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ANNOUNCEMENT

Dear Sig Member:

The Multiple Linear Regression special interest group is scheduled
to meet in Washington, Tuesday, April 1 from 8:45 a.m. to 10:15 a.m.
The second meeting will be Wednesday, April 2 at 12:25 p.m. to 1:55 p.m.

As of yet, room assignment has not yet been given but should appear
in the AERA program.

Isadore Newman, Ph.D.
M.L.R.V.

IN/dt

P.S. We also expect to publish a post-convention issue of view points
containing all papers presented at the special interest group meeting.



1
Multiple I.lnecr P.cgrer.'ion Viewpoints
Vol. 5, No. 4, 1975

A FURTHER DISCUSSION OF ISSUES RELATED TO CAUSAL INFERENCE

by

J. F. Byrne, Westinghouse Electric Corp., Philadelphia, Pa.
K. A. McNeil, Educational Monitoring Systems, Ann Arbor, Michigan

ABSTRACT

The role of causality in scientific investigation, and in

particular as it relates to multiple regression needs to be further

discussed in this journal. Statistical pragmatism (as measured by

Rz) is seen as a necessary but not sufficient condition for ascer­

taining causality. A research strategy is described which will help

the researcher define the level of causal inference to which he is

entitled. Interpretations of R2 will vary depending upon the level

which the researcher has allowed.

In the November, 1974, issue of Viewpoints, Maola (1974b)

criticised an earlier article by Byrne (1974). In our reading of

the critique, we found that the author failed in making any of his•

points. We have attempted to make our comments comprehensible

without the reading of the two articles. In any case, understanding

the last part of this paper, starting with "Causality reconsidered,'

is not dependent upon the reading of the two papers.

An evaluation of Maola1s criticisms

The third purpose of Maola1s paper was, "to provide the

reader with a brief encounter with the limitations of R2 [Maola, 

1974b, p. 2]." Maola did not indicate the limitations of R2 as 
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Byrne used the concept. First, Byrne did not use a stepwise

procedure as implied by Maola. Attributing variance accounted for

to individual predictors is not a fruitful exercise, unless the

predictors are orthogonal as in the Byrne example. Even then,

discussing the total R2 would seem to be a more fruitful procedure

because the multivariate stance taken implies that it is realized

that several predictors may be needed to account for variance. If

the R2 for a particular variable is low, then it is likely to

represent a chance amount of variance. Figure 3 of the Byrne

(1974, p. 19) paper substantiates this assertion.

In the context of hypothesis testing, the only limitation of

R2 that we can think of is that it may be inflated due to the high

ratio of variables to subjects. In this case, either a correction

formula should be used (see Newman, 1973), or as Byrne (1974)

admonished, the solution be replicated.

(The assertion by Newman (1974) that the R2 will be higher if

only extreme cases are investigated is correct, but should not be

taken as a limitation of R2. Rather, the researcher should be

aware that a different population is being investigated, i.e.,

extreme scorers.)

The statement, "In most cases R2 provides an overestimate of

the predictor [Maola, 1974b, p. 2]," is, on the average, incorrect.

The veracity of the statement depends upon a number of conditions,

as depicted in Figure 1:

A) The regression procedure used to obtain R2,

1) additional R2 due to the included variable or,
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2) the decrease in R2 as a result of deleting a

variable from the full model;

B) R2 as an estimate of either,

1) unique variance accounted for by that predictor,

2) total variance accounted for by that predictor, or

3) total variance accounted for by that model; and

C) variance being estimated,

1) in the sample, .

2] in the population, or

3) in the true (causal) functional accounting of the

criterion.

Note that in very few cells of Figure 1 does the "R2 over­

estimate the predictor." We suspect that Maola was referring to

the A1B1C2 cell and thinking of only the first predictors that

enter the stepwise solution. To the best of our analytical think­

ing, cell A2B1C2 produces a good estimate. Information to the

contrary would be appreciated.

A fuller discussion of cell A2B1C3 may assist in the under­

standing of Figure 1. In this cell, a variable is deleted from

the full regression model, and the R2 loss is used as the

estimate of the unique criterion variance that that variable

accounts for in the true causative model. Now if all the true

causers are in the model, the R2 of the model will be 1.00 and

the R2 loss will be exact. Being highly unlikely that the true

causers are in the model, some of the unique variance attributed 

to a variable will probably be correlated with other variables
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C. A. Regression Procedure

B. R2 Estimating
Variance
being
estimated

Al. Forward
Stepwise

A2. Hypothesis
Testing

Bl. Unique criterion
variance account­
ed for by the

Cl.
Sample

All overestimate
except the last
which is correct

Exact

predictor
C2.
Popula­
tion

Most overesti­
mate, some may
underestimate

Good Estimate

C3.
True
causal
model

Overestimate, un­
less suppressors
operate

Overestimate,
unless suppres­
sors operate

B2. Total criterion
variance account­
ed for by the
predictor

—
Cl.
Sample

—
May be over­
estimated for
first few vari­
ables, under­
estimated for
last ones

Underestimates

C2.
Popula­
tion

Underestimates Underestimates

C3.
True
causal
model

Underestimates Underestimates

B3. Total criterion
variance account­
ed for by the
model (The R2 of
the full model
is referred to
for this section.)

Cl.
Sample

Exact Exact

C2.
Popula­
tion

Overestimates
(could under­
estimate in
unusual cases)

Overestimates
(could under­
estimate in
unusual cases)

C3.
True
causal
model

Underestimates Underestimates

Figure 1. Adequacy of R2 as an estimator of variance. 
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not already in the model. Hence the evaluation of "overestimate."

Now if some of those other causers operate as suppressor variables

the R2 loss will underestimate the unique variance accounted for.

The bottom row of Figure 1 (B3) may also need some more explana­

tion. Here the concern is how well the sample R2 of the model

estimates the R2 in the sample, population, and the true causal

model. If the stepwise procedure is allowed to take all its steps,

the two procedures are equally effective in their estimates. To

the extent that most stepwise applications are less well planned

(more variables are included with less justification) than are

the hypothesis testing applications, those stepwise applications

will overestimate the population R2 more so than will the hypoth­

esis testing applications (unless suppressors are operating which

the stepwise doesn't detect). Because of sample vagaries, either

procedure could produce a sample R2 which is lower than the

population R2 (B3C2).

The second objective of Maola (1974b) was to "provide the

reader with the value of Byrne (1974) for presenting a rationale

for reporting R2 [p. 2]." Maola does succeed in telling us twice

that Byrne did a good job.

The first objective is the one we are most concerned about--

"an understanding of the semantic difference of prediction and

causality [Maola, 1974b, p. 2]." Maola asserts that Byrne "delib­

erately or accidently misinterpreted causality as synonymous with

prediction [p. 2]," although no reference is made to the source of

that assertion. "The paper by Byrne (1974) seems to imply that if 
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R2 = 1.00, then since 100 percent of the predictor variance is

accounted for there is causality [Maola, 1974b, p. 1, emphasis

ours]." We propose that the above conclusion was not ascribed to

by Byrne, and was arrived at independently by Maola.

That prediction and causality were not equated should be

clear from the following quote: "An assertion that causality is

understood...can only be defended with a high R2, low probability

of chance occurrence, and replication [Byrne, 1974, p. 12]." The

implication is that a high R2 is only one of three necessary but v

not sufficient conditions for causality. "An R2 of 1.00 means

that 100% of the change in the phenomenon has been numerically

connected to changes that take place among the variables and

experimental manipulations of the scientist [Byrne 1974, p. 12]."

This statement further leads us to interpret Byrne as saying R2 is

basically a numerical artifact.

Causality reconsidered

We propose that all researchers are attempting to find "the

real cause." It is not the purpose of this paper to indulge in a

deep philosophical discussion of.causality, but simply to remind

researchers that this is what they are searching for and that MLR

can help them. (We hesitate to point out that Maola, in the pages

preceeding the Byrne article, himself demonstrated "a method of

using multiple regression for determining the effect of independent

differences of providing treatment [Maola, 1974a, p. 10]."

Perhaps the consideration of causality at three levels will be 
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of some assistance--"the first being what is really causing the

phenomenon, the second being what we think is causing the phenom­

enon, and the third being what our measurements and analysis of

variance state is causing the phenomenon [Byrne, 1974, p. 11]."

It is ironic that the first level is reality, but most

philosophers feel that we may never be sure that we have "the

cause." Therefore, we either theorize about the cause (level two),

or we go out into the real world and measure it (level three).

Theory cannot exist separate from statistical verification, but

statistical verification must be viewed as a necessary, but not

sufficient condition for verification at level two theory. Some

researchers would take a more empirical approach and eschew

theory altogether. We ourselves probably lean in that direction.

If we find a particular empirical fact (high R2) occurring time

and time again (replication) we would believe in it and readily

use that information, even before we were able to fit it into a

consistent theory. Have we not found the "cause" because we are

not able to explain "why," and put our findings into a coherent

context? If we are able to control the magnitude of the criterion,

then we in some semantic way have found a cause. (See Ennis,

(1973) for a very readable introduction to these notions.)

Perhaps using the word "cause" at the empirical level is a

mistake. What we are investigating are possible causers--they will

remain tenable until some competing explainer has eliminated them.

The trouble is that there are an infinite number of completing

explainers in the real world. Too often we view our research in 
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too short a time span and too narrow a spectrum. The research

strategy described in Figure 2 may assist in placing the notion of

causation in a better perspective. Note should be made that step-

wise regression has a role in Stage 1, but that hypothesis testing

regression is needed for Stages 2-5.

Stage

tn
o>

O r-t
•H
4-> 05
05

J-M
(/) 05

>

1. Data Snooping
(Hypothesis Gen.)

2. Hypothesis Testing

3. Replication

tn
“ 4. Manipulation (Dynamic

« Hypothesis Testing)
x k
Q > 5. Replication

Emphasis on
Low Probability

No

Yes

No

Yes

Yes

Emphasis on
High R2

Yes

No

Yes

Yes

Yes

Figure 2. Stages of a proposed research strategy and their
relative emphasis on probability and R2. (Adopted
from McNeil, Kelly, and McNeil, 1975.)

Notice in Figure 2 that the concept of R2 is not considered

to be as important as is the concept of probability at certain

stages. Research at Stage 1 would provide very little evidence

for causal interpretations. But as the line of research proceeds

successfully through the stages, more confidence is gained re­

garding causal interpretations. Notice that the last two stages

are concerned with predictor variables which have been manipulated,

whereas the first three stages involve data which has not been 
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manipulated. A researcher may gain some personal degree of belief

in causers in the first three stages, but not until successful

research has been performed at the last two stages should any

public belief be expressed.

The ideal strategy would be to perform successful research

starting at Stage 1, and to work up to Stage 5 one stage at a

time. An unsuccessful research finding at any point would force

one to reenter the process at Stage 1. In reality, most researchers

short circuit this process by starting at a stage other than

Stage 1.

Some consternating thoughts on which we would like some feedback

1. Variables which are not predictive in a static situation may

be predictive when manipulated.

2. Variables which are predictive in a static situation may not

be predictive when manipulated.

3. Variables which are manipulated may affect not only the cri­

terion, but other predictor variables, such that the criterion

is higher or lower than would be predicted from the static

situation.

4. Some kinds of subjects may not change on the criterion as a

result of manipulating a predictor variable (subject by causer

interaction?).

5. Criterion scores may increase as a result of manipulation, but

the construct hasn't increased (enter concepts of practice

effect, experimenter bias).
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6. Criterion scores may increase as a result of manipulgti-on—but

not enough to satisfy the researcher. And since the manipulated

variable has been manipulated to its limit, other causers must

be found to obtain the desired degree on the criterion.

REFERENCES

Byrne, J.F. The use of regression equations to demonstrate
causality. Multiple Linear Regression Viewpoints, 1974,
5(1), 11-22.

Ennis, R.H. On Causality. Educational Researcher, 1973, 26, 4-11.

Maola, J.F. The multiple regression approach for analyzing
differential treatment effects—the reversed gestalt model.
Multiple Linear Regression Viewpoints, 1974, 5(1), 7-10.

Maola, J.F. Causality and prediction, similar but not synonymous.
Multiple Linear Regression Viewpoints, 1974, 5(2), 1-2.

McNeil, K.A., Kelly, F.J. £ McNeil, J.T. Testing Research
Hypotheses Using Multiple Regression. Carbondale, Illinois:
Southern Illinois University Press, 1975.

Newman, I. Variations between shrinkage estimation formulas and
the appropriateness of their interpretation. Multiple Linear
Regression Viewpoints, 1973, 4(2), 45-48.

Newman, I. Dinner with Earl Jennings. Multiple Linear Regression
Viewpoints, 1974, 5(1), 40-43.



Multiple I li'Cur tu-nrcislon Viewpoints
Vol. 5. Ko’ 4- 19/5 11

A COMMENT ON POHLMANN’ S ALGORITHM FOR SUBSET SELECTION TN
MULTIPLE REGRESSION ANALYSIS IN

by

MaryAnn Ross and George P. McCabe
Purdue University

?ibs tract

Pohlmann's algorithm lor incorporating cost criteria into
the variable selection problem in multiple regression is examined.
It is pointed out that this algorithm has the property that the
choice of rhe optimal subset can be artificially changed by the
addition of another variable. An example is included to illustrate
this property.

Pohlmann (4) has presented an algorithm which incorporates cost

information into the selection of a subset of variables in multiple

regression analysis. Other approaches to this problem are given in (2)

and (3). We suggest that Pohlmann's proposed method of reducing the costs

and losses due to lack of predictability to a common scale of measurement

may not be the most desirable.

The loss function to be considered is
9

LI = kl^cl X costi^ + k2^C2 X

The weighting coefficients, c^ ent C2> suggested are

J
C1 D < I costl)-

1=1

and j
C2 - < y a-R,))'1

1=1
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where

J = the total number of subsets under consideration.

Using the above definitions, the revised costs and losses due to lack of

predictability and in turn the loss function for any particular subset are

dependent on the total number of subsets under consideration. In other words,

if an additional variable is added to or deleted from the original set of

predictor variables, the loss function for the original subsets can be

changed. This may, in fact, lead to the choice of a different subset from the

original collection as the optimal subset. Ideally, the relative loss

corresponding to any given subset, as compared to the loss for another given

subset should not be dependent on the cost and lack of predictability of

extraneous variables.

An Example

The following example uses data presented by Raid (1) with arbitrarily

assigned cost values. In Table 1 the data are analyzed as suggested by

Pohlmann. The chosen subset in this case is that containing predictor

variates 3 and 4. Now let us assume that we can measure the dependent

variable precisely for $100 per observation, but further, that $100 is the

maximum amount per observation that we are willing to spend. Table 2

contains the analysis for this problem. It can be seen that the chosen

subset in this case is that containing variables 1, 3 and 4. Even though the

added variable is not a feasible choice because of its high cost, the

preferred subset according to this method has changed to another subset of the

original set.
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An Alternative Method of Standardizing Cose and Validity Data

In order to overcome the above problem it is suggested that the weighting

coefficients in the loss function might be defined as:

c, = (c ) 1
1 max

where c^^, is the maximum cost which the investigator is prepared to spend, and

C£ = 1.0.

In this way, the revised values of both cost and loss due to lack of

predictability are between 0.0 and 1.0 and the combined loss value for any

subset will not depend on the number of subsets under consideration.

REFERENCES

1. Raid, A., Statistical Theory with Engineering Applications. New York:
Wiley, 1952.
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of the Royal Statistical Society, Series B, 30, 1968, 31-35.
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TABLE 1. ANALYSIS OF HALD DATA.

Cost
A

Revised
Cost

B
1-R2

C

Revised
Loss

D
B+D

E
B+3D

F

1 5 .052 .47 .118 .170 .406

2 5 .052 .33 .083 .135 .301

3 1 .010 .72 .181 .191 .553

4 1 .010 .32 .080 .090 .250

1,2 10 .104 .02 .005 .109 .119

1,3 6 .062 .45 .113 .175 .401

1,4 6 .062 .03 .008 .070 .086

2,3 6 .062 .15 .038 .100 .176
2,4 6 .062 .32 .080 .142 .302
3,4 2 .021 .06 .015 .036 .066*

1,2,3 11 .115 .02 .005 .120 .130
1,2,4 11 .115 .02 .005 .120 .130
1,3,4 7 .073 .02 .005 .078 .088
2,3,4 7 .073 .03 .008 .081 .097

1,2,3,4 12 .125 .02 ’ .005 .130 .140
NULL 0 .0 1.00 .251 .251 .753

TOTAL 96 .998 3.98 1.000
•
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TABLE 2. ANALYSIS OF HALD DATA WITH ADDITIONAL VARIABLE.

Revised 9 Revised
Cost Cost l-R2 Loss B+D B+3D

A B C D E F

5 100 .510 .00 .000 .510 .510
1 5 .026 .47 .118 .144 .380
2 5 .026 .33 .083 .109 .275
3 1 .005 .72 .181 .186 .548
4 1 .005 .32 .080 .085 .245

1,2 10 .051 .02 .005 .056 .066
1,3 6 .031 .45 .113 .144 .370
1,4 6 .031 .03 .008 .039 .055
2,3 6 .031 .15 .038 .069 .145
2,4 6 .031 .32 .080 .111 .271
3,4 2 .010 .06 .015 .025 .055

1,2,3 11 .056 .02 .005 .061 .071
1,2,4 11 .056 .02 .005 .061 .071
1,3,4 7 .036 .02 .005 .041 .051*

2,3,4 7 .036 .03 . .008 .044 .060

1,2,3,4 12 .061 .02 .005 .066 .076
NULL 0 .000 1.00 .251 .251 .753

TOTAL 196 1.002 3.98 1.000
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V.'!. i. x<>- *" S THE USE OF REGRESSION ANALYSIS IN RODENT

MATERNAL BEHAVIOR: MULTIPLE REGRESSION'S
ANSWER TO THE AGE CONFOUND 

by

Joel Burkholder, David Kapusinski & Robert Deitchman
Psychology Department

The University of Akron

It has "been a popular convention in developmental psychology

to consider development as a continuous process in which the or­

ganism is observed to change across a given interval of time. While

this conceptual scheme has had much favor (Wholwill, 1970), the

researcher investigating developmental change often fails to

consider the importance of this convention by applying ineffective

statistical procedures. Some examples of this kind are also found

in the animal literature concerned with maternal behavior and early

experience ( Ader and Deitchman, 1970; Ader and Deitchman, 1972;

Grota and Ader, 1969; Priestnail, 1973; Wehmer, 1965). In most

instances the researcher either; a) sums across all repeat

observations, or more importantly, b) arbitrarily collapses sets

of repeated observations based on an a-priori decision. In turn,

the data is then cast into a conventional analysis of variance for

repeated measures design which yeilds its particular main effects,

interactions and error terms. Likewise, in terms of analysis of

variance, each main effect, whether a treatment or repeat, and

interaction is considered unique and uncorrelated with the other 
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main effects and interactions. However, if we conceptually assume

a continuous developmental process that interacts with the

particular manipulation in question then this procedure ignores

the possibility that a correlation exists between the treatments

and repeated observations that cannot be considered unique.

Simply stated, variance associated with a repeat or age Main effect

or age by treatment interaction is conceptually meaningless.

Secondly, if we apply a categorical procedure (i.e., a conventional

ANOVA design) on continuous data we are also violating our assumption

of continuity of development. This would also be the case if we

applied a trend analysis procedure.

In applying a conventional ANOVA design to developmental data

we are asking a research question which may not correspond with the

statistical question being asked. For example, assume the experi­

menter wants to test the following research question:

Research Hypothesis 1A: A significant overall difference
between treatment "a" mothers and treatment "B" mothers exists,
taking into consideration repeated measurements.

If we apply a conventional ANOVA for repeated measures design

the question becomes:

ANOVA Hypothesis IB: A significant difference exists between
treatment "A" mothers and treatment "B" mothers over and above
repeats and treatment by repeats interaction.

It is quite apparent that the experimenter has asked for one 

answer but received a completely different one
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The researcher may also hypothesize that the two treatments

will progressively change the mothers' maternal response to their

offspring across time. Let us suppose that mothers "A" will

sustain a high level of mother-offspring relationship while mothers

"B" become progressively altered yielding a decline in the mother­

offspring relationship. The experimenter may ask the following

question:

Research Hypothesis 2A: That a progressive difference in
the mother-offspring relationship exists between treatment
groups across repeated measures.

What the experimenter really tests with a conventional ANOVA

design is:

ANOVA Hypothesis 2B: That .a difference exists common to the
treatments by repeated measures interaction over and above
variance associated with the treatment and repeats main effects.

This second ANOVA hypothesis indicates several logical errors

that are in violation of the convention that development is a

continuous process. Experimenters often falsely assume that the

variance that composed the repeat or treatment main effects will

also be involved in the interaction term common to both; this is

not the case. In an analysis of variance design each main effect

and interaction is orthoginal to each other. If this be the case,

then our convention of developmental continuity is being violated.

Variance uniquely associated with a repeats main effect and

developmental change in this case would be confounded.
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However, if we were to apply a multiple regression approach

(McNeil, Kelly and McNeil, 1973), we could avoid these problems

by analyzing directly the functional differences between our two

reatments while talcing repeated measures into account. In terms

of the two research hypotheses mentioned above, a regression

hypothesis could be formed that would more closely reflect the

researcher's original intention:

Regression Hypothesis 1C: ' That a significant difference exists
between treatment "A" and "B" mothers across continous repeated
observations

and,

Regression Hypothesis 2C: That a significant difference exists
between the two treatment conditions across continuous repeat
observations (i.e., slopes) over and above what is accounted
for by initial group differences (i.e., intercepts).

The following experiment (Kapusinski, 1972) was analyzed using

a conventional analysis of variance for repeated measures (BMD08V)

and Multiple Linear Regression (LINEAR) for purposes of comparing

the two techniques.

Method

Thirty female C31 mice were randomly assigned to two community

cages (15 x 10 x 6 inch) until the experimental treatment was

initiated. Males were placed into these cages to mate, and then

were removed after one week. One group of females was randomly

assigned to the experimental condition and subjected to handling 
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until parturition. "Handling" consisted of taking the females

from their home cages and individually placing them into small

closed containers for 15 minutes in the morning and evening.

Control subjects were not handled. About 2% weeks into the

handling procedure, the visibly pregnant females from both treatment

and control groups were moved to individual cages where bedding

and nesting material was provided.

At parturition, the offspring litters were culled (to 3 males

and 3 females) and fostered to mothers of the same prenatal condition

or cross fostered to mothers of the opposite condition. However,

for purposes of comparison, only the fostered experimental and

control groups are analyzed here. Maternal behavior categories

devised by Deitchman (1968) were made on an Esterline Angus 20

pen recorder twice daily (at 7-10 A.M. and 7-10 P.M.) for the first

21 days postpartum. To simplify further, only two behavioral

categories (i.e., nesting behavior and neonatal grooming) will be

reported.

Description of Variables

Yl,2 = the criterion variables of nesting behavior and neonatal

grooming.

pups

X1 = 1 if experimental group of handled mothers fostered with

from other handled mothers; zero otherwise.
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X = 1 if control group of nonhandled mothers fostered with
2

pups from other nonhandled mothers; zero otherwise. .

X = continuous variable of days ranging from 1 to 21.
3

X4 = (X-l * X3) days for Xj_

Xc = (X„ * X_) days for X

X = (X * x„)6 1 z

Where:

Y = criterion score described
1,2

an-ar = partial regression weights
U 6

U = Unit Vector

X - X = variables previously defined
1 6

E = (Y - Y) error

Research Hypotheses

Research Hypothesis 1: That a significant difference exists
between experimental and control mothers across days.

Full Model Y. = a U + a X + a X + aX + aX +E
1,2 0 11 24 32 45

Restricted Model 1. Y = a U + E
1,2 0

Research Hypothesis 2: That a significant difference exists
between the slopes of the experimental and control groups
over and above what is accounted for by the intercepts.

Restriction (a = a )
1 3

Restricted Model 2: Y, o=aU + aX +aX + E
0 11 3 2

Research Hypothesis 3: That a significant difference exists
between the intercepts of the experimental and control groups
over and above what is accounted for by slope differences.
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Restriction (a = a )
2 4

Restricted Model 3: Y = a U + a X + a X +E
1,2 0 2 4 45

Note that these last two hypotheses could use a similiar set

of restricted models for testing the slopes and intercepts

respectively:

Restriction (a, = a = a ) where X + X = X
13 5 12 3

Restricted Model 2a: Y =aU+aX +aX +aX +E
1,2 o 11 32 53

and.

Restriction (a = a = a )
2 4 5

Restricted Model 3a: Y = a U + a X + a X +aX +E
1,2 0 2 3 4 5 5 3

Results and Discussion

A conventional ANOVA for repeated measures suggested no dif­

ferences between experimental and control mothers for the treatment

or repeat main effects on nesting behavior (F= .26, df= 1,8 p=NS;

F= 1.04, df=20,160 p>.l, respectively). However, a significant

treatments by repeats interaction was indicated (F= 2.06 df= 20,

160 p<.005). The experimenter, at this point, is faced with a

problem; both main effects indicated no differences, yet the

repeats by treatment interaction suggests differences of one kind

or another are present across time over and above all other factors.

For the developmentalist attempting to investigate developmental

change, both overall mean differences or interactions unique to 
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to these overall mean differences may actually be of little real

importance if the particular behavior under study is epigentic

in nature.

A multiple regression analysis of the overall differences

between the two conditions on nesting behavior, taking repeats into

consideration, suggested no differences (Model 1; F= 1.66 df= 4,124 

p<.25>.l). Further, a comparison of the two respective slopes

(over and above initial group identity) indicated that the mothers 

nesting behavior progressively changed in relation to their offspring 

(Model 2; F= 3.26 df= 2,124 p<. 05} . 025) . Intercepts were found

to have nominal differences (Model 3; F= 2.35 df= 2,124 p<G25).l).

It becomes evident that the regression approach yeilds information

which is more readily interpretable than the conventional analysis

of variance. By using a regression approach, variance correlated

with observed ongoing development need not be partialled out of

the analysis; instead, the developmentalist is able to identify

the differences between the two treatments progressively changed

throughout the observational interval. One may also recognize that

variance associated with a repeats main effect in a conventional

ANOVA design is artifactual in nature, because the variance

associated with individual differences, observational method used,

the process of development are confounded. In studies concerned

with developmental differences or change, it cannot be assumed 
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that variance associated with repeated observations can be meaning­

fully separated from observed changes in behavior.

In the second behavioral category i.e. neonatal grooming, the

treatment main effect suggested a very nominal trending toward

significance (F= 2.09 df=l,8 p<.25>.l) with no differences indicated

for the repeats main effect (F=.43 df=20,160 p=NS) or treatment

by repeats interaction (F= .67 df-20,160 p=NS). In this case

regression analysis did not suggest an overall difference between

the two treatments with repeated observations considered (Model 1;

F= 1.11 df=4,124 p<.25). A test of the slopes also yeilded no

differences ( Model 2; F= .39 df=2,124 p=NS) while the test of

intercepts did (Model 3; F=3.54 df=l,124 p^.l/>.05), suggesting

that the initial differences between the two conditions were

accounting for most of the variance. For neonatal grooming, the

conventional analysis of variance treatment main effect only

partially estimated the differences obtained by the regression

test of the intercepts.

The impetus of this paper has been directed mainly toward a

logical, and meaningful, way to analyze continuous developmental
«

change. The second of the two examples given indicated that both

ANOVA and regression accounted for some of the information in a

similiar fashion. But the main advantage of regression over ANOVA 

was in the first example where the regression indicated a functional 



25

change, a finding not collaborated by comparing mean differences

using the conventional analysis of variance approach. One may

suggest a trend analysis be the logical choice instead of a

conventional ANOVA design. This would be an improvement, however,

trend analysis utilizes categorical data making it less than

optimal if we are to abide by our convention of developmental

continuity. Multiple regression, in this case, becomes our most

effective tool for dealing with experimental situations having

continous developmental data.

A twofold recommendation to the developmental psychologist

using repeated measurements across a given interval of time would

follow; 1) that the investigator be aware of how to best reflect

the research question in the statistical analysis, and 2) to

entertain the use of mulitple regression as a principle method of

preserving the continuity of developmental changes.
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ABSTRACT

In a recent issue of Viewpoints, Houston and Ohlson (1974)

presented five issues in the teaching of MLR which they felt should

be covered in an MLR course, but were not covered in the texts by

Ward and Jennings (1973) and Kelly, Beggs, McNeil, Eichelberger,

and Lyon (1969). (A major revision of the latter text, McNeil,

Kelly, and McNeil [in press] does not cover these topics either.)

We disagree with Houston and Ohlson regarding basic courses

in MLR on the basis that they (as well as many other statisticians)

fail to make distinctions between behavioral science researchers

and statistics majors. Indeed, past teaching has led to inadequate

understanding of hypothesis testing and to the simple minded re­

search approach which Snow (1974) so well criticized. To be sure,

statistics majors need matrix algebra, orthogonal coding, etc.,

but our experience with non-statistics majors is that overly

mathematized basic design courses lead to blind learning of

algorithms with little comprehension of how MLR and other statisti­

cal procedures can be used in research decision making. We would be

in favor of an AERA pre-session wherein the issues raised by Houston

and Ohlson (and criticized in detail below) are more deeply dis-

cussed--from an hypothesis-testing point of view.
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Issue 1—MLR as a generalized procedure

Since many authors have shown how ANOVA procedures can be

tested with MLR, it is not clear how "ANOVA procedures are more

sensitive and efficient" (Houston and Ohlson, 1974, p.42). If one

is producing the answers by hand, ANOVA may be easier. Certain

canned computer programs can be used more efficiently, but that

is a computer interface concern. Furthermore, most canned ANOVA

programs do not answer some/all of the questions the behavioral

scientist has in mind. Even we have been known to run canned

ANOVA programs. But we knew that the programs existed, that they

would answer the specific questions we had, that it would take

us less time to use these programs than to use MLR, and most

importantly we already knew how to run those programs. You see,

we had the (mis)fortune of learning computer programming and

learning about a good statistical package (Veldman, 1967) before

we learned multiple linear regression.

We would not necessarily recommend that a behavioral scientist

who already knows MLR and how to run an MLR computer program

should also learn to run an ANOVA program. He can answer all his

"ANOVA questions' with the one tool, MLR. But we disagree little

with Houston and Ohlson (1974, p.42) on the following point: "We

recommend that the behavioral scientist develop expertise in both

pproaches and, armed with knowledge of their interrelationships,

the research questions to dictate which approach should be

taken. Unfortunately, most ANOVA procedures are testing non-

nal questions which do not produce definitive conclusions
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(McNeil et al., in press). Perhaps the only justification for

learning ANOVA is to be able to read some journals.

Research Hypothesis I: A course in MLR coupled with a research

design course will generate better researchers than will a course

in ANOVA coupled with a research design course.

Issue 2--Use of matrix algebra in MLR

We can agree that most behavioral scientists should develop

skills in other multivariate procedures, but the question is to

what depth. Is it not possible that the conceptual value of

canonical analysis can be appreciated without knowing how to

invert a matrix? Understanding the questions that a statistical

technique can answer, and being able to properly interpret computer

output seem to circumvent the necessity of knowing matrix algebra.

One of the authors (K. McNeil) taught MLR for six years to

some 22 classes without using matrix algebra, and he felt that the

students had a good grasp of the notions of MLR. Many of these

students went on to a multivariate course (where matrix algebra

was used), but we suspect that a heavy dose of matrix algebra in

the MLR course would have turned many of them off. We fail to see

how, to the non-mathematical expert, matrix algebra is elegant,

and how scalar algebra is involved and messy.

Research Hypothesis II: The matrix approach to MLR will be rated

as more "involved and messy" than will the vector approach by more

than 75% of the members of SIG-MLR.
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Issue 3--Redundant models in MLR

As believers in the Law of Parsimony, we can't quarrel too

much with the concern of keeping redundant vectors in regression

models. But linearly independent vectors don't bother us too much

because (1) we use an iterative computer program, (2) linearly

dependent vectors become useful in making certain restrictions--

and in determining the number of linearly independent vectors in

certain complex models, and (3) we abhor rules of thumb. Once the

concept of linear dependency is grasped, one should be able to

determine the number of linearly independent pieces of information

in the model (the degree of parsimony). The availability of all of

the group membership vectors allows for a restriction to involve

any one of them. For instance, given these two non-orthogonal

research questions: 1->a > 1*B  + ^C> ^A > L*B  (using group C to help

estimate within variability) the approach proposed by Houston and

Ohlson (1974) would leave the behavioral scientist in limbo, we

suspect.

We don't know what alternative procedure Houston and Ohlson

(1974) are suggesting. If they are suggesting that linearly

dependent vectors be omitted, we would not be too concerned. But

we would strongly argue against using the (l,0,-l) coding scheme

(Lewis 5 Mouw, 1973) or an effect scheme (see Kerlinger and

dhazur, 1973, for details). There is absolutely no conceptual

in the (l,0,-l) scheme, and the effects scheme requires all

hogonal effects to be coded (even though those effects may not

be of interest to the behavioral scientist). At any rate, the
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notion of linearly independent vectors is used implicitly in

ascertaining the number of effect vectors one must use.

Research Hypothesis III: The issue of redundant models in MLR is

not an overpowering issue with SIG-MLR members.

Issue 4--0rthogonal coding

The defense of orthogonal coding presented by Houston and

Ohlson is that it is easier when computing without a computer.

True, but most behavioral scientists have access to a computer

(particularly if they are going to be interested in multivariate

questions). We don’t know of any researchers who calculate MLR

problems without a computer. Orthogonal coding has several bad

aspects. Additional questions are tested by the behavioral

scientist when in fact he may not have wanted to test those

questions. (He may have been interested in only a few of the

orthogonal questions.) The rule of thumb that the one-way £ be

significant before post hoc comparisons can be made has never made

any sense to some behavioral scientists who have specific hypoth­

esis in mind. By the way, does any post hoc procedure allow for a

directional interpretation, or do the statistics simply say that

there is a difference between these two groups, or combination of

groups? An anecdote for thought: an ANOVA trained person recently

used the McNeil et al. (in press) text in her class. Since the

section on orthogonal coding is nonexistant, she decided to develop

the material for her class. Unfortunately, according to her, she

developed incorrect models for the class. The point is that the
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(1 0) vectors can be used to test any of the post hoc comparisons

(Williams, 1974; Kerlinger 5 Pedhazur, 1973), and therefore special

vectors do not need to be used. In fact, even well-trained

statisticians can get confused by such special vectors.

Research Hypothesis IV: The research hypothesis being tested is

more clearly understood by the typical behavioral scientist when

(1,0) vectors are used than when orthogonal coding vectors are used.

Issue 5--Data analysis and MLR

The writers concur with Houston and Ohlson (1974), "that MLR

will be relied on by the behavioral scientist more as a data

analytic tool, often suggesting ideas for subsequent research,

rather than as a procedure for analyzing a classical design."

The kind of research strategy depicted in McNeil et al., (in

press) and discussed in the Byrne and McNeil (1975) article

in this same issue certainly calls for such activity.

We repeat that we do feel that MLR will be used by more and

more behavioral scientists and that the technique will enable them

to more appropriately answer their specific research questions. We

are therefore concerned that behavioral scientists develop a

conceptual understanding of MLR as it is applied to hypothesis

testing. We contend that the first four issues raised by Houston

Ohlson are more concerned with mathematics and statistics per

n with the application of MLR to a research strategy. We

rather ignore these issues in an introductory course and

concentrate on understandings that will facilitate the answering
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of research questions.

To moderate and clarify the proceeding, we believe one should

be aware of two audiences (1) applied statisticians and (2) educa­

tional researchers. We believe MLR Viewpoints has admirably served

the first audience, but to a large degree has slighted the second

audience. We may have passed the need to show solely how MLR

answers traditional ANOVA questions (and satisfy statisticians)

and need now to present MLR models which cope with the complex

problems associated with molar problems presented by Snow (1974).

REFERENCES

Byrne, J.F. and McNeil, K.A. A further discussion of issues
related to causal inference. Multiple Linear Regression
Viewpoints, 1975, 5(4).

Houston, S.R. and Ohlson, E.L. Issues in teaching multiple linear
regression for behavioral research. Multiple Linear Regres­
sion Viewpoints, 1974, 5(2), 41-44.

Kelly, F.J., Beggs, D.L., McNeil, K.A., Eichelberger, T. and
Lyon, J. Research Design in the Behavioral Sciences:
Multiple Regression Approach. Carbondale: Southern Illinois
University Press, 1969.

Kerlinger, F.N. and Pedhazur, E.J. Multiple Regression in
Behavioral Research. New York: Holt, Rinehart, and Winston,
1973.

Lewis, E.L. and Mouw, J.T. The use of contrast coding to simplify
anova and ancova procedures in multiple linear regression.
Multiple Linear Regression Viewpoints, 1973, 4(2), 27-44.

McNeil, K.A., Kelly, F.J. and McNeil, J.T. Testing Research
Hypotheses Using Multiple Linear Regression. Carbondale:
Southern Illinois University Press, in press.

Snow, R.E. Representative and quasi-representative designs for
research on teaching. Review of Educational Research, 1974,
44, 265-291.



34

Veldman, D.J. FORTRAN Programming for the Behavioral Sciences.
New York: Holt, Rinehart, and Winston, 1967.

Ward, J.H. and Jennings, E.E. Introduction to Linear Models.
’Englewood Cliffs, N.J.: Prentice-Hall, 1973.

Williams, J.D. Regression Analysis in Educational Research. New
York: MSS Information Corporation, 1974.



35

Multiple Linear ncgro-Sion Viewpoint:
Vol. 5, No. 4, 1975

A DISCUSSION OF COMPONENT ANALYSIS:
ITS INTENDED PURPOSE, STRENGTHS, AND WEAKNESSES

Isadore Newman
The University of Akron and

Carole Newman
on Leave from Akron Public Schools

Presented at the 1975 American Educational Research Association;
Multiple Linear Regression Special Interest Group

* tie would like to acknowledge and uubliclv thank Dr. Keith
McNeil for his critical reading of this manuscrint.



36

The purpose of this paper is to examine a statistical pro­

cedure which is referred to as commonality analysis, elements analy­

sis, or component analysis. This procedure was developed in the

late 60's to aid researchers in explaining and interpreting the

results of statistical analysis in which the predictor variables

are not independent (nonorthogonal) .

Frequently investigators are interested in having their

research applied to practical (natural) situations. For this reason,

one has to delineate the relationships between the predictor variables

and the criterion. If the variables are interrelated, such as intel­

ligence, socio-economic status, race, etc., one has difficulty in

accurately estimating the relative importance of each predictor

variable to the criterion. Darlington (1968), Mood (1969, 1971),

McNeil, Kelly, McNeil (1975) Kerlinger and Padhazur (1973) clearly

delineate the various aspects of this problem.

Ex post facto research has greatly suffered from the limitation

that the results are subject to various interpretations. This is

true because one cannot state the relative importance of the predic­

tor variables to the criterion.

Component analysis (Cp) is a procedure which divides the Pr0

P n of variance accounted for into common and unique variance.

que variance (Uq) is the proportion of variance attributed

P ticular variable when entered last in the regression equatio

what Botenberg and Ward (1963 ) and McNeil, et al. (1975) 
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call the proportion of variance attributed to a particular variable,

above and beyond the variance accounted for by the other independent

variables in the equation (analysis of covariance, semipartial

correlation). Therefore, the unique variance accounted for is repre­

sented by a full model which contains all the independent variables

tested against a restricted model in which all the predictor variables

are presented, except for the one(s) for which the unique variance

is to be estimated. Unique variance is symbolically represented as:

Uq(5) = R^f y-123456 - R^r) y-12346

where: Uq(5) = the unique variance of y-^ that can be
attributed specifically to variable 5,
independent of what is being measured
by variables 1, 2, 3, 4, and 6.

2 2= R of the full model

r2 . = R^ of the restricted model
(r)

Common variance (Cv) may be conceptually thought of as the

degree the overlap of correlated variables are predictive of the

criterion. It must be independent of unique and other common

variance.

In an example with three predictor variables, there are three

sets of unique variance Uq(2)' Uq(3)"’

order commonality i Cv .. , Cv ., Cv Jt_ (1/2) (1,3) (2,3 )J
commonality variance Cv2 3) !

three sets of second

and one third order

The number of independent components in a component analysis 

procedure can be determined by the equation:

2N-1

where: N = number of predictor variables 
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Therefore, if one had four predictor variables, the number of CornDO_

nents would equal: 4 =
J. ““ i- -J

Variance estimates would

have to be calculated for the analyses. Since there are four pre­

dictor variables, there will be four components of unique variance

(Uq) , six components of second order common variance, four components

of third order common variance, and one component of fourth order

common variance.

The number of second, third and fourth order variance can be

determined by the following formula:

N'NCn = —---- r—n! (N-n) 1

where: N = number of predictor variables
n = number of variables taken at a time

NCn = number of combinations of N objects, taking
n number at a time, independent of order

In the following example there are four predictor variables

(N - 4) . The number of second order commonalities (n = 2) can be

determined by:

NCn = —N! = 4x3x2xl = g
n!(N-n) ! 2xl(2xl)

The number of third order commonalities (n=3) can be determined by:

NCn = N! = 4x3x2xl = .
n'(N-n)! 3x2x1(1)

The number of fourth order commonalities (n=4) is obviously 1.
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The fifteen components are:

Uq(l) C(l,2) C(l,2,3)
Uq(2) C(l,3) C(l,2,4)
Uq(3) C(l,4) C(2,3,4)
Uq(4) C(2,3) C(l,3,4)

C(2,4)
C(3,4) C(l,2,3,4)

In this manner, one can separate the components of variance

into mutually exclusive components that are estimates of unique and

common variance. These components are additive and when summed will
, 2equal the total proportion of variance accounted for by the of

the full model.
' 2Mood (1969) developed a rule for determining the R necessary

s
for calculating unique and common components of variance. The

rule is:

Develop products of the variables being considered.

For example, if one is interested in the Uq(X^) in an

example with four predictor variables (X^, X^< X^), first

subtract that variable of interest (XjJ from one, multiplied by

a -1, and the other variables in the equation

rule: -Kl-Xj X2, X3, X4 =

-x2x3x4 + X1X2X3X4

Next, take the variables that are a product of the expansion and

calculate the R2 that is indicated by each set (separated by + and 

- signs)

UqCXjJ = -R2y-234 + R2yl234
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Similarlyt
the unique variance attributed to X2 would be obtained 

by:
rule: -1(1-X2)X^XgX4 =

"X1X3X4 + x1x2x3x4
Uq(X2) = -R2y-134 + R2yl234

Uq(X3) :
rule: -1(1-X3)X1X2X4

"X1X2X4 + X1X2X3X4

Uq(X3) = -R2y*124  + R2yl234

Uq(X4):

rule: -1(1-X )X X XJ J_ £ J

-X1X2X3 + X1X2X3X4
Uq(X4) = -R2yl23 + R2yl234

In this example there are six second order, four third order, and

one fourth order commonalities. The rule for calculating these is

ly the same as it is for the unique components. The variables

P ific interest are placed in parentheses and subtracted from

The other variables are multiplied by the product of the

riable(s) in the parentheses and a -1.

mples of the second order, two of third order, and the

fourth order commonalities win be presented.

C(l,2) :

tUle: ~lfl-y \1 x1) (1-X )XqX =z 3 4
(X3X4 Xiy3X4 ~ X2X X + X X X3X ) =

-Xv. 1234

3X4 + M3x4 + x2x3x4 - X1X x x
• • C(1,2)=..R2. ,. 2 9 9 ,R y 34 + R2yl34 +R2y- 234 - R2yl234
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C(2,3) :

rule: -1 (1-X ) (1-X3)=

"X1X4 + X1X3X4 + X1X2X4 " X1X2X3X4
/ C(2,3) = -R2yl4 + R2yl34 + R2yl24 - R2yl234

C(l,2,3) :

rule: -Kl-Xj) (1-X2) (1-X3)X4 =

-x4 + xTx4 + x2x4 - xxx2x4 + x3x4 - xxx3x4

-x2x3x4 + xxx2x3x4

C(l,2,3) = -R2y4 + R2yl4 + R2y-24 -R2yl24

+R2y 34 - R2yl34 - R2y-234 + R2y-1234

C(l,2,4):

rule: -1 (1-X-jJ (1-X2) (1-X4) X3 =

-x3 + xxx3 + x2x3 - x1x2x3 + x3x4 - X]/3X4

-X2X3X4 + X!X2X3X4

C(l,2,4) = -R2y-3 + R2yl3 + R2y23 - R2yl23

+ R2y34 - R2yl34 - R2y-234 + R2y-1234

C(l,2,3,4) :

rule: -1 (1-X^ (1-X2) (1-X3) (1-X4) =

— 1 + Xj_ + X2 Xj^X2 +X3 “ Xj_X3 - x2x3 + x^x2x3

+ x4 + X|X4 ~ x2x4 + XTX2X4 — X3X4 + x-^x3x4

+ X2X3X4 - X1X2X3X4

C(l,2,3,4) = R2y-1 + R2y-2 - R2y-12 + R2y3 - R2y-13
• •

- R2y-23 + R2yl23 + R2y 4 + R2yl4

- R2y-24 + R2y-124 - R2y-34 + R2yl34

+ R2y-234 - R2y-1234
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(Please note, when a one is by itself in the expansion, it is

ignored in determining which RZs should be calculated.)

As in the example, when there are four predictor variables,

there will be fifteen components. One can easily see the horendous

number of R2s that have to be calculated for just four predictor

variables in the full model. However, in using multiple regression,

the investigator frequently has many more than four predictor

variables. Therefore, the number of components can easily become

impractical to handle. (This problem will be discussed later.)

For further details in how to calculate component analysis,

see Mood (1969, 1971), Kerlinger (1973) and Houston and Bolding

(1975) .

One of the advantages of traditional factorial design is that

in a four factorial design (ABCD factors) one can easily ascertain

the independent variance accounted for by each factor in predicting

the criterion. This is done by simply dividing the sum of squares

for that particular factor by the total sum of squares. This proce­

dure would also be used to obtain the independent proportion of

variance accounted for by the interactions. However, one of the

underlying assumptions of the traditional factorial design is that

the factors are orthogonal. It also assumes among other things,

equal number of subjects or proportionality of cells.

If the components in the analysis are independent of each

other, that is the A,B,C,D, AXB, AXC, BXC, BXB, etc. are independent,

n the F tests for each of the fifteen components are independent.

Therefore, the probabilities associated with each of the F's are

theoretically accurate and no adjustments for non-independent F's are

required.
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When dealing with research in natural settings, one rarely

has the control necessary to obtain data to meet these assumptions;

however, when possible, one should try.

If one has a variety of nonorthogonal predictor variables and

a variety of F-tests are used to determine if any one or set of

these predictor variables are significant, then one is violating

the underlying assumption of independence. Therefore, the proba­

bility associated with the F-test is inappropriate. That is, one

would actually find more significant F's than is indicated by the

probability associated with that specific F. Component analysis

divides the sum of variances into independent partitions. Therefore

the F of any of these partitions is independent.

Similarly, if one considers the predictor variables as factors

in a factorial design, then component analysis produces a set of

components that are representationally like the components of the

traditional factorial analysis. For example, in a two factorial

design, the components are:

A main effect
B main effect
A x B interaction

In a regression equation in which two predictor variables are

predicting Y a component analysis would produce:

UqCxp

Uq(X2)

C(X1,X2)

With all techniques, one must be aware of the limitations

so that the technique can be employed most efficiently. The

following are some of the limitations one should be sensitive to
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when using component analysis:

‘ 1. An integral part of component analysis is the concept

of Uo. Uq is operationally defined as.

variance accounted for by a variable when entered
last in a multiple regression equation.

Therefore, the Uq depends upon and is affected by the variables that

are already under investigation. Even though the Uq is independent,

in the set of variables for that sample, the variable is not independent.

2. As the number of predictor variables increases, the number of

components generated increases drastically. So, if one has a large

number of predictor variables, it may become impractical to calculate

component analysis.

3. As the number of predictor variables increase, the number

of higher order commonality components also increase. Just as it is

difficult to interpret higher than third order interactions in

traditional analysis of variance, it is also difficult to interpret

higher than third order commonalities.

4. In examining some of the formuli for calculating the

commonality components, one becomes sensitive to the possibility that

some of the components can easily account for a negative proportion of

variance. When this situation is encountered, it becomes very

ifficult to interpret or make conceptual sense out of the analysis-

With any non-manipulative research technique, "causation ca

not be assumed, a causal relationship can only be assumed in situations

that have a true experimental design, i.e. a situation in which the

experimenter has total control of the independent variable. Since 
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one of the major purposes for calculating component analysis is

to attempt to improve the explanation of ex post facto research

designs, this can lead one to mistakenly believe that the Uq

accounted for by an independent variable with a criterion is of

a causal nature.

6. Mood (1971) stated an important limitation one should

consider. The unique variance (Uq) accounted for by an independent

variable can change radically from situation to situation. However,

the Uq attributed to a factor that the variable is a part of is

not likely to change. Therefore, Mood suggests that one should

group the variables based on the underlying concept they seem to be

measuring. This would produce a more stable estimate. This grouo process

will also have a side benefit of reducing.the total number of predictor

variables which will make the component analysis much more manageable.

However, if one uses the procedure suggested by Mood, the weighting

of each variable becomes a problem. Do the factors account for the same

100 percent of the proportion of variance accounted for when each

variable is used separately? If not, one is loosing possibly significant

information. Finally, it is difficult to decide on which variables

should go together. Quite often, variables that look as if they are

measuring the same underlying construct, are not.

Factor multiple regression is a procedure that may circumvent

some of these problems. ^Massy, (1965), Duff, Houston and Bloom

(1971), Connett, Houston and Shaw (1972) , Newman (1972) J It is a

method that enables one to empirically determine the factors with

which the variables are associated. If one calculates the factor



46

scores for each factor, and uses an orthogonal rotation, such as

Varimax, then by definition, the predictor set of variables would

be orthogonal. Then one can easily determine the relative impor­

tance of each factor by examining its beta weight.

Duff et al. (1971) found that principle component factor

analysis with Varimax rotation and an eigen value of one as a

factor cutoff, produced empirically determined factors which were

very similar to the factors they subjectively determined. These

subjective factors were formed by selecting subsets of their

predictor variables which seemed to be measuring the same under­

lying constructs. (This is similar to what was suggested by

Mood, 1971.) The advantages of using empirically determined

factors as predictor variables in a regression equation are discussed

by Connett et al. (1972) and some limitations of this procedure

are discussed by Newman (1972) .

It is the authors' opinion that the factor regression

approach may be more appropriate than component analysis where one

is interested in determining the unique variance accounted for,

especially when the number of predictor variables is relatively

large and there are a minimum of ten subjects for every variable.

However, if one is interested in the commonality, the factor

regression procedure is not appropriate. In this case, if one has

a large number of variables and subjects, it is possible to use

actor analysis with oblique rotation. This procedure will

nse the large number of variables into factors which can be

used as a new set of predictor variables. Since these factors may

que (correlated) one may then wish to do a component analysis
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which will yield estimates of the unique and common variance attri­

buted to the factors. Obviously, the oblique solutions lack many

of the desirable characteristics which make the orthogonal solution

easier to interpret. However, there are times that a researcher

may be interested in the common proportion of variance attributed

to factors which are theoretically and empirically related.
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