C---" 
Institutes, Academy 217, 970 Aurora, IL.
For further information call (303) 443-

WTfffam ? Wright
Conference Coordi ator
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REGISTRATION APPLICATION

Please register me for the Seminar on Applied Linear Models in
Educational Research, July 8 - 12, 1974:

Name: 

Ad dress:

City:S tate:Zip: 

Institution: _____________

Please Reserve | | Single Rates are $13.00 per persoi
per day including room and
board. Do not make housing
payment in advance.

i '■ Enclosed is a check for $125.00 | j Please bill the institution
registration fee shown above.

Mall this form and your check - made payable to the University of
Colorado by July 1 to:

Bureau of Conferences and Institutes
University of Colorado
Academy 217
270 Aurora Avenue
Boulder, Colorado 80302



Southern Illinois

University at Carbondale

CARBONDALE, ILLINOIS 62901

Testing Center

May 2, 1974

Dear Multiple Linear Regression SIG Member:

At our recent annual meeting with AERA in Chicago the membership
voted to increase the annual membership dues to $2.00. This action
was taken in order to help defray the increase in costs realized by
our publication, Viewpoints. The cost per page absorbed by the author
will still remain at $1.00.

Those of you who have not yet paid your membership dues for the
coming year may send a check to me for $2.00 and your name will be
placed on our active membership list. I strongly encourage you to
continue your membership in the SIG and I also encourage you to solicit
memberships from any friends or colleagues that you think would benefit
from membership in the SIG.

Send your dues to:
John T. Pohlmann
Student Affairs Research and Evaluation Center
Washington Square C
Southern Illinois University
Carbondale, IL 62901

Sincerely,

John Pohlmann
Secretary-Treasurer
Multiple Linear Regression SIG

JTP:mjc



Attention SIG Members 48

In order to be able to continue bringing you Viewpoints at the present

minimal cost, we are asking that SIG members request libraries they are

affiliated with to subscribe to Multiple Linear Regression Viewpoints at

a subscription rate of $12.00 per year. Please send requests for subscrip­

tions to either

John Pohlman
Student Affairs Research

& Evaluation Center
Washington Square C
Southern Illinois University
Carbondale, Ill. 62901

or Isadore Newman
Research & Design Consultant
University of Akron
Akron, Ohio 44325

This will be of great help, both financially and in spreading interest in 

regression



IT IS THE POLICY OF THE SIG=MULTIPLE LINEAR REGRESSION AND OF VIEWPOINTS
TO CONSIDER FOR PUBLICATION ARTICLES DEALING WITH THE THEORY AND THE AP­
PLICATION OF MULTIPLE LINEAR REGRESSION. MANUSCRIPTS SHOULD BE SUBMITTED
TO THE EDITOR AS AN ORIGINAL, DOUBLE-SPACED TYPED COPY. A COST OF $1 PER
PAGE SHOULD BE SENT WITH THE SUBMITTED PAPER. REPRINTS ARE AVAILABLE TO
THE AUTHORS FROM THE EDITOR. REPRINTS SHOULD BE ORDERED AT THE TIME THE
PAPER IS SUBMITTED AND 20 REPRINTS WILL COST $.50 PER PAGE OF MANUSCRIPT.
PRICES MAY BE ADJUSTED AS NECESSARY IN THE FUTURE.
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