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MULTIVARIATE TECHNIQUES FOR MEETING FEDERAL
REQUIREMENTS CONCERNING VALIDATION

Francis D. Bertram, Marquette University
Kathleen M. Roblee, University of Wisconsin-Oshkosh

Glenn E. Tagatz, Marquette University

ABSTRACT

The purpose of this study was to use multivariate techniques in
a federally-regulated validation study, and to compare the results
obtained from zero-order correlations and multiple correlations with
the results obtained using factor scores and canonical correlation.
The subjects consisted of fifty-one individuals who were selected
from five hundred thirty-two applicants for the position of patrolman.
The investigation revealed that multivariate techniques yield higher
correlation coefficients than zero-order correlation or multiple
correlation in a number of instances, and thus multivariate techniques
may be the method of choice for certain federally-regulated validation
studies.

INTRODUCTION

Tests and other assessment instruments that possess appropriate

psychometric characteristics can reduce discrimination in the selection

of employees (Anastasi, 1976). Yet, discrimination in hiring can be

perpetuated by inappropriate tests (Griggs vs. Duke Power Company,

1971; Morrow vs. Crisler, 1971; Castro et al. vs. Beecher et al., 1971).

To prevent this from occurring, the Equal Employment Opportunity

Commission (EEOC) Guidelines (1970) state that criterion-related

validity is required of all selection procedures.

Traditionally, zero-order correlation and multiple correlation are

the statistical procedures used in determining criterion-related

validity. However, beginning with Peck and Stephens (1964) who used

factor analysis to obtain composite predictor and criterion variables
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in a study of the future vocational success of male retardates,

various researchers have found that certain multivariate techniques

are applicable in validation studies. Factor scores derived from

factor analysis were used as predictors or criteria by Riccobono

and Cunningham (1971), Chissom (1971), Logan and Palmer (1972), and

Goldstein and Barrows (1972). Factor scores and canonical correlation

were used by Mayerske et al. (1969) and Friedman (1972). Yet,

the application of multivariate techniques to employee selection

procedures for the purpose of meeting federal requirements (EEOC

Guidelines, 1970) concerning validation has not been attempted.

The purpose of this study is two-fold: 1) to apply multivariate

techniques in a validation study of employee selection procedures,

and 2) to compare the validation results obtained from the traditional

procedures of zero-order correlation and multiple correlation with the

results obtained from the multivariate techniques of factor scores and

canonical correlation. The latter purpose of this study perhaps is

of more significance for future applied research, for if multivariate

techniques are found to yield results comparable to traditional

procedures, two advantages are obtained through their use: 1) the

set of variables is reduced, thereby enabling a more simple and

logical explanation of the relationships found, and 2) the fundamental

dimensions underlying the predictor and criterion variables are

delineated.

METHOD

Subjects

The subjects utilized in this study consisted of fifty-one individuals 



3

who were selected from a group of five hundred thirty-two applicants

for the position of police patrolman. Due to the imposition of an

affirmative action quota, forty-one of the subjects were White males,

while ten of the subjects were Black males. They were chosen on the

basis of high scores on the written test in relation to other applicants

from their racial group, coupled with passing scores on the physical

agilities test and passing ratings on the oral interview. Since these

subjects were selected on the basis of their scores on the written

test, physical agilities test and oral interview, which are the

assessment instruments being investigated in this study, the validity

coefficients obtained in this study are affected by this preselection

and probably underestimate the relationships among predictors and criteria.

Data

Data utilized as predictors in this study consisted of the subjects'

scores on a written test and on a physical agilities test, as well as

their average rating on a six category, one hundred points per category,

oral interview rating scale. These three instruments were used to select

police recruits (who constituted the subjects in this study) from a pool

of applicants. Data utilized as both predictors and criteria in this

study consisted of the subjects' ten ratings on a policy academy field

training rating scale. This scale was used to measure the subjects'

performance while at the police academy in the following ten areas:

1) appearance, 2) ability to learn, 3) attitude, 4) self-confidence,

5) willingness to work, 6) knowledge of job, 7) quality of work, 8)

reliability, 9) quantity of work, and 10) eagerness to learn. The scale

contained five rating categories for each of the ten areas, and was

completed for all the subjects by the sergeant in charge of recruits.
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Data utilized as criteria in this study consisted of the subjects' eight

ratings on a monthly follow-up performance rating scale. This scale was

used to measure the subjects' on-the-job performance as patrolmen in the

following eight areas: 1) aggressiveness and initiative, 2) ability,

3) conduct, 4) judgment, 5) temperament, 6) appearance, 7) physical

condition, and 8) reliability. This scale contained five rating

categories for each of the eight areas, and was completed by the

sergeant responsible for supervising their work as patrolmen.

Data Analysis

The statistical techniques of simple correlation, multiple

correlation, multiple correlation with factor scores as criteria, and

canonical correlation with factor scores as criteria, were used to

investigate the relationships of: 1) the three screening measures

with the academy measures, 2) the three screening measures with the

monthly follow-up measure, 3) the academy measures with the monthly

follow-up measures, 4) combination of the three screening measures

and the academy measures with the follow-up measures, and 5) the

screening measures with a combination of the academy measures and the

monthly follow-up measures. The Factor Analysis subprogram, the

Multiple Regression subprogram, and the Canonical Correlation subprogram

of the Statistical Package for the Social Sciences (Nie et al., 1970)

were used to make the statistical analyses. The factor scores used

as criterion measures were derived through Alpha Factor Analysis and

Incomplete Image Analysis, the results of both being subjected to

both orthogonal and oblique rotations.
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RESULTS

Simple Correlations

Table 1 contains the 134 coefficients obtained through correlating:

1) the three screening measures with the eight monthly follow-up

measures, 2) the three screening measures with the ten academy measures,

and 3) the ten academy measures with the eight monthly follow-up

measures. Each of the three screening measures correlated significantly

with one or more of the monthly follow-up measures, and each of the

monthly follow-up measures correlated significantly with one or more

of the screening measures. Each of the screening measures correlated

significantly with two or more of the academy measures, and nine of the

ten academy measures correlated significantly with one or more of the

screening measures. Seven of the ten academy measures correlated

significantly with one or more of the monthly follow-up measures, and

four of the eight monthly follow-up measures correlated significantly

with one or more of the academy measures.

The nine significant correlations involving the physical agilities

test were negative, thus indicating that the lower a patrolman scored

on the physical agilities test, the better his academy and job performance.

Since this finding suggested that the physical agilities test was

measuring a trait different from the cognitive and affective traits

measured by the other two screening measures and the academy and job

performance ratings, the remaining statistical analyses were performed

both with and without the physical agilities data. (See Conclusion)
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TABLE 1

SIMPLE CORRELATION COEFFICIENTS

MONTHLY FOLLOW-UP
MEASURES

WRITTEN
TEST

SCREENING MEASURES

PHYSICAL AGILITIES
TEST

ORAL
INTERVIEW

Aggressiveness
& Initiative -.05 -.27* .11

Ability .35** -.13 .15

Conduct .48** -.04 .18

Judgement .29* -.22 .06

Temperament .29* -.22 .06

Appearance .15 .04 .26*

Physical Condition .13 .09 .27*

Reliability .29* .00 .10

ACADEMY MEASURES

Appearance .17 -.02 .09

Attitude .31* -.40** .14

Ability to Learn .46** -.39** .35**

Self-Confidence .17 -,44** .07

Willingness .26* -.33** .15

Knowledge of Job .36** -.36** .17

Quality of Work .42** -.22 .30*

Rellability .23 -.39** .17

Quantity of Work . 39** -.46** .17

Eagerness to Learn .19 -.33** .14



TABLE 1 (Cont.)

SIMPLE CORRELATION COEFFICIENTS

7

**p <.01 level of significance

*p <.05 level of significance

ACADEMY MONTHLY FOLLOW-UP MEASURES
MEASURES

Aggressiveness
& Initiative

Ability Conduct Judgement

Appearance -.17 .18 .33** .11

Attitude .13 .33** .38** .24*

Ability to Learn -.03 .18 .31* .19

Self-Confidence -.01 .13 .16 .12

Willingness -.06 .12 .10 .10

Knowledge of Job -.00 .22 .24* .31*

Quality of Work -.05 .31* .32** .22

Reliability .00 .27* .35** .14

Quantity of Work .06 .33** 39** .21

Eagerness -.10 .15 .18 .05

Temperament Appearance Physical
Condition

Reliability

Appearance .07 .08 .08 .11

Attitude .15 .16 .18 .27*

Ability to Learn .06 .04 .04 .16

Self-Confidence -.00 -.01 -.08 -.01

Willingness -.10 -.05 -.02 .07

Knowledge of Job -.04 .03 .00 .16

Quality of Work .05 .06 .03 .18

Reliability .02 .02 .05 .25*

Quantity of Work .09 .04 .07 .24*

Eagerness to Learn -.14 -.13 .02 .20
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Multiple Correlations

Table 2 contains the significant multiple correlations obtained.

The three screening measures were used as predictors of both the ten

academy measures and the eight monthly follow-up measures. Six of the

eight monthly follow-up measures were predicted significantly by the

screening measures. Five of these six predictions involved only the

written test. The sixth involved the physical agilities test with its

negative relationship to performance; when the physical agilities test

was removed from this analysis, no significant prediction was found,

leaving five significant predictions based on the written test. Nine

of the ten academy measures were predicted significantly by the screening

measures. Eight of the nine predictions involved the physical agilities

test. When the physical agilities test was removed from the analysis,

five of the ten academy measures were predicted by the written test.

The ten academy measures were used to predict the eight monthly

follow-up measures. Three of the eight monthly follow-up measures were

predicted by the academy measures using multiple correlation.

The combined set of screening measures, plus the academy measures

were used as predictors of the monthly follow-up measures. Significant

predictions were found for five of the eight monthly follow-up measures.

The written test alone was involved in three of these predictions, the

academy measure of knowledge of job was involved in one of these

predictions, and the written test and the academy measure of appearance

were involved in the remaining prediction.
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TABLE 2

MULTIPLE CORRELATIONS

SCREENING MEASURES WITH MONTHLY FOLLOW-UP MEASURES R Significance Level

Physical Agilities with Aggressiveness and
Initiative .27 .05

Written Test with Ability .35 .05

Written Test with Conduct .48 .01

Written Test with Judgement .29 .05

Written Test with Temperament .29 .05

Written Test with Reliability .29 .05

SCREENING MEASURES WITH ACADEMY MEASURES

Physical Agilities with Attitude .40 .05

Written Test, Physical Agilities, and Oral
Interview with Ability to Learn .61 .05

Physical Agilities with Self-Confidence .44 .01

Physical Agilities with Willingness to Work .33 .05

Written Test and Physical Agilities with
Knowledge of Job .46 .05

Written Test with Quality of Work .42 .01

Physical Agilities with Reliability .39 .01

Written Test and Physical Agilities with
Quantity of Work .56 .05

Physical Agilities with Eagerness to Learn .33 .05
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TABLE 2 (Cont.)

MULTIPLE CORRELATIONS

SCREENING MEASURES WITH ACADEMY MEASURES AFTER .
PHYSICAL AGILITIES TEST WAS REMOVED

R Significance Level

Written Test with Attitude .31 .05

Written Test with Ability to Learn .46 .01

Written Test with Knowledge of Job .36 .05

Written Test with Quality of Work .42 .01

Written Test with Quantity of Work .39 .05

ACADEMY MEASURES WITH MONTHLY FOLLOW-UP MEASURES

Attitude with Ability .33 .05

Quantity of Work with Conduct .39 .01 ■

Knowledge of Job with Judgement .31 .05

SCREENING MEASURES AND ACADEMY MEASURES WITH MONTHLY FOLLOW-UP MEASURES

Written Test with Ability .35 .05

Written Test and Appearance with Conduct .55 .05

Knowledge of Job with Judgement .31 .05

Written Test with Temperament .29 .05

Written Test with Reliability .29 .05
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Multiple Correlations Predicting Factor Scores

Table 3 contains the significant multiple correlations obtained between

the three predictor variables and the three Alpha and the ten Incomplete

Image factor scores computed from the criterion variables. The three

screening measures were used to predict the factor scores from factor analyses

of the monthly follow-up measures. Of the two factors obtained using Alpha

Factor analysis, the written test was predictive of the scores of Factor II

using the orthogonal solution, and of both the scores of Factor I and Factor

II using the oblique rotation. Of the four factors obtained using Image

factor analysis, the written test was predictive of the scores of Factor I

using the orthogonal solution, and the scores of Factor I and Factor II using

the oblique solution. The written test and the oral interview were predictive

of the scores of Factor IV using the oblique rotation.

The three screening measures were also used to predict the factor scores

from factor analysis of the combined academy and monthly follow-up measures.

Of the three factors obtained using Alpha factor analysis: 1) the written

test and the physical agilities test were predictive of the scores of Factor

I using both the orthogonal and oblique solutions, and 2) the written test

was predictive of the scores of Factor II and Factor III using the oblique

solution. The data was re-analyzed without the physical agilities test, and

the written test alone was found to be predictive of the scores of Factor I

using both solutions. Of the ten factors obtained using Image Factor analysis:

1) the written test and physical agilities test were predictive of the scores

of Factor I using the oblique solution, 2) the written test alone was pre­

dictive of the scores of Factor II using the orthogonal solution, and the

scores of Factor II, Factor IV, Factor VIII, and Factor IX using the oblique

solution, and 3) the physical agilities test alone was predictive of the

scores of Factor I and Factor IV using the orthogonal solution, and the 
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scores of Factor IV, Factor VII and Factor X using the oblique solution.

Upon removing the physical agilities test, the data was re-analyzed and no

significant predictors were found for the scores of Factor IV using either

solution, or for the scores of Factor VII using the oblique solution. The

written test did significantly predict the three remaining factor scores

(the scores of Factor I using both solutions, and the scores of Factor X

using the oblique solution).

Canonical Correlations

Canonical correlations were computed between the screening measures

and the monthly follow-up measure Alpha and Imcomplete Image factor scores.

Using the factor scores from the Image factor analysis, canonical correla­

tions of .500 were found for both rotational procedures. These correlations

were significant at the .05 level. Upon re-computation of the correlations

after removing the physical agilities test, a negligible reduction occurred

in both the orthogonal solution (r=.498) and the oblique solution (r=.499).

The canonical correlations computed using Alpha factor scores were not

significant.

Canonical correlations were also computed between the screening measures

and the combined sets of academy measures and monthly follow-up measures.-

Using the factor scores obtained from the Alpha factor analysis, canonical

correlations of .624 were found for both rotational procedures, which were

significant at the .01 level. When the correlations were re-computed without

the physical agilities test, a substantial reduction occurred (r=.501;p=.O5)•

Using the factor scores from the Image factor analysis, canonical correlation:

of .678 were found for both rotational procedures, which were significant

at the .05 level. When the correlations were re-computed without the physica

agilities test, no significant correlations were obtained.



TABLE 3

MULTIPLE CORRELATIONS USING FACTOR SCORES AS CRITERIA

FACTOR SCORES DERIVED FROM MONTHLY FOLLOW-UP MEASURES R Significance
Level

Written Test with Factor II Scores of the Alpha
Factor Analysis (Orthogonal Rotation)

.27 .05

Written Test with Factor I Factor Scores of the
Alpha Factor Analysis (Oblique Rotation)

.31 .05

Written Test with Factor II Factor Scores of the
Alpha Factor Analysis (Oblique Rotation)

.29 .05

Written Test with Factor I Factor Scores of the
Image Factor Analysis (Orthogonal Rotation)

.45 .01

Written Test with Factor I Factor Scores of the
Image Factor Analysis (Oblique Rotation)

.41 .01

Written Test with Factor II Factor Scores of the
Image Factor Analysis (Oblique Rotation)

.27 .05

Written Test and Oral Interview with Factor IV
Factor Scores of the Image Factor Analysis
(Oblique Rotation)

.42 .05

FACTOR SCORES DERIVED FROM ACADEMY MEASURES COMBINED WITH MONTHLY
FOLLOW-UP MEASURES

Physical Agilities Test and Written Test with
Factor I Factor Scores of the Alpha Factor Analysis
(Orthogonal Rotation)

.44 .05

Physical Agilities Test and Written Test with
Factor I Factor Scores of the Alpha Factor Analysis
(Oblique Rotation)

.54 .05

Written Test with Factor II Factor Scores of the
Alpha Factor Analysis (Oblique Rotation)

.32 .05

Written Test with Factor III Factor Scores of the
Alpha Factor Analysis (Oblique Rotation)

.27 .05
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TABLE 3 (Cont.)

MULTIPLE CORRELATIONS USING FACTOR SCORES AS CRITERIA

FACTOR SCORES DERIVED FROM ACADEMY MEASURES
COMBINED WITH MONTHLY FOLLOW-UP MEASURES_________________

R Significance
Level

Physical Agilities Test and Written Test with Factor
I Factor Scores of the Image Factor Analysis (Oblique

Rotation)

.51 .05

Written Test with Factor II Factor Scores of the
Image Factor Analysis (Orthogonal Rotation)

.39 .05

Written Test with Factor II Factor Scores of the
Image Factor Analysis (Oblique Rotation)

.35 .05

Written Test with Factor IV Factor Scores of the
Image Factor Analysis (Oblique Rotation)

.43 .01

Written Test with Factor VIII Factor Scores of the
Image Factor Analysis (Oblique Rotation)

.50 .01

Written Test with Factor IX Factor Scores of the
Image Factor Analysis (Oblique Rotation)

.41 .01

Physical Agilities Test with Factor I Factor Scores
of the Image Factor Analysis (Orthogonal Rotation)

.46 .01

Physical Agilities Test with Factor IV Factor Scores
of the Image Factor Analysis (Orthogonal Rotation)

.33 .05

Physical Agilities Test with Factor IV Factor Scores
of the Image Factor Analysis (Oblique Rotation)

.46 .01

Physical Agilities Test with Factor VII Factor Scores
of the Image Factor Analysis (Oblique Rotation)

.29 .05

Physical Agilities Test with Factor X Factor Scores
of the Image Factor Analysis (Oblique Rotation)

.47 .01

FACTOR SCORES DERIVED FROM ACADEMY MEASURES COMBINED WITH MONTHLY
FOLLOW-UP MEASURES WITH PHYSICAL AGILITIES TEST REMOVED AS A PREDICTOR

Written Test with Factor I Factor Scores of the
Alpha Factor Analysis (Orthogonal Rotation)

.34 .05

Written Test with Factor I Factor Scores of the
Alpha Factor Analysis (Oblique Rotation)

.37 .05

Written Test with Factor I Factor Scores of the
Image Factor Analysis (Orthogonal Rotation)

.31 .05

Written Test with Factor I Factor Scores of the
Image Factor Analysis (Oblique Rotation) .39 .05

Written Test with Factor X Factor Scores of the
Image Factor Analysis (Oblique Rotation)

.29 .05
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CONCLUSION

The two purposes of this study were: 1) to establish the validity

of a set of employee selection procedures using multivariate techniques,

and 2) to compare the results obtained through traditional validation

procedures with the results obtained through using multivariate

procedures. With respect to the first purpose, the written test was

found to be an excellent predictor of on-the-job performance. It met

the federal regulations (EEOC Guidelines, 1970) for criterion-related

validity, and its continued use was recommended. The physical agilities

test, although showing a substantial relationship with many performance

measures, was inversely related to the performance measures. Possible

explanations of this finding include: 1) Individuals with high

physical agility prefer physical methods of approaching the tasks

required of a patrolman rather than the cognitive or affective methods

used as this study's criterion measures; 2) Individuals rating the

performance of the subjects are biased against subjects displaying high

physical agility; or 3) The sample was composed of individuals who were

either high in physical agilities or high in cognitive - affective

ability, but not high in both. Since it was not possible to ascertain

the reason why the physical agilities test demonstrated an inverse

relationship with performance measures, it was recommended that the

items composing the physical agilities test be evaluated with respect to

their pertinence for a patrolman and/or that criterion measures be

designed to measure the physical component of the patrolman's job. The

oral interview, although demonstrating some correlation with performance,

failed to add significantly to any of the predictions. Its discontinuance

as a screening device was recommended, although its retention as a means

of maintaining personal contact with applicants was suggested.
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With respect to the second purpose, the comparison of multiple

correlation using factor scores as the criteria with multiple correlation

using the original performance measures as criteria, yielded mixed results.

When the screening measures were correlated with the monthly follow-up

measures, the multiple correlations using Alpha factor scores were some­

what lower than those obtained using the original variables, while the

multiple correlations using Image factor scores tended to be somewhat

higher than those obtained using the original criterion variables. One

possible explanation of this result is that Image factor analysis uses

the estimated communality of the variables as the diagonal elements in

the correlation matrix, whereas Alpha factor analysis does not. When

the screening measures were correlated with the combined academy and

monthly follow-up measures, the multiple correlations using the Alpha

factor scores were in the same range as those obtained using the original

criteria variables, while the multiple correlations using Image factor

scores were somewhat higher than those obtained using the original criteria

variables. In general, multiple correlation using factor scores as the

criteria appears to be a productive method of approaching predictive

validity, although further research is indicated.

The multivariate techniques of canonical correlation between predictor

variables and scores derived through factor analysis also appears to have

promising possibilities for predictive validity studies, when compared

to zero-order correlation and multiple correlation. The canonical

correlation obtained between the screening measures and the factor scores

derived from the monthly follow-up measures in this study, was higher

the obtained zero-order and multiple correlations. After removal

of the physical agilities measure, these canonical correlations still

maintained their greater predictive ability. The canonical correlation

obtained between the screening measures and the factor scores obtained
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from the combined academy and monthly follow-up measures also demonstrated

superior predictive power.

In conclusion, this study demonstrates the applicability of

multivariate techniques to validity studies. The results obtained suggest

that these techniques yield higher correlation coefficients than zero­

order correlations or multiple correlations in a number of instances.

This result is probably due to the exclusion of a greater proportion

of error variance than true variance in the factor analysis portion of

the analyses. In addition, the use of multivariate techniques has

logical and theoretical advantages in that: 1) the set of variables

is reduced, thereby enabling a more simple and logical explanation of

the relationships found, and 2) the fundamental dimensions underlying

the predictor and criterion variables are delineated. Thus, while

this study does not suggest that these results can be generalized to

all validity studies using composite measures, it does suggest that:

1) multivariate techniques may be appropriate in some validity studies,

and 2) further delineation concerning the conditions under which

multivariate techniques are applicable to validation efforts is needed.
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MULTIPLE COMPARISONS IN THE ANALYSIS OF
COVARIANCE USING MULTIPLE LINEAR REGRESSION

John T. Williams
University of North Dakota

ABSTRACT

A process is described for multiple comparisons
when, covariates are involved in the analysis.
The method can be accomplished with considerable
ease whenever pairwise comparisons are involved.
More complex contrasts require the use of full
and restricted models.

While many explications regarding multiple comparisons have been made

for the usual one-way analysis of variance, most authors on the subject

of multiple comparisons are silent regarding the analysis of covariance. •

The silence is understandable; each separate comparison will have its own

standard error of estimate even if equal N occur in each cell. The equa­

tion for the standard error of estimate for a comparison in the analysis

of covariance is given by Winer (1971, p. 772),
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where

Y^adj = the adjusted mean for group i;

Y.adj = the adjusted mean for group j;
J

MS' - the error term in the analysis

ni n. - respectively cell frequencies

respectively the means on theXi‘ Xj

jt* 1 groups; and

of covariance;

for the ith and jth groups;

covariate for the i and

= SS for the covariate.’xx w

While researchers may feel justifiably ill at ease in attempting to

use equation 1, the use of regression can eliminate the tedious calcula­

tions.- Further, more than one covariate can easily be accommodated.

An Example

Table 1 is taken from Williams (1974, p. 104 and p. 109). In Table

1, X1 is a binary variable for membership in group 1, X2 is a binary

variable for membership in group 2 and X3 is similarly a binary variable

for membership in group 3. Also, represents a pretest score and X5

. represents a measure of intelligence; the Y value represents a posttest

score. Only the pretest is considered ac anbiaered as a covariate in this section;

both the pretest and intelligence are rnncia« ue are consndered as covariates in section

under multiple covariates.
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TABLE 1

Data for the Analysis of Covariance

Y . X1 x2 X3 x4 x5

35 1 0 0 12 120

27 1 0 0 17 98

32 1 0 0 13 102

29 1 0 0 10 106

27 1 0 0 8 .94

38 0 1 0 29 123

25 0 1 0 12 96

36 0 1 0 17 108

35 0 1 0 22 115

31 0 1 0 • 15 128

27 0 0 1 17 90

35 0 0 1 22 110

19 0 0 1 10 94

17 0 0 1 8 95

32 0 0 1 13 116

Under the assumption of a single regression line on the covariate

(the pretest, X4) an analysis of covariance can be accomplished with two

linear models:

Y = bfl + bjXj + b2X2 + b4X4 + er (2)

• and

Y = b0 + b4X4 + e2. (3)

In that a large part of the print-out regarding equation 2 is useful, the

print-out is reproduced in Table 2.
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ut for Equation 
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The usual analysis of covariance can be completed by using

F = ~ R^/(g ~ 1) -" (-61959 ~ -47476)/2 = 2 gg

(1 - R^)/dfw2 (1 - -61959)/11

which for df = 2, .11, p > .05.

In equation 2, the X3 variable has been omitted. Thus bpYjadj-Y3adj

and b2=Y2adj-Y3adj. To find the adjusted means, the following equations

can be used:

Y3adj = bg + b4X4 = 15.36 + .76(15) = 26.76;

Y-pdj = b2 + Y3adj = 5.52 + 26.76 = 32.28; and

Y2adj = b2 + Y3adj = 3.20 + 26.76 = 29.96.

The adjusted values agree with those originally given by Williams (1974,

p. 106), though the method shown here is simplified somewhat.

More importantly, the standard error of the regression coefficients

corresponding to Xj and X2 are respectively equal to the standard errors

from equation 1 for comparing Yjadj to Y3adj and Y2adj to Y3adj. Thus,

the computed t values given in Table 2 are directly usable in whichever

multiple comparison procedure the researcher prefers. The use of Dunnett's

(1955), Tukey's (1953), Dunn's (1961) and Scheffe's (1959) tests are de­

scribed in a regression format using computed t values in Williams (1976,
/

1979). Were there interest in comparing Y^adj to Y2adj_, a model of the form

Y = bg + b^X-£ + b3X3 + h4X4 + e^ (4)

could be used, with focus on the computed t value for the X^ variable.
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Complex Comparisons

Complex comparisons, or contrasts, can be completed in a regression

analysis for the analysis of covariance as well. Suppose a contrast of

the form .

V = Y-adj - V->adj - V3adj (5)

is contemplated. First, equation 2 is reparametized as

Y = + b2X2 + b3X3 + b4X4 + ep (6)

Then a restriction corresponding to b3 = ^bj + is placed on

equation 6:

Y = bjXj + b2X2 + (M)i+y>2)X3 + b4X4 + e3.

Or,

Y = •b1(X1+4x3) + b2(X2+^X3) + b4X4 + e3. (7)

Two new variables can be constructed such that Vj = 1 if a member

of group 1, h if a member of group 3, 0 if a member of group 2; and

v2 = 1 if a member of group 2, if a member of group 3, 0 if a member

of group 1. Then equation 7. can be rewritten as

Y = bivi + b2v2 + b4X4 + e3. (8)

Equation 8 (and also equation 6) could be processed using a program such

as Ward and Jennings’’ (1973) DATRAN or McNeil et al.'s (1975) LINEAR.

However, equation 8 can also be reparametized back into a form

using a unit vector as was done earlier. This can be accomplished by

setting either b3 or b? equal to.zero. Setting b? = 0 yields

Y = b0 + bjVjt b4X4 + e3. (g)

Then R*  = .50151.
-7
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/ R2 - Rg

To test T, t ■=

t = 1.85, p > .05.

.61959 - .50151
(1-.61959J/11

.Concerns of Homogeneity of Variance

To this point, the assumption of a single regression line for the 

covariate has been made. A test can be made of this assumption; three 

new variables are defined such that

x6 = XfX4;

X7 = X2*X^;  and

x8 = x3-x4.
Then a model can be written as

Y = bQ + b^ + b2X2 + b6X6 + b7X7 + b8X8 + e4. (10)
2

Rin = .71825. To test this for significance,
(R210 ~ ^)/<9 - 1)

F = (1 - R^)/(N - 2g) ’

„ . (.71825 - .61959)72 = 158; > _05.
(1 - .71825)79 H

Had the F value been significant, some researchers would prefer to

abandon the analysis given earlier; however, there are no real alterna­

tives short of abandonment. It would be inappropriate to attempt to use
/

the computed t values for testing b^ and b^ in equation 10. The "adjusted

means" would occur where separate regression lines occur for each group

on the covariate. Since the covariance process is occurring separately

for each group, differences in the adjusted means would not test any mean­

ingful hypotheses regarding group differences on the criterion score.

Table 3 should help.show why this is so.
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Does the information given in Table 3 suggest that Y.adj - Y.adj
A V

= 20.51791? The answer is a qualified "no". Only under the condition that

each group has its separate regression on the covariate, and its separate

mean on the covariate would bT = Yjadj - Y3adj. However, that condition

is very different than most users of the analysis of covariance would

wish to use.

It is clearly quite different from asking, "If the groups were

equal (on the covariate) at the beginning of the experiment, how do they

compare at the end?" Even if all groups are "adjusted" by using a co­

variate mean of X4 = 15, the difference in the regression coefficients

preclude interpreting b^ as "a treatment difference after covariate

adjustment between groups 1 and 3". The analysis of covariance is usually

enlisted to test treatment differences in groups whose members were unable

to be randomly assigned to a treatment group, so that a statistical control is

used. While a test of significance on b^ can be legitimately done, it

does not address questions usually asked by researchers using the analysis

of covariance.

Multiple Covariates'

Extensions to more than one covariate can easily be accornriodated

both for the analysis of covariance and for multiple comparisons. The

intelligence score, Xc, could be used together with the pretest as co-
□

variates. Assuming single regression lines for all three groups on the

two covariates, the model can be given as

Y = b0 + bjXj + b2X2 + b4X4 + b5X5 + e5. (ID
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The use of the computed t values for b| and b? allow a test regarding

differences among the adjusted means for comparing groups 1 and 2 with

group 3 respectively; t| = 1.95059 and t2 = ;38191. To test the differ­

ences between the adjusted means of group 1 to group 2, a model such as

■ Y ’ b0 + blXl + b3X3 + b4X4 + b5x5 + e5 (12)

can be used.

Here, tj = 1.33421; also, t3 =-.38191, reaffirming the t value

for the difference between the adjusted means of groups 2 and 3. The

sign is changed because the direction of the comparison has changed;

for b2 in equation 11, t2 addresses Y2adj - Y^adj, for b3 in equation 12,

t3 addresses Y3adj - Y2adj.
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A DEMONSTRATION OF A TYPE VI ERROR: AN APPLIED
RESEARCH PROBLEM

Steve Roll
Ken Hoedt

Isadore Newman
The University of Akron

Introduction

The inappropriate fitting of a research question with a re­
search design may result in the costly loss of power neces­
sary to reject the false null hypothesis. This type of
error has been labeled a Type VI error (inconsistency be­
tween the research question and the statistical design) by
Newman, Deitchman, Burkholder, Sanders and Ervin (1976).
Those most apt to fall prey to this error are researchers
dependent on standard research designs which they use in a
cookbook manner. Compounding the problem is an over reli­
ance on packaged statistical programs that are appropriate
for use with traditional designs, but which unfortunately
may-not reflect the substantive question.

Particularly vulnerable to the Type VI error are research
designs applied by the novice researcher in which the
statistical analysis and research design exist in a
"symbiotic" relationship. Such a situation may occur when
the test of significance is a traditional analysis of vari­
ance (ANOVA). In an attempt to maintain the symmetry nec­
essary to use ANOVA, the researcher may include in his or
her analysis, combinations of treatments and levels which
make little theoretical or practical sense.

The Type VI error may also occur when the application of the
ANOVA procedure forces a continuous variable into an arti­
ficially categorized variable. This results in the additional
loss of degrees of freedom and power.

Newman et al. (19 76) point out that the Type VI error results
from "the inconsistency between the researchers1 question of
interest and the statistical procedures employed to analyze
the data." It is suggested that the study of a problem
should begin by asking a substantive question that reflects
an area of interest. A design should then be developed to
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selection of an
the research

^^a:er:::SHcar^e/thar?^sybo?h

question and the research design.

Unfortunately many researchers become overly concerned^with

SAh. cognizant of the fact
that ?hey may be allowing their statistical procedures to
dictate their research questions. To demonstrate possible
problems resulting from a Type VI error, the discussion
which follows will include:

1) a presentation of a Type VI error resulting from the
inappropriate use of ANOVA,

2) a power analysis based on the inappropriately applied
ANOVA,

3) a presentation of an alternative and more appropriate
design utilizing multiple linear regression, and

U) a power analysis based on the more appropriate design.

Applied Example of a Type VI Error

The Type VI error reported below may be obvious, but it
does clearly illustrate how a research design and statis­
tical model can control the substantive questions being
investigated. The illustration comes from an initial re­
search design considered by Roll- (1979) in order to compare
three behavioral treatments and a no treatment control
group. The target of the treatment was the alleviation of
test anxiety in undergraduate college students . The three
active treatments were systematic desensitization (Wolpe,
ISao), self-control desensitization (Goldfried, 1971) and
a modified version of covert positive reinforcement
(Tautela, 1970).

The initial direction in selecting, a research design came
from a review of literature related to the behavioral treat­
ments or concern. Previous researchers had utilized’ ANOVA
in their comparisons. Denney and Rupert (19 77), for instance

S?lf contro1 desensitization to systematic de-
2 X treatment of test anxiety utilizing a
i n f ?a r 'lgn/nd AN0VA to test statistical
inftrurHnn!\”as instructions; one group received
self-control the treatment as teaching a

tions which describedethl ?rel?mentg^°UP re?eived instruc-
inhibition terms. Factor B was the ie^aaS1ee4.rCiprO
Wolpe's or Goldfried's method method of therapy:

The new problem to be studied extendoa •
. compare the effectiveness of Wolpe"s Colt atO

uxPe s, Goldfried's and
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Cautela’s behavioral therapies which differ in terms of in­
struction given to the client, reinforcement or no reinforce
ment to insure the instructions are followed, and method of "
stimulus presentation. The comparisons involved three levels
of instruction, two levels of reinforcement and two levels
of stimulus presentation. Initially it seems obvious that
an appropriate research design to use would be to expand
Denney’s and Rupert's 2X2 ANOVA to a 3 X 2 X 3 ANOVA. The
design was set up as illustrated in Table I. Upon examina­
tion, however, this extension was abandoned as it would have
resulted in a Type VI error. The research design was deter­
mining the substantive questions with a resultant loss of
power for a fixed "n” size. The theoretical and practical
problems that the application of a symetrical factorial de­
sign using ANOVA would have caused are presented below.

From a practical standpoint a clinician would not be inter­
ested in applying any of the main effect treatments except
in combination with each other (see Table I). In other
words, the only clinical interest would be in the simple
effects. Further, the only simple effects of interest are
those labeled in Table I T2, Tg and Tjj: T2 is
Wolpe’s systematic desensitization procedure; Tg is
Goldfried's self-control desensitization procedure; Tjj is
a modified form of Cautela’s covert positive reinforcement
procedure.

The reasons for not including the remaining nine simple
effects are as follows:

Tj_; It would not make sense to instruct a client that his
part in the Treatment is passive in nature, as Wolpe would
do, and then covertly reinforce the client for doing noth­
ing. Further, There was no theoretical, interest in combin­
ing covert reinforcement and systematic desensitization.

T3 and Th.: These treatments make no practical.sense since
they combined Wolpe’s instructions7with Goldfried s method
of scene oresentation. Wolpe’s instructions . stress that.
desensitization occurs due to . the incompatibility of anxiety
and relaxation and that effective treatment results from
the pairing of relaxation with an anxiety provoking stimuli.
On the other hand, Goldfried's method of scene presentation
requires anxiety to occur as a result of exposure to an­
xiety provoking stimuli.

I5 and Tg: These treatments make no practical sense as they
combine Goldfried's instructions with Wolpe’s method of scene
Presentation. Goldfried's instructions stress that effec­
tive treatment results from practicing relaxing away anxie y
Produced by exposure to an anxiety provoking stimuli, un tne
other hand, Wolpe’s method of scene presentation does not al
low anxiety to be evoked, hence, instruction to practice re­
laxing it away, which would be given by Goldfried, is not
DOSRihlo
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T . This treatment combination makes the most sense of the
nine excluded treatments. It is very similar to Tx which
was included. The instructions for Tu inform.the client
?hat he will covertly be reinforced while the instructions
for i, do not. This treatment combination was not of in­
terest to the researcher as it has not been advocated by
the behaviorists of concern.

To and T10: It would make little sense to instruct subjects
that they should practice relaxing anxiety away and then
never allow them to experience any anxiety due to Wolpe's
method of scene presentation.

Tj2: It would not make sense to tell a subject that he will
be covertly reinforced, as would happen in treatment C, and
then never covertly reinforce him.

Power Analysis for ANOVA

In addition to the problems outlined above, the Type VI .
error would result in a loss of power. A power analysis
for an overall F following Cohen’s procedure (1977) based
on 3 X 2 X 2 ANOVA with an alpha level set at 0.05, a medium
effect size (f2 = 0.15) and a sample size of 60 is presented
below.

Given,

N = 60
Alpha = 0-15
r = 0.15 ^medium effect size) .
K - 13 (twelve treatment groups and a no treatment con­

trol group)
U = K-l = 13-1 =12
y = = 60-12-1 = 47

and L = f-7 - 3.15(47) =7.05 

w-th these parameters Cohen's
an estimated power of 0.35.

(1977) power tables indicates
This level of power is low.

sis

Hypotheses of Substantive Interest

theoretictltandapraItiQalUnroblAN°VA r®sulted in various

low power, it was abandoned lnc^udlng unacceptably ■
ized post-test-only design (CaJ^T?? °f a comPletelY random­
using multiple linear relresS?on?U StanleY> 1963)

regression for the statistical analy­

se research hypotheses to be test.a ‘ 
designs were directional and are present^d'^b3^01'6 ment^oned
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Hypothesis I Tpp T13

The modified covert positive reinforcement group will have
a significantly lower mean anxiety score than the control
group.

Hypothesis II Tpp / T2

The modified covert positive reinforcement group will have a
significantly lower mean anxiety score than the systematic
desensitization group.

Hypothesis III Tpp / Tg

The modified covert positive reinforcement group will have
a significantly lower mean anxiety score than the self con­
trol desensitization group.

Hypothesis IV T13

The self control desensitization group will have
cantly lower mean anxiety score than the control

a signifi-
group.

Hypothesis V t2
The self control desensitization group will have a signifi­
cantly lower mean anxiety score than the systematic desensi­
tization group.

Hypothesis VI

The systematic
lower mean anxi

T2 T13

desensitization group will have a significantly
ety score than the control group.

The MLR models developed to test the hypotheses were.

Hypothesis One
Full model: Yp - agU + apTpp + a2Tp3 E
Restricted model: Yp = agU + E

Hypothesis Two • , 
Yp = aoU + apTpl + a2T2 + E
Y1 = aQU + E

Hypothesis Three  . r
Yp = a0U + apTg + a2Tpp + E
Yp = a0U + E
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Hypothesis Four

Hypothesis Five

Hypothesis Six

Yi = aoU + aiT8 + H2T13 + E
Yi = agU + E

Yj = a0U + a1T2 + a2T8 + E
Yj. = agU + E

Yx = a0U + axT2 + a2T13 + E
Yj - agU + E

Y-^ = test anxiety scale score
T2 = membership in the systematic desensitization group

(Wolpe's procedure)
Tg = membership in the self-control desensitization group

(Goldfried’s procedure) •
Tll= membership in the covert positive reinforcement group

(Modified Cautela procedure)
Ti3= Control Group
E = Error term

Power Based Upon Substantive Questions

Since specific hypotheses could be written to compare the
target treatments, it was not necessary to include in the
analysis inappropriate comparisons. Also, by limiting the
number of comparisons a higher subject to treatment group
ratio was available which resulted, as shown below, in a
more acceptable power level.

Power analysis for an overall F using MLR

N 60
Alpha = 0.05
f2 = C.15 (medium effect size)
K = 4 (3 treatment groups and a no treatment control

group)
U = K-l = 4-1 = 3
V = N-U-l = 60-3-1 = 56 ,
L f2V = .15(56) = 8.40

With these values Cohen’s (1977) power tables indicate an
estimated power of 0.68 as compared to 0.35 for the origin­
ally considered design.

Summary Conclusion •

The research question of interest presented in this paper
was concerned with only the four groups which make logical

,n 116d ^erapeutic research framework. If
on^woul^mo 2T’

e:uid
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, which were not of interest to the researcher, andillogical or wnxvn
in a loss of power.

rtance of the applied researcher utilizing a researchThe junpo c compromise the substantive questions of
J^ncern, especially with respect to it fitting into a logical
concern, p frame, cannot be overemphasized. This is
and/or t rder to facilitate meaningful research.
necessary
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USING MULTIPLE REGRESSION TO INTERPRET
CHI-SQUARE CONTINGENCY TABLE ANALYSIS

Dennis W. Leitner
Southern Illinois University at Carbondale

ABSTRACT

In the analysis of bivariate categorical data, the most

common statistical test is the chi-square test of independence.

A significant chi-square value leads the researcher to reject

the null hypothesis of no relationship between the categorical

variables. But the size of the chi-square statistic is a

function of its degrees of freedom. This leaves the researcher

with no indication of how large (or small) the relationship is.

The purpose of this paper is to demonstrate multiple

regression analyses of the 2x2, R x 2, and R x C contingency

tables using "dummy" coding. The multiple correlation

coefficient (whose square has a well-known interpretation) will

be shown to equal Pearson's r, Cramer's V, and a function of

the chi-square statistic.

This paper was presented to the Special Interest Group on

Multiple Linear Regression program session on methodological

advances and applications during the 1979 annual meeting of

the American Educational Research Association, San Francis ,

April, 1979.
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A reinactment

Student: I have found it! A significant relationship between Sex

and political party affiliation. Look at this 2x2 contingency table

and the chi-square value is significant at the .01 level.

Table 1. Frequencies of political party affiliation by sex

of respondent.

Democrat Republican

Male 60 40 2

Female 40 60

xf = 8-°

F«ulty Benter (while scrat . ,his calculator): Bt ® ™ a pad of paper and punching on

u ar>e you sure that utionship? have found a meaningful rela-

S: *>  you mean? It.s .°f freedom Sna-ficant and chi-squares with one dec

Claoni sot beyond 6.

F ("hlle fumbling through a fiiBut what if j . e Ca ^net to get a scatter diagram):

show you a bivariateof the relationshin v v Scatterpiot illustrating the strength

you have shown.

S '—fallen), But t.there icF: Yes there is A t^iationship there.
for the 2oo points> r = * “^ficant one at the . 05 leyel Qf signifi«<-

BUt that "“Ous only u» of“hoxplaine^ °f the varlanca is

f: Yes - js> and that-“»h the ehi.s the St«"«h of thaquare analys^s relationship you have f°un

(The scene oene c°ntinues anaderating ends with tha locai hangout.) ° StUdent ar»d faculty member cC'
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8

. .2
The purpose of this paper is to emphasize the interpretation of R

in multiple regression that carries over to chi-square contingency table ,

analysis.

2x2 Contingency Tables

Multiple regression aficionados would not have found themselves in

the role of the student in the above scenario. By ’’dummy coding” sex and

2
political party affiliation, and regressing one on the other, an R (actually

2 2r ) value is obtained which is numerically equal to x /N, where N is the

number of subjects on which the two variables are measured (McNeil, Kelly,

McNeil, 1975, pp. 246-248). In general, if row variable A has two levels

and column variable B has two levels, let

x  fl if observation is from level 1 of A
LO otherwise qj

Y  Cl if observation is from level 1 of B
LO otherwise

2 2then, r = x /N. (See proof in Bishop, Fienberg, and Holland, 1975, p. 382).

Another related statistic is the phi (<f>) coefficient developed by Karl

Pearson. If a, b, c, and d denote cell frequencies as indicated by the

table at the left, $ can be computed directly using the formula on the

right.

A be - ad
4> = 

Aa+b) (c+d) (a+c) (b+d)

But the formula for * can be derived mathematically

the Pearson product-moment correlation coefficient.
from the formula for

(See Glass and Stanley?
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1970, pp- 158-160.) So we have

.2 2 2.
<f> = r = x /N-

Unlike the bivariate scatterplot of two continuously distributed

variables as in Figure 1,

But the interpretation of

proportion of variance in

the plot of X and Y in

2
r (the coefficient of

one variable explained

(1) does not show much.

determination) as the

by variation in the

other holds for the categorical as well as the continuous case. (With 

a computer package like SAS (Barr, et al, 1976), it is easy to demonstrate 

this by calculating and printing predicted and residual scores, and com­

puting their variances and a
2
y

..)

R x 2 Contingency Table

If the row variable has more than two categories, an R x 2 contingency

table can be constructed, and the coding method in (1) can be extended.

Code Y as before, and extend the coding of X as follows.

1 of Alevelfromis

(2)

2 of Alevelis from

R-l of Alevelfromis

2
which equals x /N, wherean

Again, we can use our notions

1
,0

1
0

1
0

if observation
otherwise

if observation
otherwise

if observation
otherwise

X
rRegression Y on X^, X^

2
X is the test statistic for independence.

of: R2 to add meaning to the relationship between A and B tested using the

o
value of x ■
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A modification of the phi coefficient is made for contingency 

tables larger than 2x2: Cramer’s V is given by
.2 X-

I * I'2” train {(R-l), (C-1)}J •

(The denominator is the maximum that <{> attains, so that V ranges from

2
0 when no relationship is presented to a value of 1. ) Substituting R

2 2
for <f> and solving for R gives

9 9R = V x min {(R-l), (C-l)} (3)

2So from Cramer's V or the x value, we can compute a proportion of vari­

ance of one variable accounted for by the other.

R x C Contingency Table

The most general form of the contingency table has R rows for variable

A and C columns for variable B. Variable A may be coded X^ as in (2).

But, the coding of Y needs to be an orthogonal partition of the vari­

ability in B. This is not difficult, using orthogonal polynominals, pro­

viding the frequencies in each level of A are equal. Assuming variable B

to have four levels, code as follows:

if observation is from
if observation is from
otherwise

if observation is from
if observation is from
otherwise

if observation is from
otherwise

level 1 of B
level 2_of B

level 1 or 2 of B
level 3 of B

levels 1, 2, or 3 of®

C-1) on
Then regress each Y

i 1’ X2’ •

icients by R
i’

2, .

the respective multiple correlation coeffici

X , denoti^
r ’
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Then

C-l
R2 = Z R2

• - i1=1

is equal to x2/N from the R x C table. Also, Cramer's V computed on

the table using equation (3) yields an R2 equal to x2/N.

Conclusion

The purpose of this paper was to relate common statistics from

contingency table analysis to the more familiar R2 terminology in order

to better understand the strength of the relation implied. The method

of coding contingency tables in order to compute R2's was shown, as well

as how R2 relates to <f>, V, and x2 • It is not implied that all contingency

tables be recoded so that multiple regression can be performed, but it

is hoped that proportion of variance interpretations be done in addition

to tests of significance.
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CONTROLLING THE TYPE I ERROR RATE IN
. STEPWISE REGRESSION ANALYSIS

John T. Pohlmann
Southern Illinois University

Stepwise regression has become a widely used technique for selecting

a subset of potential predictors for some dependent variable. Three

procedures have been used under the rubric of stepwise regression

analysis: Forward selection, backward elimination, and true stepwise

(Draper and Smith, 1966).

The forward selection procedure forms a model of the dependent

variable by first selecting the best single predictor, then the second

predictor is chosen which makes the strongest contribution to the

prediction of Y, controlling for the effects of the first predictor. The

process continues so that at each step, the variable selected for inclusion

in the model increases the prediction of Y more than any other predictor.

The selection process stops when the remaining variables fail to contri­

bute significantly to the prediction of Y. The backward elimination

procedure begirjs with a model containing all potential predictors, and

then at each step a variable is eliminated if its removal from the model

results in the smallest reduction in the model's effectiveness. The

elimination process continues until the removal of any variable results

in a significant reduction in the model’s R2. The true stepwise

procedure is a variant of the forward selection technique. It differs

from the forward selection procedure in that at each step, a variable
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that has been previously included in the model may be deleted if
a Partial

F-test shows that variable to be an insignificant predictor.

In most of the computer statistical packages that have stepwise

regression procedures, the criterion used for variable selection is an

F-test formed as follows:

(1)

where: R^ = the coefficient of determination for

the model containing all predictors

included at previous steps, plus the

variable under test.

RR = tbe coef:ficient of determination for

the model containing all predictors

except the variable under test.

N = the number of observations.

p - the number of predictors used in the

model that produced R^.

9 two

the

was

the

As with any

be made. A type
kinds of inferential errors can

. error would occur if a .
ratio criterion , riable was selected, using

un > when that
zero, a type jj s Population regression weight

F-test criterion * Variable is not selected, using

1 ’ when that v •
ost users of stepwiSe 1138 3 non'zero population weigh1,

reSreSSiOn ado« of the traditional
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significance levels (.05 or .01) when evaluating the F-test in (1).

This significance level will determine the type I error rate for each

test. However, another perspective can be taken when considering the

type I error rate, the problem-wide error rate.

The problem-wide error rate is the probability of selecting any

variable when all variables have population regression weights of zero.

In other words, the problem-wide error rate is the probability of forming

a sample regression model, when none should be formed. The rest of this

paper addresses this error rate, and a procedure will be presented that

allows researchers to control its value.

The problem-wide error rate is comparable to the family-wide error

rate commonly encountered in the context of post hoc tests conducted

after a significant effect has been found in an ANOVA. For example,

the probability of making one or more type I errors in a family of

orthogonal tests is:

k
a = 1 - ir (l-ap

* i=l

where aF = the family-wide error rate.

k = the number of orthogonal tests.

a. = the significance level on test i

When the a 's are all equal to ct_»
i 1

aF = 1 - (l-aT) •
(3)
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If a researcher wished to control ap by reducing (3) could be

solved for a
T*

aT = 1 -aJZ l-aF .
(4)

Alternately, the researcher could conservatively approximate aT

using the Bonnferoni inequality,

(5)

. A

author

in the

“T - aF/k

When the members of the family of tests are not orthogonal> foMulae

(U) and (5) yield conservative values of «r That is, the use of aT

fro™ CO or (5) will result ln an

solution for is considerably wore complex when the tests are not

orthogonal. The solution for a critical F that will maintain a, at a

ue should be done using the correlated F distributor! (Pope

" HebSter> 1972,‘ innately the integration of the correlated F

xstrrbutron is an extremely tedious process,.and only limited tables of

alues derived from it are available. Consequently, an approxi-

method
Monte Carlo nro^m
fo .. ’ Wltten ln FORTRAN IV, was prepared by the
or this project. Th

Internal-• ? incor'porated subroutines supplied
international Mathematical and stati

IMSL subroutines Mistical Library (1975). The
were selected because of th •

efficiency. c eir Proven accuracy and
fHg program ■?«-»

1S S“PPUed in the Appendix of this
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The program generated sample data matrices (cases by variables)

sampled with a given population dispersion matrix. Subroutine GGNRM

was used for this purpose. Various population correlation matrices were

supplied to GGNRM and a sample data matrix of standard normal deviates

was produced. All population correlations between the predictors and

the criterion variable were set equal to zero. The inter-predictor

correlations were all set equal to a common value, and for the various

replications examined in this study, the inter-predictor correlations

were 0, .3, .5, .7, and .9. In addition, the numbers of predictors used

were 2, 3, 4, 5, 7, 10, and 20. For every combination of the number of

predictors and the average inter-predictor correlation (35 in all), a

thousand sample data sets were generated.

Each data set thus generated was then subjected to a stepwise

regression analysis using IMSL subroutine RLSTEP. Subroutine RLSTEP

uses a true stepwise procedure. Variable selection is governed by a

significance testing process. When, at any step, no F-test

is significant, the selection process ceases.

. For the purposes of this study, an error occured when a model, other

than the null model, was formed by subroutine RLSTEP. The proportion of

analyses resulting in a model was treated as an empirical estimate of

the probability of erroneously forming a model using stepwise regre

analysis.

RESULTS

Table 1 shows the results obtained when a variable selection

significance level of .05 is used. The table entries in Table 1 are the

Proportion of 1000 stepwise regression analyses that produced a samp 
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model when none should have been produced. For example, when a researcher

has ten potential predictors that have correlations with each other

equal to .50, the probability of erroneously forming a model is approxi­

mately .308.

Since the values in Table 1 are empirical estimates of the actual

probabilities of making an error, there is some sampling error. The

magnitude of the sampling error can be conservatively estimated by using

the standard error of a proportion when p = .5. Since 1000 replications

were used to derive each table entry, the standard error of a sample

proportion will be less than or equal to .016. Consequently, a conserva­

tive 68% confidence interval for the true probability of making an error

will be: tabled value ± .016.

The figures in Table 1 support two conclusions: (1) The probability

of erroneously forming a regression model increases dramatically as a

function of the number of predictors, and (2), as the inter-predictor

correlation increases, the probability of making an error decreases.

Consequently, any solution to the error rate problem must take into

consideration the number of predictors and the inter-predictor correlation.

After Table 1 was prepared, an attempt was made to develop an

algorithm that could be used to select a significance level for variable

selection that would control the problem-wide error rate.

The rationale for the algorithm presented here was based on the

formula that gives the family-wide error rate in k independent tests.

Formula (3) is reproduced here for this purpose:

aF ~ 1 ~ , (6)
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AH terms are defined in (3). If and ap are known, k can be solved

for as follows:

ln(l-a )
U - A

Formula (7) was applied to each entry in Table 1, and the resulting

k values are given in Table 2. In producing Table 2, a? was .05 and ap

was taken as the corresponding value in Table 1. The k values in Table 2

were then plotted as a function of various measures of the inter-predictor

correlation. Figure 1 shows one of these plots for the 10 predictor

variable case. The k values were observed to be an inverse linear

function of P^, the inter-predictor correlation. The following function

was considered to be a reasonable approximation:

k = p - (p-l)p2 (8)
Art

where p = the number of predictors

p2 = the inter-predictor correlation.
XIX

This function seemed suitable since for the extreme cases of p2 , 0 and

1’°» (8) produced k values of p and 1 respectively. When p2 is equal

° 0*  the problem-wide error rate should equal the ap value given by (6).

Under this condition (p2 - 0) the error rate is directly analogous to
*xx

e family-wide error rate for a family of orthogonal tests. When

ls equal to 1, every predictor is linearly dependent on the other

Predictors, hence there is in fact only one predictor. Formula (8) yields

a k value of is when p2 eqUais i. In addition, inspection of plots, such
XX
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as Figure 1, suggested that (8) was also accurate for estimating k fop

values of p2 between 0 and 1.
XX

Unfortunately, a researcher using stepwise regression never knows

n2 so it must be estimated. A less biased estimate of the squared corps
Kxx’
tion coefficient can be obtained using the shrinkage formula (McNumar,

1969):

P2 = 1 - . (9)

The estimate of p2 used for this study was obtained as follows:
XX

Let R = the inter-predictor correlation matrix.
A

Define each element in R as
PP

2 - a ta 2 \ N~1.. = 1 - (1-rt.) ——■
ij 19 N-2

(10)

where r2 .
13

= the square of the ijth element of R , and

N = the number of observations.

Let r2
^(p2-p)

(11)

which is the mean of

The sample estimate of p2 is
xx

the off diagonal elements of Ra­

then substituted into (8) to obtain

k = p - (p-i)r2 . (12)

After k has been obtained via (12), ■, is obtained 
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aT = 1 - tyl-a” , (13)

where is the desired problem-wide error rate.

A concise worked example is given in the Appendix of this paper.

The validity of the proposed algorithm was then tested by modifying

the Monte Carlo program, used to produce Table 1, to use (13) to select

an a^. The results of this validation study are presented in Table 3.

As can be noted in Table 3, the probability of erroneously forming a

model, using (13) to determine «T, approaches the desired value of .05.

There is a slight tendency for this procedure to produce conservative

values of c^. The average value of in Table 3 is .045, and the

conservative nature of the procedure is most apparent for problems with

large numbers of predictors and high inter-predictor correlations.

DISCUSSION

The type I error rate in stepwise regression analysis deserves

serious consideration by researchers. The literature is replete with

"significant" findings that fail the ultimate test of replication. One

possible explanation for this state of affairs might lie in the increasing

problem-wide error rate that can occur in stepwise regression analysis.

If a researcher considers the problem wide error rate important, he

or she should take some corrective action. Three possibilities exist,

depending on the kind of analysis contemplated. They are: (1) Prior to

the stepwise analysis conduct an omnibus test of the model containing all

potential predictors, (2) use the backward elimination procedure and use

an aT obtained by substituting the number of predictors for k in (13),

or (3) use the algorithm for obtaining presented here, if a forward 
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selection or true stepwise procedure is used.

The Omnibus Test

The analysis begins by forming a full model containing all

predictors. The R2 for this model is tested for significance at the

a level. The F is obtained as follows:
F

F = r2/P------------ , (14)
(l-R2)/(N-p-l)

where R2 = the coefficient of determination for the model

containing all potential predictors,

p = the number of predictors,

N = the number of cases.

This F ratio yields a simultaneous test of significance for all weights

in a model. Proceed with the analysis only if a significant F using (14)

is obtained.

The Backward Elimination Procedure

The backward elimination procedure is comparable to testing a

family of orthogonal hypotheses. At each step, the variance accounted

for in the dependent variable that is tested for each predictor is

independent of all other sources of variation. Consequently, the use of

“T = i - , <15)

will maintain at its desired value.

Finally, the algorithm developed in this paper is recommended if a

forward selection or true stepwise procedure is used. Since the value

of aT obtained using (13) will be greater than that obtained using d5^’ 
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when some covariance among the predictors is present, the use of (13)

will produce a more powerful analysis.
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Table 1

Monte Carlo Estimates of the Probability of

Erroneously Forming a Sample Model Using

Stepwise Regression Analysis with

a Variable Selection Significance Level of .05

Inter-Predictor Number of Predictors

Correlation 2 3 4 5 7 10 20

.0 .102 .130 .184 .216 .304 .410 .653

.3 .101 .130 .178 .213 .275 .367 .552

.5 .097 .128 .171 .196 .235 .308 .417

.7 .085 .125 .140 .153 .185 .225 .314

.9 .073 .094 .101 .111 .122 .126 .169
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Table 2

k Values Derived Using Formula (7)

on the Values from Table 1

Inter-Predictor

Correlation

Number of Predictors

2 3 4 5 7 10 20

.0 2.10 2.72 3.96 4.74 7.06 10.29 20.63

.3 2.08 2.72 3.82 4.67 6.27 8.92 15.70

.5 1.99 2.67 3.66 4.25 5.22 7.18 10.52

.7 1.73 2.60 2.94 3.24 3.98 4.97 7.35

.9 1.48 1.92 2.08 2.28 2.54 2.63 3.61
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/** for 10 predictors.
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Table 3

Monte Carlo Estimates of the Probability

of Erroneously Forming a Sample Model Using Stepwise

Regression Analysis with a Variable Selection Significance

Level Obtained Using Formula 13. The Desired <Xp was .05

Inter-Predictor

Correlation

Number of Predictors

2 3 4 5 7 10 20

.0 .052 .044 .058 .044 .048 .045 .055

.3- .050 .045 .044 .055 .046 .047 .038

.5 .060 .044 .041 .063 .041 .044 .042

.7 .059 .050 .041 .046 .037 .031 .032

.9 .045 .054 .056 .050 .033 .027 .011
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TWO METHODS OF COMPUTING MATRICES OF
WITHIN-GROUP CORRELATIONS USING

FULL MODEL DUMMY VARIABLES
Gary J. Coles

American Institutes for Research

Abstract

Usj-ng matrices of pooled with in-group correlations in identifying and
defining multi-item indices on survey instruments permits the researcher
to create indices that will not, for methodolgical reasons alone, be con­
founded with those group differences. This paper discusses how full model
dummy variables can be used with partial correlation or. multiple regression
procedures to compute such correlation matrices.

Introduction.

Because multi-item indices, if constructed properly, are more reliable

than a single-item measure of the same construct, researchers usually attempt

to develop internally consistent multi-item indices from available data.

However, the large amount of data required for sound index development typically

is not collected in a pilot test of the instrument and its items. One of the.

reasons for this is the availability of adequate resources for thorough pilot

testing of instruments. Another is that in research efforts sponsored by the

federal government, special clearance (taking anywhere between six and 12

weeks, or longer) must be obtained before any instruments can be administered

by a contractor or grantee to more than a small number of individuals. Thus,

a random sample of the cases in one's final data base is the most frequent

source for data on which to conduct index development. The remainder of the

Mses in the data base can then be used to cross-validate the internal con­

sistency of the indices identified and to provide index reliability estimates.

One frequently overlooked issue inherent with such an approach, however,.

ls that index development may be affected by the very same group differences

“Meh one hopes to describe by means of the indices being identified and

‘’"fined. This is Because if one has drawn a random sample of one’s data for 
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index development purposes, cases from the various groups of interest should

be selected (within the limits of sampling error) from each group in propor­

tion to the number of cases in that group relative to the total number of

cases in the data base. Thus, the procedure of using a random sample of

cases in one’s data base for index development and accessing the remaining

cases for purposes of index cross-validation will not guarantee that among-

group effects have been adequately controlled. Subsequent use of such indices

to describe group differences could be misleading (at best) or could represent

"bootstrapping" (at worst). Is there, however, a practical solution to this

issue?

Discussion

Perhaps the most sound approach is to identify indices on a priori

grounds and/or to ascertain if the items that are to belong to a given index

are associated with one another, independently of systematic group differ­

ences among the items. Assuming that one is using simple correlations and

factor analysis or principal components analysis to examine inter-item

covariation, the proposed approach can be accomplished by analyzing a matrix

of correlations from which group differences have been covaried out (i.e«,

analyze a matrix of pooled within-group correlations).

It can be shown that any correlation based upon data from individuals

in different groups can be broken down into among-group and within—group

components (Coles, 1976).The within-group component is, in fact, a. pooled

within-group correlation coefficient or a pooled within-group multiple correl

coefficient in the case of a single criterion variable and multiple predictor

variables. Because this is true, it is possible and practical to compute

matrices of such coefficients using currently existing computer software.

Due to the widespread availability of multiple regression computer

programs and, to a lesser extent, partial correlation computer programs, t^'e

most feasible methods to compute matrices of pooled within-group correlation

to do so via partial or multiple correlations. In both cases, the resea

must associate with each data record a series of k-1 dummy variables that 
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encode that case’s membership in one of the k mutually exclusive groups of

concern in the study. In regression analysis terminology, this series of

k-1 vectors are the variables included in the full model-equation for one's

particular design. (And, because they are, these variables can be used in

one’s later analyses of group differences.) If one is using a partial corre­

lation program, the matrix of partial correlations will, in fact, be a

pooled within-group correlation matrix if the k-1 vectors are declared as

covariables. This is because the full model equation’s k—1 dummy—coded

vectors describe all group differences and because the partial correlation

program in effect will covary these from each of the items prior to their

being intercorrelated.

The use of a multiple correlation program is somewhat more laborious

because it is necessary to treat each item as a criterion variable, to com­

pute the regression of each criterion on the full model equation’s k-1

variables, to compute the residuals for each item given the results obtained

(sometimes an optional form of output with some multiple regression/correlation

computer programs), and to inter correlate the residuals. The variance of the

residuals is, obviously, the pooled within-groups variance since the full-model

predictor variables encoded all group differences. And, intercorrelations

among variables that have no among-group variance will be pooled within-group

correlations since it can be shown that without among-group variance in

two or more variables there can be no among-groups covariance (Coles, 1976).

There, of course, is no strict requirement that one’s covariables in

this particular approach to adjusting correlations be variables merely des­

cribing group differences. The full model equation could, for example,

contain variables measuring attributes of individuals. In this case, one

could covary out of each and every item, all among-group variance, as well

as all variance (among-group and within-group) for the individual level

variable (s). Such might be the case, for example, if one wished to identify

and define multi-item indices that were independent of group/treatment member­

ship and of the socioeconomic status of the individual. As in all such

analyses, however, the particular covariates used should be chosen because

there is a clearcut reason for their being used.
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Technical Notes

iwithin-group and among-groups covariance and variance components can be
shown derivationally by partitioning the deviation of a given score frora
that variable’s overall or grand mean into (1) the deviation of the score
from the mean of all-scores in the group of which it is a member plus
(2) the deviation of that group’s mean from the overall or grand mean.

product-moment correlation coefficient (r ) becomes
xy

When this is done for two variables being correlated the formula for the
Pearson

Cov (W) + Cov (A)
xy xy

r = ------------------------------------------------------------------------------------
xy ------------------------------------- ----------------- :---------------- -

✓Varx(W) + Var^(A) / Vary(W) + Vary(A)

where

Cov (W) = weighted and pooled within-groups covariance

Cov (A) = weighted and pooled among-groups covariance

Var (W),
X

Var (W) ~ weighted and pooled within-group variances

Varx(A), Var (A) = weighted and pooled among-group variances
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RECIPROCAL CAUSATION
IN REGRESSION ANALYSIS

Lee M. Wolfle
Virginia Polytechnic and State University

With even the simplest bivariate regression, least-squares solutions

are inappropriate unless one assumes a priori that reciprocal effects are

absent, or at least implausible. While the discussion to follow is

limited to bivariate regression, the issues apply equally to multi­

variate regression, including stepwise regression. McNeil (1976: 49)

has written that, "most stepwise applications are based on one-shot

studies that are not based on a priori hypotheses." This paper will

demonstrate that any regression estimate is based on a priori

assumptions. Furthermore, while the discussion is framed in the context

of regression analysis, the issues to be raised apply to all forms of

data analysis, including all analysis of variance designs.

A situation commonly faced by researchers is to have a set of

random variables, each of which may be considered a dependent vari­

able, to be explained by a different set of independent variables.

Thus, each could be regressed on all of the other variables, Xj

(j / i). In the simplest case, consider two variables, X] and X?.

With no a priori reason to select only one variable as dependent,

we have:

X1 = al + b12X2 + el

X2 = a2 + b21Xl + ^2’

where X^ and X? are random variables; a-p a2, b-|2’ and b2i are con

stants, their values to be estimated from the data; and e] and e?
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are disturbance terms, or residuals.

However, these two equations taken together have no unique solution.

To demonstrate, take the regression:

X1 = al + b]2X2 + er

Letting x] = (X] - xp and x2 = (X2 - X2), the equation may be

transformed to:

X1 = b12x2 + eT

The constant b^2 is equivalent in both the original and transformed

equations, as are the individual values of e^. In order to obtain an

unbiased least-squares estimate of the population value, B-|2, one

must assume,

E(x2ep = 0,

where the E-notation indicates the expected value. The solution for

b-|2 would then proceed in the usual way (see, for example, Kerlinger

and Pedhazur, 1973). The equation,

X1 = b12x2 + el ’

however, may be rewritten,

Letting -j— - b and  we ha
12 u]2

x2 = t>2lxl + e2>

which is a simple transformation of,

X2 " a2 + + e2.
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In order to obtain a least-squares estimate of b21, the assumption that

E(x1e2) = 0 is required; but on the assumption that the first equation

is true, including the specification that E(x2ep = 0, it can be shown

that E(x-|62) / 0. To do so, take the equation,

x2 " b21xl + e2’

it may be multiplied by e2, obtaining,
2

X2e2 = b21Xle2 + e2’

Taking the expected value of this equation, we have,

E(x2e2) - b2iE(Xie2) + E(e2).

And by transposition and substitution, we obtain:

E^xle2^ = E(x2ez) " b^" E^e2^

o
- b.j2E(x2e2) - b-|2E(e2)

"®i ~®i ?
= b12E(x2^^ " b12E^Ej^ }

“b12 e?
= E(x2eP " b12 E(^H

= “E(x2e]) - E(e1).

Since E(x2e-|) = 0 by assumption, we have,

E(xle2> *

Thus, E(x1e2) will be zero only when E(e^) = 0; that is, when every

data point falls on a straight line - a rare occurrence, indeed.

In similar fashion, it can be shown that the usual formula for

computing b^ is inappropriate in situations where we cannot by
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and covariances:

= 0, then

/ 0 when one assumes the first equation

be solved with the least-squares

E<x]e2)

b2-[ may

-ion of

°Xle2

We may therefore

°x xxlx2

ax exle2

= E(xf)

= E(X-]X2)

assumption eliminate reciprocal causation. Taking,

X2 ~ b21Xl e2*

o =
X1X2

If we were able to

not

b12’

on square with the well-known fact that there

1 on and on X^? The regression of X^ on X2»

This

write the covariance of

: b21ax1x1 + ax]e2 ’

i assume E(x-je2) =

°x1x2
b21 " o

X1X1
the usual formula. But

to be true. Therefore,

formula used in the soluti

How does this conclusi

are two regressions, X

as we have seen, requires the assumption that E(x2ep = 0.

the equation may be multiplied by x^, obtaining,
2

xlx2 ' b21xl + xle2‘

Taking the expected value of this equation, we have,
o

E(xlx2^ " ^21^^XP e^x-]®2^*

Each of these variables has a variance, and it is convenient to adopt

.the following notation for the variances

a
xlxl

x-[X2 as,
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assumption is equivalent to saying that there is no reciprocal causation;

that is, in order to estimate b]2 one must assume b2] = 0. At the same

time, regressing X2 on requires the assumption that Efx^e^) = 0^2 = 0.

In order to obtain unbiased least-squares estimates of b12 and b2]

together, one must assume 8]2 = g2] = 0. In other words, although

nonzero numeric values may be attached to b]2 and b2], there can be

no plausible interpretation of b-]2 and b^ taken together, when

consideration is taken of the underlying assumptions that

&12 = 621 = °*

Furthermore, the two statistics, b^2 and b21, are constrained

by the fact that,
2

b12b21 = r12’

That is, they must always be zero or of the same sign, and their

product may never exceed unity. In situations in which reciprocity

exists, this relation clearly leads to the conclusion that some­

thing is wrong. If, for example, one "knows" that the association

of X1 on X2 is positive, but that the association of X2 on X] is

negative, the statistics, b-|2 and b^, must nevertheless have the

same sign. To continue the example, if the price of a certain

commodity (X-|) was regressed on real income (X2), one would expect

b to be positive, since increases in real income would increase

demand, thereby increasing the price of the commodity. On the other

hand, an increase in the price of the commodity should produce a

decrease in real income; nonetheless, b2^ would be positive even

when one "knows" it should be negative.



70

CONCLUSION

In sum, ordinary least squares is inappropriate when one cannot

eliminate by assumption the possibility of reciprocal causation. To

obtain least-squares estimates for the association of only two vari­

ables, one must "argue away" the existence of what is variously

called simultaneity, feedback loops, or reciprocal causation. That

is, if one decides that X1 is the dependent variable, one must also

assume at the same time that = some cases this may be

done with little ambiguity; if X] is a performance score and X2 a

dummy variable indicating the respondent's sex, clearly the former

could not in any realistic way be said to have caused the latter.

In other situations, the matter is not nearly as clear-cut. For

example, in the case of the two variables, "educational plans" (X^) and

"best friend’s educational plans," (X^) educational plans can be

thought of as deriving in part from the influence of the plans of one's

best friend, and educational plans is regressed on best friend's plans.

However, if one stipulates that one's educational plans are influenced

by one's best friend, it must also be the case that from the perspective

of the best friend, the respondent's plans influenced his or her

educational plans. These variables are reciprocal causes of each

other, and regressing one on the other would violate the assumption

required of least-squares regression that the independent variable

is uncorrelated with the error term.

Thus, in order to perform even the simplest bivariate regression,

one has to make assumptions about the real relationship between

variables. Specifically, one has to postulate the absence of 
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reciprocal causation. In doing so, reference should be made to

the models and theories which synthesize the area under study.

In a few words, the researcher must have a firm grasp on reality

in order to proceed with the analysis of his data. Data analysis

thus becomes a two-way process; the researcher must have some

basis for ordering variables before analyzing the data, which

when finished will further illuminate the real world.

Do not conclude from this that regression models are bad.

Most variables can be plausibly ordered in terms of their

dependence on one another, and least-squares solutions are clearly

appropriate. However, the researcher should be sensitive to the

possibility of reciprocal effects, because when present the

regression estimates are biased.
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