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Dear SIG Members:

A NEW EDITORIAL POLICY

As you may or may not know, the special interest group on Multiple
Linear Regression at the AERA meeting in Washington voted to initi­
ate a new editorial policy on an experimental basis for next year.
Since we feel that "Viewpoints" should allow our members to express
their positions or ideas freely, an article will be published as is,
without any editorial review, if the author so desires. This
article will then be placed in a non refereed section of the jour­
nal.

The other option an author may exercise is to request that his
paper be refereed. The editorial comments will be sent to the
author for nis benefit and he will be asked to rewrite in accor­
dance with the suggestions before resubmitting his article. The
rewritten article will then be published in the refereed section
of the journal. The major drawback of this procedure is that it
will take a little longer, but the author should benefit from the
comments of the reviewers.

When you submit a paper, I would appreciate your informing me
whether or not you would like your article reviewed. I would also
like to remind you that a cost of $1 per page should be submitted
with the paper. Reprints are also available from the editor if
they are ordered when the paper is submitted. Twenty reprints will
cost $.50 per page of manuscript.

Respectfully,

•Isadora Newman, Ph.D.
Editor, Multiple Linear
Regression Viewpoints

IN/kaj
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Multiple Linear Regression Viewpoints
Vol. 6. No. I, 1975

Logical Steps in the Creation and Manipulation
of Fixed X Linear Models

Earl Jennings
University of Texas at Austin

Joe H. Ward, Jr.
Air Force Human Resources Laboratory

The remarks in this paper were prepared for a meeting of a special
interest group of AERA at the annual meeting in Washington, 1975.
Presumably the views expressed are intelligible, although not necessarily
agreeable, to members of the special interest group. Others who are
interested will find these steps and the concepts that serve as a found­
ation lor them elaborated and exemplified in Introduction to Linear
Models, Prentice-Hall, 1973 by the authors.
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Over a period of some years, the authors have been approached for

advice on the formulation of linear models by individuals with varying

degrees of expertise. It has been our experience that many of the

difficulties encountered by such individuals can be traced to a lack of

consideration of certain concepts and ideas that we have found helpful

in model creation, manipulation, and interpretation. In the list which

follows an effort has been made to identify a series of steps in the

approximate order in which they ordinarily occur. Although all problem

situations may not require detailed attention to each step,we are of the

opinion that investigators who reach a point where they do not know what

to do next generally have failed to consider one or more of the following

steps:

1. State the question in “natural language.” The question may

contain technical terms in substantive areas but the use of

technical terms of a statistical or mathematical nature should

be avoided at this stage. For example, the investigator should

not ask, “Are the regression slopes for methods A and B homo­

genous?” A preferable phrasing is, “Does the difference in

performance between method A and B depend on aptitude,” or

perhaps, “Is the difference between method A and B the same

at all levels of aptitude?”
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2. Accept the idea that model creation and manipulation is a way

of formalizing an argument. Identify the entities and the

attributes associated with these entities in the problem situation.

If at all possible, translate the question in 1 in such a way that

specifiable relationships among a set of means (expected values)

can be used as evidence concerning the answer to 1. By con­

centrating on the expected values, one can usually avoid the

problems of non-estimability that characterize over parameterized

models, and except for possible power considerations, eliminate

any concern over unbalanced data.

It has been our experience that a failure to identify a

relationship among a set of expected values leads to a jungle of

confusion in terms of undefined or tautologically defined concepts.

Our general position is that the process of assigning an attractive

name such as “proportion of variance accounted for,” “joint

contributions” or “linear by linear component of the AB

interaction” to a specifiable quantity does not enhance ones

understanding. The purpose of a technical vocabulary should be

to speed communication, not to serve as a substitute for thought.

3. Translate natural language questions into a symbolic expression

that relates expected values (means) in a model independent form.

This step forces an investigator to think seriously about his 
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question before he attempts to create a model. In particular

it forces him to identify the expected values that his model must

estimate and the relationship that must exist among those

expected values to defend a particular inference about 1. It

is particularly important at this stage not to get overly concerned

with the ’‘name” of the hypothesis. It may be a stimulating

intellectual exercise and a profitable educational experience to

determine what the models are that produce the test of the AB

interaction in a multiple covariable factorial analysis of covariance.

We call this process “model recognition” and although it is a

desirable skill to possess, it is different from model creation.

Step 3 forces the investigator to state in a relatively unambiguous

form what his definition of an “effect” or a “relationship” is.

In a sense this step represents the translation of the natural

language used in step 1 into an operational definition.

4. Write a linear model which will produce “good” estimates of the

expected values which are to be compared. Although the

superiority of matrix notation is acknowledged for some purposes,

we prefer to write the model in vector notation because we

believe it facilitates later steps, particularly step 8 and to some

extent steps 5, 6, 7 and 9. This model is referred to as the

starting, assumed or full model.
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5. Investigate the properties of the model so as to identify what

assumptions are being made. In connection with this, the

researcher should be able to distinguish between a model which

is known to be “true” and a model the truth of which depends

on certain assumptions. For a large class of fairly simple models

step 5 can be carried out by inspection. For more complex

models, the researcher may find it necessary to iterate on steps

4 and 5. An understanding of the concept of equivalent models

can be invaluable at this stage because a model with specified

properties can be parameterized in an infinite number of ways.

6. Substitute for the expected values expressed in 3 their estimates

in symbolic form from the model generated in 4.

7. State the restrictions on the parameters of the model which are

implied by simplifying the mathematical expressions of 6.

8. Impose the restrictions identified in 7 on the model generated in

4 to produce a restricted or reduced model. For multi-attribute

models, steps 7 and 8 can require a considerable degree of skill

in algebraic manipulations. A recent issue of Viewpoints contained

an article on “contrast coding.” In addition to reducing comput­

ational labor, contrast coding usually reduces step 8 to a trivial

problem. The disadvantage of contrast coding is that the work

saved in step 8 is transferred to steps 4 through 6 and the 
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starting model, although equivalent, is usually not as intuitively

appealing.

9. Investigate the properties of the restricted model so as to verify

that the estimates of the expected values are related in the

manner specified in 3. If not, it may be necessary to iterate

on steps 6 through 9.

This step is frequently omitted with discouraging results.

Depending in part on how the starting model was parameterized,

the restricted model may look “peculiar” and cause the creator

to think a mistake has been made. Failure to verify the re­

stricted model may cause the investigator to give up prematurely

or proceed erroneously.

10. Obtain a least squares solution for both the full and restricted

model.

11. Compare the full and restricted model by constructing an

appropriate test statistic on the basis of which a decision is

reached about 3 and by inference about 1.

Steps 1 through 4 are logically the most difficult and intellectually

challenging. The decisions reached in these steps are always subject to

debate and they generally require a good deal of creative or intuitive

insight and substantive expertise in a problem area. Except for steps 10

and 11, the remaining steps generally require only the polishing of

relatively routine algebraic skills.
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COMPARISON OF REGRESSION C(EFFICIENTS IN MULTIVARIATE REGRESSION EQUATIONS

• *>y

Robert A. Karabinus, Northern Illinois University
Charles H. McCormick, Northern Illinois University

The main purpose of this study was to explore methods of comparing regression
coefficients in multivariate regression equations containing the same variables
but for independent groups. Secondary purposes included the exploration of methods
to compare multiple correlation coefficients and canonical correlation coefficients
between independent groups.

The uses of multiple regression analysis have been well covered in research literature
and in various statistical texts. Problems with numbers and kinds of independent
variables to choose, multicollinearity, sampling error, etc., that need careful
attention with multiple regression analysis also need special attention with multi­
variate analysis. Since the study of human behavior is one involving complex and
overlapping variables, the use of multivariate regression analyses should and will
be playing an ever increasing role as more of us familiarize ourselves with the
techniques and the available computer programs that have been developed to handle
the rather complicated procedures.

The initial research problem that made this investigation necessary was one involving
the relative importance of certain nonintellective variables in the prediction of
academic success of school children in three different ethnic groups. Academic
success was defined as a compound dependent variable comprising arithmetic and
reading subtest scores on the Metropolitan Achievement Tests (1970). Since this
dependent variable was really two different sets of scores that were significantly
related, the use of multivariate techniques was mandated. The three nonintellective
independent variables were the Coopersmith Self-esteem Inventory (SEI), Sarason's

Test Anxiety Scale for Children (TASC), and Sarason's Test Anxiety Scale for Children
(GASC). In addition to these three independent variables, it was felt necessary
to include four other variables: intelligence, sex, ethnic group, and grade in
school. Intelligence was measured by the Otis-Lannon Mental Ability Test,’ sex
was boys and girls, ethnic groups were White, Black, and Spanish-sumame, and the
children were all from grades 4, 5, and 6 from a wide range of socio-economic levels.
Over 1200 children were selected from a large suburban mid-western community to

participate in this project.
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While the detailed results of how all those variables interrelated and what the
regression equations looked like would be of general interest (see McCdrmick, 1975),

our concern here was limited to a further exploration of viable statistical tech­

niques to meet the needs of that research as expressed in the purpose statement of
this paper. Each of the eight techniques presented was illustrated with data from

the McCormick study.

Comparison of two independent multiple correlation coefficients;
One of the secondary purposes of this paper was to find a way to test the sigr.il..-
cance of difference between two independent multiple correlation coefficients ger.eiated
from the same variables. While the z test for differences of independent correlation
coefficients utilizing Zeta transformations was quite appropriate for zero order
correlation coefficients having ranges from -1.0 to +1.0, it was not considered for

use with multiple correlations having ranges only from 0 to +1.0.

Some consideration was given to an F test formula that was modeled after the simple

homogeneity test for variances. It was identified as Formula 1.
(SSreg./df)-^ (SSreg.)^^

Formula 1. F - or .taply (sSreg.)2

Subscripts of 1 & 2: group designation
SSreg.: regression sum of squares
df: degrees of freedom = # of independent variables,

or k. This term dropped out of the equation because
k was a constant for each pair of groups compared.

One problem was immediately apparent, however. While in the homogeneity test the
n of each group was involved in the determination of the df, for regression variances
only the # of independent variables or k was involved. Therefore, the variances
were weighted equally in this equation when in fact their actual values were a function
of the n of each group. This was considered a major fault with this approach, though
when the n of the two groups involved were approximate!y the same, the results were
reasonable.

2When two independent R were compared for groups of unequal n using Formula 1
(see Table I, Illustration A), the F value of 5.806 was found to be significant.
Conclusion: the correlation with arithmetic was significantly higher (p».O5) for

White than for Spanish-sumame ^th grade children. However, because of the large
differences in n between the two groups, this conclusion was probably biased in favor
of the larger group. Therefore, this formula mightnot be valid for comparisons of
groups with unequal n.
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TABLE I

Illustrations of Independent R Comparisons

2
A: The R for two ethnic groups in the 4th grade were compared.

Dependent variable: arithmetic achievement
Independent variables: I.Q., sex, SEI, GASC, & TASC

Group____ n k R2 SSreg. SSres.
White 301

Spanish-sumame 74
5 .6199

. 5 .51996
32636.604 20010.3195

5621.1195 5189.597

(SSreg.Formula 1: F* , 6 = .
(SSreg. )2

32636.604
5621.1195 5.806 df: 5/5 p<.05

2- F- CsSres•/(n-k"l)li 5I89.597/68 t> ~ pc
2' F~ [.SSres./(n-k-1)ja ~ 20010.3195/295 1,:L25 ^Z295 P~-25 n.s.

3 s F= ~ -------------' [.SSres./(n-k-1) Ji + |_SSres./(n-k-1)Ja

. 32636., 604/5 - 5621.1195/5^  ho. „ < nni
20010.3195/295 + 5189• 597/63 37.483 df. 5/363 p .001

. _ Fi [~R5/k _______ -| . r Ra/k __________ -|4s •*’L(l-Ra)/(n-k-1)J1 T'- (1-Ra)/(n-k-1) J2

_ .6199Z5 .51996/5 - 6 c?2 9 9
.3801/295 ■ .48004/68 0 ■

B: The Ra for 5th grade Boys and Girls were compared.

Dependent variable: reading achievement
Independent variables: I.Q. sex, SEI, GASC, & TASC

Group n k R3 SSreg. SSres.

Boys

Girls ___

189 5 .700 45119.837 19314.809 •
190 5 .636 35642.762 20365.916

Formula 1: F= 45119.837 i oAA35^2.7?2 " 1'266 df: 5/5 p >.25 n.s

2: F=
20365.916/184 T 0^9
19314.809/183 * y df: 184/183 p>.25 n.s

3: F= 45119.837/5 - 35^2^762/5 =8 66
19314.809/183 + 20365.916/164 0'/OD df: 5/367 p <.001

4: 9—
.700/5 .636/5 = i COO
.30/183 ’ .364/184 1,328 ? ?
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When two independent Ra were compared for groups of nearly equal n using Formula 1

(see Table I, Illustration B), the F value of 1.266 was not significant. Conclusion:

there was no significant difference between the two R . If the formula was valid

for equal n groups, then this conclusion could be accepted.

Because of the problem with the n. of each group not being considered in Formula 1,
we thought we might still be able to use the same basic model but instead of comparing
the SS regression, comparing the S3 residual. By comparing the S3 residual, the n
would be involved in the determination of the df for each group. Then, if signifi­

cance were found between the two independent residual variances, it could be inferred
that the two regression variances were also significantly different (since they are

hypothetically complementary).

Fonul»2: F-

Subscripts of 1 & 2: group designation
SSres.: residual sum of squares
df: degrees of freedom = n-k-1

When two independent Ra were compared for groups of unequal n using Formula 2 (see
Table I, Illustration A), the F of 1.125 was not significant. Conclusion inferred:

since the residual variances were not significantly different, there was no signifi­
cant difference between the two Ra. The validity of this conclusion rests with the
validity of the formula and the inference. Concerning the latter, e.g., we recognize
the fact that because of the df involvement, the regression variances are not directly
complementary (even though the residual and regression sum of squares are).

This same formula was then applied to Illustration B, Table 1, and again no significant
difference was found between the R2 of two groups of nearly equal size. Though it
would appear that this formula gave ■rather conservative results, it did seem to be
fairer in its treatment of the data than did Formula 1.

Another exploratory method used a combination of models: one, the typical inferential
test of mean differences; the other, the format for the test of significance for Rs.
It was identified below and in Table I as Formula 3.

Formula 3« F => ~ (SSreg./k)g
LSSres ./(n-k-1) + [.SSres ./(n-k-1 )Ja

Symbols used are as defined previously.

On the surface, this Formula seemed plausible, but it generated such large F values
that we were not too confident with it. For example, when two independent Ra were 
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compared for groups of unequal n using Formula 3 (see Table I, Illustration A), we

found the F value of 37.483 to be extremely significant. Conclusion: the R3 for
White 4th grade children was significantly higher (p <.001) than the R3 for Spanish-
surname 4th grade children. Even considering the fact that both the individual R3

for each group were highly significant, it seemed doubtful that the difference between

the two could be so highly significant. Though we thought this formula took the bias

out of favoring one group over the other because of sample size,, it might well have
other problems inherent in its logic.

A second example with nearly equal n groups was given in Table I, Illustration B.
Here an F of 8.766 was found to be highly significant, which is in sharp contrast to

the results from Formulas 1 and 2. Again, the two separate R3 were each highly
significant, so the significant finding here of a difference between them rests
with the validity of the formula itself.

Our final exploratory method involved an unknown and therefore unnamed distribution.’
It was the ratio of F values representing the significance levels of each of the
two R4; We did not know how to interpret it, but believed it was worth further study.

It was identified below and in Table I as Formula 4.

Po^a 4, 7 -

r R3/k_________  n ,r R3/k 1
” ^(l-R3)/(n-k-l) -*1 4‘-(1-R2)/(n-k-1) -*2

Using the same data as with the previous Formulas, we computed ? statistics as
noted in Table I, Illustration A & B, Formula 4. The ratios of ratios seemed to be in
the right proportion for the two different Illustrations, but how to interpret them - .

was unknown.

Comparison of two independent canonical coi'ielation coefficients:

The other secondary purpose of this paper was to explore methods of comparing two
independent canonical correlation coefficients. Since a common method to measure the
significance of a Rc is the chi square method proposed by Bartlett (19*4-7) to test the

significance of Lambda (A), it seemed logical to use the chi squares for two

independent Lambdas in a ratio so the F distribution could be used. That formula

was identified as Formula 5 below and in Table II, Illustration C & D.

Formula 5: F = -“■ The F table would be entered with the
Xs same df applied to each chi square.
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TABLE II

Illustrations of Independent Rc Comparisons

C: The Rc for two ethnic groups of 5th grade children were compared.

Dependent variables: arithmetic and reading achievement
Independent variables: I.Q., sex, SEI, TASC, & <?ASC

Group n k Rcx Aj  Xa t m

White 252 5 .88251 .221176 374.18 2 247.5 2 3
Spanish-surname _J8_ 5 .82644 .316997 62.039 2 _53.5 2 3

Formula 5: F “ —“
9^3

= 374.18
. 62.039 6.031 df: 6/6 P <.025

6j ? - -a- - ,
2 -A- /(ms-v) TV /(ms-v)

= (1 - .221176^/8 . (1- .316p7bZg_

.2211767492 . 316997V10^

69.275266
10.089587 6.87 ? ?

D: The Rc for Boys and Girls in the 5th grade were compared.
Dependent variables: arithmetic and reading achievement
Independent variables: I.Q., sex, SEI, TASC, & GASC

--------------------- - ------------------ gPl A1 X3 t m s v
q.3? 189 5 , 891 *2061 292.521 2 184.5 2 3
Girls_________  190 e ozz-------- 2-------- ^22----- _.25O 257.798 2 185.5 2 3

Formula F = 292.521
257.798

s. 1.135 df: 6/6 p>,25 n.s.

6: ? = (1 -.20617/8
.20617366 .257368

E3 55.028783
46.003238 es 1.1962 ? 9
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We limited our examples to the first canonical coefficients, which in all cases were
significant. In our first example (see Table II, Illustration C), we used data from

two 5^h grade ethnic groups, which had unequal n sizes. Since the same variables
were used with both groups, the df of 6 (# of Independent and dependent variables - 1)
was constant. The F value of 6.O3I was found to be significant at the .025 level.

Conclusion: the Rc for White 5th graders was significantly higher (p <.025) than the
Rc for Spanish-sumame 5th graders.

The use of this formula might be questionable when the n was different for each group.
Each chi square was determined in part from the n of its respective group, but the df
for each chi square when going into the F table was not. Therefore, the F test could
be biased in favor of the larger group in much the same way Formula 1 was for the
comparison of independent Ra.

A second example was given in Table II, Illustration D, where the n sizes were nearly
equal. Here the chi squares derived from the Lambda for each Rc for the 5th grade
Boys and Girls were compared, and the F value of 1.135 was not found to be significant.
Whether this lack of significance was a result of no bias with n sizes and actually
no difference between the Lambdas, or the difference between the two lambdas was just
not large enough to be significantly different, regardless of n sizes, was not known.

With this approabh, it is interesting to note that the chi square is a significance
test for lambda, the residual variance. Therefore, the F formula presented was really
a ratio of real dual variances, as was Formula 2 with Rs comparisons, and since the n
of each group is built into the determination of the chi square value, this approach

might very well be considered valid.

Another approach to the problem of testing the significance of difference between
canonicals was explored, this time using the model from Formula 4. We took the ratio
of estimated F values to obtain a factor indicating how many more times one F value 
was larger than the other. The F value for testing the significance of each canonical
separately was approximated using a model developed by Rao (Rulon & Brooks, 1968).

The resulting formula was identified as Formula 6, below and in Table II

Formula 6s
Fx r (l-A*)/t(k-l)-| 4. ^(l-A^/t(k-l)j

Fs A*/(ms-v) A^/(ms-v)
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_/\i = Wilks’ Lambda, derived from the first canonical
correlation (A-i = 1 - Rcs)

t = # of dependent variables
k = # of independent variables

2n - t - k - 2
m = -------- 5-------------- 

s = / ta(k-l)3 4

V ta + (k - l)2 - 5

v . tlk-l) 7.2

When this formula was applied to Illustrations C & D (see Table II), we found ratios

that seemed to be proportional to what Formula 5 gave us for the two Illustrations.
But precisely how to interpret the results was, as with Formula I, unknown. This
formula was believed to be worthy of further study.

A third and last approach which was considered had so many serious problems that we
did not include it Table II. It followed the model of Formula 3, which we initially
thought could easily be adjusted to handle the canonical data. It would have involved
the basic ingredients of Formula 6, with the two fractions made into a compound
fraction by removing the division operation and replacing it in the numerator with
a subtraction operation and in the denominator with an addition operation - plus
the inclusion of total sum of squares for the composite dependent variable. The
attempt to calculate the latter was the main trouble, for in reality it exists as
a SS-SCP matrix and not as a single value. Though Determinates could have been
calculated, we still would not have had a reasonable value to plug into the formula.
Therefore, it was not presented.

Comparison of two independent canonical beta weights;

The primary purpose of this paper was to develop a statistical method to compare
canonical beta weights for two independent groups on the same variables. The need
for such comparisons was made clear in McCormick’s study (1975), But since a technique
was not available then, comparisons in that study were limited to beta weights in
multiple regression equations on the same variables for two independent groups.

The following formula, which was identified as Formula 7, below and in Table III,
utilized the t distribution and was considered an exploratory attempt to meet the
need of independent canonical beta weight comparisons.



- 16 -

Formula ?:
t = -Lhy^a..k)i - (byp.ia,.k)R

A4
This is basically the same formula used to compare zero order beta weights in
independent regression equations (Edwards, 1967).

Adapting the formula to use with canonical beta weights presented two serious
problems. The first one was the conversion of normal beta weights to raw score
beta weights required in this formula. We naively used the same procedure fol 1 nwed
with other partial beta weight conversions, and that was to multiple the normal
beta weight by the ratio of standard deviations, the composite dependent variable
standard deviation over the selected independent variable standard deviation. The
problem, of course, was to figure or estimate the composite dependent variable
standard deviation. After much deliberation, it was decided that the square root
of the average cross products term of the two dependent variables would be a reasonable
estimate of the hypothetical composite standard deviation to use in ratio with the
independent variable’s standard deviation.

The second problem was the estimating of the SE2est. term in the formula. The
formula for the error variance of each partial beta was taken from Kellinger and
Pedhazur (1973)•

3 SE3est.
Sbyi.2..k ’ SS1(1 - R3i.a..k)

SE3est« residual variance
SSX : S3 of variable whose partial beta is

being compared
H3 1 multiple R3 of that selected independent

variable with all other independent
variables in the equation

Though lambda gave us the proportion of residual variance, it did not in any way
help us determine the actual amount of residual variance• Again we were faced with
the need for a value that existed only in a matrix of within SS-SCP, and not as a
single value, We resolved the problem in this way. First we estimated the total
sum of squares of the composite using the canonical weights of the two dependent

variables. Then we took that portion of the estimated composite sum of squares attrib­
uted to error (which we knew to be Lambda), and then divided by the df to obtain the

residual variance. To illustrate how this was done, we have calculated below the
total sum of squares for the 5th grade White children in Illustration E, Table III.
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SS for Beading variable in multiple regression table was 77371.853.

SSt for Arithmetic variable in multiple regression table was 49811.853.

Canonical weights for the composite dependent variable were .515 for Reading
and and .569 for Arithmetic.

Squaring these weights gives us the proportion that each carried in the
composite.
Therefore, .515® times 77371.853 = 20520.949 (proportion SS for Reading)

,569® times 49811.853 = 16127.135 (proportion SS for Arithmetic)

36648.084 (weighted SS^for composite)

Multiplying this composite SS^ by Lambda should give .us that portion attributed
to error.

Lambda times weighted SS. = .221176 • 3&6U8.08^ = 8105.6766 (SSresidual)

Dividing this by the appropriate df, which in this case is 246, gives us
residual variance.

= 32.95 (estimated residual variance)

In Table III, this Formula 7 was demonstrated with Illustrations E & F, The first

of these, Illustration E, concerned the significance of difference between two
independent TASC beta weights for 5th grade White and SpaniSh-sumame children.
In this example the beta weight for the Spanish-sumame group was significant while

the beta weight for the White group was not. The former group, though it was
considerably smaller in size, proved to have a significantly larger beta (p <.001)

than did the White.children. Considering the difference between the two beta
weights, this finding was not surprising. Therefore, the formula seemed to do a
reasonable job in spite of all the estimating of values that was involved.

A similar significant difference was found between two independent GASC beta
weights for 4th grade White andBlack children. In this case, Illustration F,
Tb-ble III, the beta weight for the White children (larger group) was found to be
significantly larger than the beta weight for Black children.

In spite of the fact that estimated values were used in this formula, because it
seemed to work well in spite of n differences between groups, we think it is worth
further examination. It was the only formula that was considered plausible to meet
the need of testing the significance of independent canonical beta weight differences.
However, we would hope that there could be developed a way to compare the normal
beta weights that would also not involve estimated residual variance calculations.
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TABLE III

Illustrations of Canonical Beta Weight Comparisons

E: The beta weights of the TASC variable for 5th grade White and. Spanish-sumame
children were compared.

Dependent variables: arithmetic and reading achievement
Independent variables: I.Q., sex, SEI, GASC, & TASC

Group n TASC 8 Rci A 1
Beta Weights SS Total
Rdg. Arith. Rdg. Arith.

White 252 .075 • :. 88251 .221176 .515 .569 77371.853 49811.853
Spanish- 58 - .285 ■82644 .316997 ■655 .402 11664.345 9680.7759

Formula 7: _/byi.a..k)i - ^bya.i3..k)a

.3328 - (-.8351201)

32.95 i 40.98
0893(1-.755) 15259(1-.843)

I.I67920I
.1427935 df: 298 p < .001

F: The beta weights of the GASC variable for 4th grade White and Black children

were compared.
Dependent variables: arithmetic and reading achievement
Independent variables: I.Q., sex, SEI, GASC & TASC

Beta Weights SS Total
Group n GASC 8 Rcx A x Rdg. Arith. Rdg. Ari th. 
White 301 -.127 . 851 .2758 . 577 .^93 97320.578 52646.924

Black 66 -.030 .813 .339 .644 .416 6832.3182 7912.1212 .

Formula?. „ - (-OgflaL-
1 " / *+2.255 ' , 23.7463—

V 96034(1-.855) 29235(1-.95)

 -.2957226 . -2.09 df: 355 p <.05
.1415835
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Summary:
Obviously, the kind of research that McCormick dealt with in his dissertation

raised a considerable number of technical and statistical questions, of which only

a few were considered in this paper. Each one of the three purposes of this

paper could well have comprised a paper in itself.

Of the four exploratory formulas presented for independent Rs comparisons, we believe

that Formula 2 makes the best sense, even though it appeared to give very conservative

results. We feel much less confident with Formulas 1 and 3, but Formula 4 might

prove to be the best of them if a distribution and interpretation were developed.

Of the two exploratory formulas presented for independent He comparisons, we believe

that Formula 5 makes good sense. Formula 6 has potential if Formula 4 makes any

sense and proves to be feasible.

Ihe only exploratory formula presented for independent Rc beta weight comparisons

was Formula ?• However, we do not consider it satisfactory in its present form.
Hopefully, there will be better ways to estimate the significance of difference
between these beta weights.

We would encourage others to look at these models and give serious thought to the'
development of sound approaches to meet the significance testing needs of
multivariate analyses.
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Abstract

This study investigated the effects of the violation of the assump­

tion of normality coupled with the condition of multicollinearicy
i

upon the outcome of testing the hypothesis B = 0 in the two-pre­

dictor regression equation. A monte carlo approach was utilized in

which three different distributions were sampled for two sample sizes

over thirty-four population correlation matrices. The preliminary

results indicate that the violation of the assumption of normality

has no significant effect upon the outcome of the hypothesis testing

procedure. As was expected, however, the population correlation

matrices with extremely high collinearity between the independent

variables resulted in large standard errors in the sampling distri­

butions of the standardized regression coefficients. Also, these

same population correlation matrices revealed a larger probability

of committing a type II error. Many researchers rely on beta weights

to measure the importance of predictor variables in a regression

equation. With the presence of multicollinearity, however, these

estimates of population standardized regression weights will be sub­

ject to extreme fluctuation and should be interpreted with caution,

especially when the sample size involved is relatively small
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The Effect of Multicollinearity and the Violation

of the Assumption of Normality on the Testing

of Hypotheses in Regression Analysis

One of the goals of applied research is to define functional

relationships among variables of interest. If such relationships

can be found, then this knowledge can be used for prediction pur­

poses. For example given a subject's scores on selected X variables,

the mathematical relationship can be utilized to predict that same

subject's score on the associated Y variable. If the relationship

is not a stable one, then perfect prediction is not possible. This

is generally the situation that exists in social science research.

The best that a prediction rule can do is to provide a 'good' fit to. -

the data. Nevertheless, knowledge of such a rule can greatly decrease

the errors in prediction and can be of practical utility in behavioral

research (Hays, 1963).

Multiple linear regression is one mathematical approach to the

problem of prediction. Given a set of independent variables and a

criterion variable, least squares regression weights can be calculated

which -ill maximize the squared multiple correlation between the cri­

terion v«ctor and the predicted criterion vector (Kerlinger, 1973).

if the variables used in the determination of the regression weights

are transformed into z score form, then the resulting weights are

standardized regression coefficients and sometimes are referred to 
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as beta coefficients (McNemar, 1969). In the remainder of this ,

paper the symbol 8* will be used to refer to the population stan-
1

dardized regression coefficient and the symbol b will represent

the sample weight which estimates it.

These b' weights have been interpreted by some researchers to

reflect the strength and direction of the relationship between an
I

independent variable and the criterion. However, b weights in most

cases are not a useful measure of the importance of a predictor var­

iable when the independent variables are highly intercorrelated (Dar­

lington, 1968). There is no requirement in multiple regression anal­

ysis that the predictor variables used in the regression equation be

uncorrelated or orthogonal (Johnston, 1963). From a linear algebra 

perspective this is reasonable since a criterion vector (dependent

variable) can fit perfectly into a common vector space spanned by

basis vectors (independent variables) which are not orthogonal. (The

criterion vector can be a linear combination of these basis elements).

Therefore, situations may occur in regression analysis in which the

independent variables are highly intercorrelated. The presence of

such highly intercorrelated predictors is termed multicollinearity.

These predictor variables are, in fact, measuring approximately the

same thing which makes the determinant™uecermination of the relative influence

of each independent variable unon the j« upon the criterion virtually impossible

to disentangle (Goldberger, 1968). aRa -u7 Also, the presence of multicol-
linearity Increases rhe standard error of b’ values which results In

a statistically less consistent estimator of B' (Coldh„e„. tosnl
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When exact multicollinearity occurs, one of the independent

variables becomes a multiple of another. In the case of two predictor

variables this would mean that the best fitting function which should

be represented by a plane (see Figure 1) can instead be represented

by a line. Again visualizing this situation from the perspective

of linear algebra, it is evident that since linear dependencies

cannot exist among basis elements which span a common vector space,

the dimensionality of the vector space would in this case be re­

duced to two and the best fitting function would degenerate to one

of a line. Exact multicollinearity is rare in applied research but

multicollinearity is a rather common occurrance.

Statistical tests of significance can be run to determine whether
t

or not a specific B value is different from zero in the population.

In order to test hypotheses such as these, an assumption of normality

must be made in the distribution of the criterion measures (Draper &

Smith, 1966). This assumption is rarely met in psychological or

social science research. Many variables of interest to psychologists

and educators are extremely skewed in the population making such an

assumption invalid.

One of the goals of this study was to examine the effect of the

violation of this assumption upon the probability of committing a
1

type II error in the testing of hypotheses based upon b coefficients.

In order to answer this research question and the others which will

be explained in turn, a monte carlo approach was taken. Extremely
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skewed distributions were included in the distributions of the vari 

ables in the populations for the purpose of making the research more 

meaningful.

Turning once again to the problem of multicollinearity, one might 

consider the effect of highly correlated variables upon the outcome

of the testing of hypotheses such as H :B = 0 for each independent

variable involved in the regression equation. Ostle (1963) states

that the F tests used in testing these hypotheses are not all indepen­

dent since the predictor variables themselves may be correlated. This 

was another goal of the study, to investigate the effects of multi­

collinearity upon the probability of committing a type II error in 

the testing of these hypotheses.

In review the main focus of the authors was the effect of multi­

collinearity coupled with the violation of the assumption of normality

in the criterion measures upon the outcome of the testing of hypotheses

concerning population regression coefficients in the two-predictor

regression equation. Answers were sought to the following specific 

research question:

1. What effect does the violation of the assumption of

normality have upon the probability of committing a

type II error for alpha .05 in the testing of the null
!

hypothesis = 0 (i = 1,2) for both small and large

sample sizes?

2. What effect does the presence of multicollinearity

have upon the probability of committing a type II 
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error in the testing of these hypotheses for small

' and large samples?

3. Does this effect (if any) change as the distribution

sampled becomes more skewed?

The mathematical model under investigation may be written as:

• 1

Z = U.S. + M, + ey JI Z Z

or equivalently:

Z .= Z (<" + e
y x

where Z is an (n x 1) vector of observations in z score form
y

2 is an (n x 2) matrix of known form whose elements are also
x

standardized

B" is a (2 x 1) vector of parameters

e is an (n x 1) vector of errors

and where the e^ are independently and normally distributed (Draper &

Smith, 1966). This last statement is needed in order to test the
1

significance of B . We must also make the important assumption that

the linear model defines the best functional fit to the data in the

population. This assumption can be met by sampling from a multi­

variate normal distribution (Blalock, 1972) which was accomplished

through the monte carlo program.

The test of the null hypothesis rhm- = „ . , ,,e/tvLiiesrs tnaL a specific B value was dif­

ferent from zero was determined from the 4cne following test statistic
(McNemar, 1969) :

2 2
F = (R1 ~ R2)/(m1 - mp

o ~
(1 “ Rj) / (N - - J)
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where R
1

is the multiple correlation coefficient based upon m1 of

the predictor variables and R^ is the multiple correlation coefficient 

based upon m2 of the remaining variables where m = m -1. Sample
I

b values were calculated using the following formulae (McNemar,

1969) :

b' = Si___ ry2r!2 ' _ ry2 ~ rylr12
1 2~ <1-^

The population correlation matrices sample sizes and population

distributions chosen will be outlined in the next section.

Method

In order to answer the research questions it seemed necessary
> t

to construct approximate sampling distributions of b^ and b2 values

from the sample regression equation:

Zy = blZl + b2Z2 + e

The hypotheses dealt with the violation of the assumption of normality,

level of collinearity between the independent variables, sample size
1

and the effect of these upon the hypothesis testing of B . Three

different distributions were chosen from which to generate random
2samples if z scores: the multivariate normal, x with 5 degrees of

freedom and x*” with 20 degrees of freedom. Three different levels

of iniercorrelation between the predictor variables were chosen:

p = .95, .70 and .45. In addition two different sample sizes were 

selected: n = 25 and n = 100.
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The basic element in the monte carlo procedure was the intercor­

relation between the independent variables in the popu ation. At

one level of intercorrelation between Z1 and Z2 uifferent levels of

correlation between Zy and Z^ were selected as were different levels

of correlation between Zy and Z2« Thirty-four different triplets

of population intercorrelations among Zy , Z^ and Z2 were selected and

are displayed in Table 1. Five cases involved a p value of .95,

fourteen cases involved a p^2 value of .70 and fifteen cases involved

a p^2 value of .45. These triplets of population Pearson product­

moment correlation coefficients were transformed into factor structure

matrices which were then used as input into a monte carlo program

written by the main author and based upon a previously developed

Fortran program (Wherry, 1965). By focusing on one of the popula­

tion correlation matrices, the logic behind the monte carlo technique

can be more easily explained and comprehended.

For one set of fixed Py^, P^2 anc^ Pj2 values a factor structure

matrix was calculated and a distribution and sample size were chosen

for generating sample ryl> ry2 and values. Because the authors

were Interested in examining standardized regression coefficients which

are based upon z score values, these sample r coefficients were all

that was needed in order to calculate h' ana k' CI-. . ,idie and b2 coefficients for a
sample regression equation. Five-hundma ie nunared sample correlation matrices
were produced for each selected dlstrlh>,n«distribution and sample size, therefore
five-hundred sample regression equations in , »in z score form were developed 
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for the population regression equation. The five—hundred coeffi­

cients were then used to form an approximate sampling distribution for
' i

b^. The same procedure was followed for b^.

As each sample b' value was produced, an F test was used to

determine if the regression weight was significantly different from

zero at the .05 level of significance. This information was tabulated 

and used in the calculation of the empirical probability of committing

a type II error: which was estimated by taking the proportion of b'

values which were

the population g' values present in this study (see Table 1) were

different from zero. Therefore, the only kind of error which could

be examined was type II error; the probability of retaining a false

hypothesis.

For each factor structure matrix six approximate sampling dis-

dis tri-tributions for

for each

combination of

formed for each b’ coefficient.

Characteristics of the sampling distributions, population p 

were examined for the presence of relationships in accordance with 

statistics of the sampling distributions of each b'.

butions for b2

distribution and n size: multivariate normal,

were simultaneously developed. One was formed

2X2Q; n=100 and

in total, two-hundred and four approximate sampling distributions were 

values, distributional type, sample size and population 0 values 

2X5 and

retained in the hypothesis testing procedure. All

b^ were developed and six approximate sampling

the research hypotheses. Table 2 through Table 7a contain the summary 

n=25. Since there were thirty-four factor structures
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Results

Table 2 and Table 3 consist of calculations based upon the bias

involved in each sampling distribution. Since the model employed in

the regression procedure was fixed, the mean of each sampling distri­

bution of b' should equal the population 0' value. In Table 2 and

Table 3, however, there is evidence of bias. The average bias,
negative

whether mean or median, is slight: the largest/bias is “ 056 while
positive

the largest/bias is .051. Since each sampling distribution involved

a finite number of b' values and was, therefore, only approximate,

it would seem logical to attribute the presence of bias to the approxi­

mation technique. By scanning each table across distributional shape,

(Dist. Type), there appears to be little difference in the reported

statistics and no consistent pattern appears as the deviation from

normality becomes more marked. A Spearman correlation coefficient

was calculated between bias and distribution shape and was found to

be non significant in all cases. (see Table 8). Likewise, by scanning

the columns of Table 2 and Table 3 there appears to be little differ­

ence in the reported statistics. A Spearman correlation coefficient

was calculated between bias and level of intercorrelation between

predictors in the population. This coefficient was also found to be

nonsignificant in all but one case. (see Table 8).

Tables 4 and 5 contain statistics on the standard deviations

of the sampling distributions of the b' values. Scanning across each

table from left to right there appears to be little change in the

average of the standard errors for the b' coefficients. The Spearman 
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correlation coefficient calculated between empirical standard error,

(S and S ), and distributional type was not found to be significant.
1 e2

As was expected, however, there is a significant correlation between

the standard error of each b' sampling distribution and the level

of intercorrelation present between the independent variables in

the population. (see Table 8). By examination of Tables 4 and 5 one

can see a decrease in the average standard error of the sampling dis­

tributions of the b' values as the p^2 value decreases from .95 to .45

This decrease is consistent for a sample size of 25 and a sample size 

of 100 regardless of the distribution sampled. As the p^ value

decreases, the spread of the standard error values for the distri­

butions also decreases as indicated by the standard deviation statis­

tics.

In Table 6 and Table 6a there appear statistics calculated on

difference values obtained by subtracting the theoretical probability

of committing a type II error from the empirical proportion of false 

hypotheses which were retained. Again, there seems to be little change 

among the average of the difference values as the shape of the dis­

the average difference between empirical and theoretical probability

tributions sampled becomes more skewed. However, as P-^ decreases,

of committing a type IT
for n = 25.

error also decreases/ The maximum difference

appears when p^ e9uals •95; the maximum difference at this level is

.502. As p^2 decreases to .45, the maximum difference is found to be

.192. The spread of the difference values decreases as the p^ value
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As the sample size increased to 100,for a sample size of 25. the

correlation was found to dif ference values

approximation of the montecan be attributed to the carlo technique.

large, the ap­

proximation technique was much more accurate.

Table 7 and Table 7a contain the proportion of times the null

of committing

skewed, there is no significant change in the average proportion of

times a false hypothesis was retained regardless of

Spearman correlation coefficient calculated between empirical propor­

tion of type II errors committed foundand distributional shape was

to be non-significant regardless Spearman

found was .03.

is smaller for a sample size of 100 than for one of 25.

P12

for n = 25.
decreases from .95 to .45/ A significant correlation was found to

a type II error. As the distribution becomes more

be non-significant. These

sistent for all distributions sampled for both sample sizes. The 

hypothesis was falsely retained; an approximation of the probability

sample size. The

average type II error for sample sizes of 100 within a level of 

exist between the difference values, (Diff^(25),Diff2<25)), and 

Il error also decreases as would be expected. This finding is con­

of sample size. The largest

from .95 to .70 or from .95 to .45,
As the f>12 value decreases/ the probability of committing a type

When pwas relatively low and the sample size was
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Conclusions and Implications

The results illustrate that a departure from normality in the dis­

tribution from which random samples are selected for inclusion in a re­

gression equation with two predictors does not significantly influence

the probability of committing a type II error in the testing of the

null hypothesis =0; (i = 1,2). Because the assumption of nor­

mality can rarely be met in the distribution of psychological and

educational variables, and if it seems plausible to generalize beyond

two independent variables, the results indicate that this violation

should not be of great concern to a researcher.

Level of intercorrelation confounded with a departure from nor­

mality did not significantly influence the probability of committing

a type II error either.

As was expected, multicollinearity does have an effect upon the

sampling distribution of b' values. This fact is consistent with the

theory behind the effects of multicollinearity upon distributions of

standardized regression coefficients. The more highly the predictor

variables are correlated, the larger the standard error of the b' values.

This implies that a confidence interval around a b' value for the pur­

pose of estimating fi' would have to be much larger in the case of a re­
in general

gression equation with an r^ value which is exceedingly high. /the

smaller the amount of collinearity between two predictors and the larger

the sample size, the more statistically consistent the b' values are:

in other words the probability that the b' value is close to the 0

value of the population regression equation is increased.
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Based upon the findings of this research report t would seem

that researchers dealing with variables selected from populations

with extremely skewed distributions do not have to be concerned with

any detrimental effects upon the probability of committing a type II

error. However, with small sample sizes and highly correlated (.95) pre

dictors, generalizations about the contribution of an independent

variable to any regression equation should be made with caution.

Sample b' values in situations such as these are subject to extreme

fluctuation and, although they are unbiased in the long run, most

researchers are dealing with only one regression equation and, there-
I

fore, only one estimate of any population B value.
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Table 1
Population Intercorrelations3 Specified in Monte Carlo Procedure

and Accompanying Theoretical Standardized Regression Weights

pyi py2 P12
■

B1 b2 ;
.95 .95 .95 .4872 .4872
.70 .70 .95 .3590 .3590
.45 .70 .95 -2.2051 2.7949
.70 .45 .95 2.7949 -2.2051
.45 .45 .95 .2308 .2308
.70 .95 .70 .0606 .9020
.45 .95 .70 -.4216 1.2451
.95 .70 .70 .9020 .0686
.70 .70 .70 .4118 .4118
.45 .70 . 70 -.0784 .7549
.00 .70 .70 -.9608 1.3725
.95 .45 .70 1.2451 -.4216
.70 .45 .70 .7549 -.0784
.45 .45 .70 .2647 .2647
.00 .45 .70 -.6176 .8824
.70 .00 .70 1.3725 -.9608
.45 .00 .70 .8824 -.6176

-.45 .00 .70 -.8824 .6176
-.70 .00 .70 -1.3725 .9608

.70 .95 .45 .3417 .7962-

.45 .95 .45 .0282 .9373

.95 .70 .45 .7962 .3420

.70 .70 .45 .4828 .4828

.45 .70 .45 .1693 .6238

.00 .70 .45 -.3950 .8777

.95 .45 .45 .9373 .0282

.70 .45 .45 .6238 .1693

.45 .45 .45 .3103 .3103,

.00 .45 .45 -.2539 .5643
-.45 .45 .45 -.8182 .8182

.70 .00 .45 .8777 -.3950

.45 .00 .45 .5643 -.2539
-.45 .00 .45 -.5643 .2539
-.70 .00 .45 -.8777 .3950

aP 1 is the populationi correlation between the criterion
variable, z , and the predictor variable, z. . p _ is the popu-
lation correlation between the criterion variable, z , and the
predictor variable , z_. p,„ is the population correlation between
the independent variables, z, and z_. These population correlations
were utilized in the determination of factor structure matrices for
input into the Monte Carlo technique. There are five factor struc-
ture matrices which have a p value of .95, fourteen which have
a P^2 value of .70 and fifteen which have a p^ value of .45.
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Table 8
Spearman Correlation Coefficients3

Dist.
Typec d

P12
Dist.
Type P12

Bias b -.02 -.02 Bias .04 -.19
p<.43 p<.41 1 p<.34 *p<.03

Bias .05 -.10 Bias -.00 .04L p<.31 p<.16 p<.49 p<. 36

Diff.. (25)C .05 .28 Diff (100) -.00 .06
p<.31 *p<.00 p<.48 pc.26

Diff. (25) .02 .24 Diff (100) .00 -.00z p< .41 *p<.01 p<.50 pc .49

s f .05 .60 S .03 .59
el P<.32 *p<.00 el p<.38 *p<.00

s .06 .59 S .02 .58
e2 p< .29 *p<.00 e2 pc.41 *p<.00

N = (25) (100)

'some of the correlation coefficients tabled were calculated on
variables whose elements involve statistics of sampling distributions.
These statistics were tabulated from regression equations originally
involving a sample size of 25 or a sample size of 100. The number of
cases upon which the significance was determined was 102: the number
of factor structures (34) multiplied by the number of distributions
sampled (3), which equals the number of sampling distributions examined.

^See notes tables 2 and 3.

Dist. Type refers to the shape of the population from which the
z scores were generated for input into the regression equations for the
purpose of constructing sampling distributions. Three distributions
were involved: normal, x^ and x* •

5 20
tl>c PoPulati0ri correlation between the predictor variables.

Three levels were examined: .95, .70 and .45.

e01ff]
trailing the

(25) can vary between zero and one and was ca I etilalcd by sub-
theoretical probability of committing a type II error from

the empirical proportion of type II errors committed in the testing of
the hypothesis II :(i' “ 0, at n = .05. Diff? (25) was determined In the
same manner for the hypothesis = 0, as was DlffjdOO) and 1)1 f f^( 100).

is the empirical standard deviation of the sampling dlstrlbu-
Cl,

tion of bj values.

*SignIf leant at n ” .05-
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Pearson Correlation Coefficients3
Table 9

bBias^ Bias2 Z-
N U NJ

 H-
Ln

 >-n Dlff2

(25) s f
el

C/
2

(D
hJ

Blas^ 1.00 -.65
*p .00

.13
p .19

.20
*p .05

.07
p<. 49

.08
p< .40

Bias2 -.65
*p<.00

1.00 -.30
*p<.00

-.29
*p<.00

-.29
*p<.00

-.28
*p<.01

Diff1 (25) .13
p<.19

-.30
*p<.00

1.00 .86
*[><.00

.72
*p<.00

.70
*p<.00

Diff2 (25) .20
*p<.05

-.29
*p<.00

.86
*p<.00

1.00 .66
*p<.00

.70
*p<.00

S
el

.07
p<. 49

-.29
*p<.00

.72
*p«.00

.66
*p<.00

1.00 .99
*p<.00

s
e2

N -

.08
p<. 40

-.28
*p<.01

.70 .70
*p.<00 *p<.00

(25)

.99
*p<.00

1.00

(See notes table 8)

*Significant at a = .05.
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Pearson Correlation Coefficients3
Table 10

Bias^ Bias2
Diff1

(100)e

Diff2

(100) s f
el

S
e2

Bias 1.00 -.65
*p<-00

-.12
p<.21

-.06
p<. 56

-.22
*p<-03

-.22
*p<.02

Blas2 -.65
*p<.00

1.00 -.06
p<.57

-.10
p<. 34

-.06
p<.57

-.02
p<. 81

Diff1 (100) -.12
p<.21

-.06
p<.57

1.00 .65
*p<.00

.57
*p<.00

.58
*p<.00

Diff2 (100) -.06
p<. 56

-.10
p<.34

.65
*p<.00

1.00 .59
*p<.00

.57
*p<.00

S
61

-.22
*p<.03

-.06
p<.57

.57
*p<.00

.59
*p<.00

1.00 .99
*p<.00

S
e2

N =

-.22
*p<.02

-.02
p<.81

.58 .57
*p<.00 *p<.00

(100)

.99
*p<-00

1.00

(See notes table 8)

*Significant at a = .05.
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REGRESSION ANALYSIS FOR REPEATED MEASURES DESIGNS:
Dealing with Missing Data and the Use of

Covariates as an Alternative to Person Vectors

Judy T. McNeil
High/Scope Educational Research Foundation

When subjects are measured on a particular criterion variable
at more than one point in time, a "repeated measures" analysis is
generally used to test hypotheses about the data. One of these
hypotheses may be that the group's mean score increased (or
decreased) over time. Since it is generally expected that there is
a correlation between early and later scores for the same subjects,
it is desirable to take this correlation into account, which is in
effect controlling for each individual's mean score on the criterion
variable. In fact, some writers argue that failure to extract
variance attributable to subject differences results in a violation
of the assumption of independence of errors (Glass, Peckham, and
Sanders, 1973). (Some authors including this one [see also Dixon
and Massey, 1969, and Downie and Heath, 1970] would argue instead
that the crucial aspect in deciding to use a repeated measures
analysis is "accounting for variance," not "meeting assumptions."
If a source of variance is known, it is usually wise--from an
heuristic point of view as well as for the power of the test--to
include that source of variance in the analysis. In those cases
where there is no expected correlation between pre and post scores--
as would be the case with some criterion-referenced tests with
little or no variance on pre or post--then a repeated measures
analysis would not be beneficial.)

In regression analysis, controlling for each subject's mean
score on the criterion variable (repeated measures analysis) is
accomplished by using person vectors, each of which identifies a
subject and contains a "1" if the criterion score belongs to that
subject and a "0" if not. Using this regression approach, one can
accomplish analyses identical to the "correlated" t test or the
repeated measures ANOVA; in addition, this approach allows for
greater flexibility in the analysis application.

The application of the general linear model to repeated mea­
sures problems was discussed in detail in a presentation to the
Special Interest Group in Multiple Linear Regression at the AERA
annual meeting in 1974 (Pohlmann and McShane, 1974). Therefore,
this paper will describe only briefly the method of using person
vectors in regression analysis to test research hypotheses regarding
repeated measures, for a one group--two trial situation.

Based on these analyses with person vectors there are two
particular focuses of this paper: (1) a proposed solution to the
problem of missing data, and (2) the use of covariates as an
alternative to person vectors in controlling for differences be­
tween individuals.
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A One Group--Two Trial Research Hypothesis

Although there are many research hypotheses that a researcher
may wish to test in this situation, the most typical one would be
the following: "The mean score of the group increases from time­
point A. to timepoint B, over and above differences between indivi­
dual mean scores." For example, a researcher may have measured four
infants' ability to focus on and visually follow a moving human face
at two ages, say 10 days and 30 days. According to developmental
theory, the infants' scores should increase from the first timepoint
to the second timepoint (if the measure is well constructed). Since
she expects a correlation between pre and post scores on this measure
at these ages, the researcher wishes to covary these individual dif­
ferences. The researcher therefore wishes to test the hypothesis
that "the mean score on visual following will increase from 10 days
to 30 days, over and above differences between individual mean
scores." The resulting full model for testing the hypothesis is
thus:

Model 1:

X1 = a0u + alTl + a2T2 + a3Pl + a4P2 + a5P3 + a6P4 + E1

where: Xi = criterion vector of both 10-day and 30-day
scores on visual following;

U = the unit vector;

Ti = 1 if score on Xj is a 10-day score, 0 otherwise;

T2 = 1 if score on Xi is a 30-day score, 0 otherwise;

Pj(i=l to 4) = a vector containing a 1 if the score is from
person i, 0 otherwise;

ao, a]_...a6 = a set of least squares weights derived to
minimize the sum of the squared elements in Ej;
and

E| = the error vector.

Sample data
in Table 1.

that will
The data

be used to demonstrate this analysis is shown
would be organized into vectors as in Figure 1.
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Person
10-day Score on
Visual Following

3O'-day Score on
Visual Following

1 4 82 3 53 6 64 2 7

Table 1. Sample Data for a One Group—Two Trial Hypothesis

Figure 1. Vectors for Model 1.

The weights aj and a2 in Model 1 will take on values which
will reflect the difference between the 10-day and 30-day means.
The restriction placed on Model 1 to test the hypothesis would be
al=a2> which results in the restricted model, Model 2, which would
be compared to the full model using an F_ test. The full model
contains 5 linearly independent vectors, and the restricted model
contains 4. The degrees of freedom for the F_ test are therefore
1 and 3.

Model 2:

X1 = a0U + a3Pl + a4P2 * a5P3 + a6p4 + E2

The type of analysis just described is the basis for the
following discussions of missing data and the use of covariates.

Missing Data

When collecting longitudinal data (repeated measures), it is
unfortunately all too common to find that some subjects are not
available for at least one measurement timepoint. Several possib e
approaches to handling the problem of missing data, not restricte
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to repeated measures, are presented by McNeil, Kelly, and McNeil
(1975), and three of them are discussed below. A fourth approach
is proposed here as a suggested alternative when dealing with
repeated measures.

(1) Insert in place of the missing score the mean value
of the variable.

(2) Insert in place of the missing score a random value
which is within the range of the variable.

(3) Eliminate subjects for whom any data is missing.

(4) Eliminate a subject for only that timepoint on which
data is missing; utilize other data for that subject.

(1) Inserting the mean. Using this approach, the researcher
makes the assumption that the person with missing data is like the
average subject with data. If, in the example on infant visual
following used above, subject number 1 was missing the 10-day score,
the researcher would assign the mean of the other three subjects'
10-day scores (3.67) to subject number 1. Sometimes, however, the
researcher may not be willing to make the assumption that persons
with missing data are like persons with data—it may be that they
are absent from testing because they are less healthy or less willing
to cooperate or different on some other variable which may be rele­
vant to the construct under investigation. In addition, the
insertion of mean values reduces the variance of the predictor
variable, resulting generally in a variable with lowered predictive
value.

(2) Inserting a random value. One way of getting around the
problem of reduced variance due to inserting a mean value is to
insert a random score (from the range of observed scores) into the
missing data locations. Thus, in the example above, if subject
number 1 was missing the 10-day score, the researcher would assign a
random value (say 6) to subject 1. However, this procedure tends to
decrease the relationship between that predictor variable and any
other variable because it adds random variance. It should be pointed
out that in a repeated measures analysis, inserting either random
scores or mean scores tends to reduce the correlation between pre.and
post scores—a correlation which is expected to be high and on which
the justification of a "repeated measures" or person-vector analysis
is based.

(3) Eliminating subjects. Using this approach, all scores for
a subject would be eliminated if the subject was missing any score.
In repeated measures studies, this method can result in the dis­
carding of much data. If, in the example given above, subject num­
ber 1 was missing the 10-day score, the 30-day score for subject
number 1 would be eliminated as well. This would eliminate the Pj 
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vector from Models 1 and 2, and the elements of the remaining
vectors would be as shown in Figure 2.

Figure 2. Elements of vectors when subject 1 is eliminated.

A drawback to this approach is that eliminating subjects because of
missing data most likely redefines the population from which one
has sampled and hence to which one can generalize. Infants who
could not be tested at one timepoint may be the least healthy ones
or may come from less organized families who could not arrange to
keep the testing appointment. Therefore, if one continually uses
only complete data, the population to which one can generalize may
be restricted to healthy infants from organized families. This
restriction may be unavoidable in some studies. But when one has
some data on these differing subjects, it is unfortunate and possibly
unnecessary to ignore that data.

(4) Eliminating only missing timepoints. I would propose that
in most longitudinal or repeated measures studies the researcher
would neither want to reduce the relationship between pre and post
scores by inserting mean or random values nor want to give up the use
of a subject's data on all timepoints just because the subject is
missing a score at one timepoint. I would therefore recommend that a
subject be included in the analysis if scores were obtained for him
at the earlier timepoint, or at the later timepoint, or at both time­
points. This would mean that all obtained data would be utilized and
that for some subjects only pre or only post data would be in the
analysis. For example, if infant subject number 1 was missing the
10-day score on visual following, that score would be missing from
the analysis but his score at 30 days would be included. The ele­
ments of the vectors for the repeated measures analysis would be as
shown in Figure 3.

When there are only two timepoints in the analysis, there is no
gain in degrees of freedom in using this approach rather than approach
number 3 above (eliminating all scores for the subject with missing
data). Note that in Figure 2 there are six observations; the full
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Figure 3. Elements of vectors when the 10-day score for
subject 1 is eliminated, but the 30-day score
for the same subject is retained.

model would contain four linearly independent vectors and the
restricted model would contain three. The degrees of freedom when
all scores for subject number 1 were eliminated would thus be 1
and 2. In Figure 3 there are seven observations; the full model
would contain five linearly independent vectors (because appears)
and the restricted model would contain four. The degrees of freedom
when only the 10-day score is eliminated would thus be 1 and 2, the
same as for Figure 2. The fact that the degrees of freedom are the
same in both instances makes sense when you consider that, by includ­
ing the Pj vector along with the 30-day score for subject 1, the
30-day score for this subject is completely accounted for. Note
that when there are more than two timepoints in the full model, the
elimination of only one timepoint for a subject--rather than all
timepoints for that subject—will result in a gain in denominator
degrees of freedom. This makes sense because now the person vector
for that subject does not completely account for that subject's
variance.

The advantage in using this approach when there are only two
timepoints is therefore not to be found in degrees of freedom. When
there are more than two timepoints, it will yield a gain in df. But
an advantage in both cases is that the increased number of observa­
tions yields a more stable estimate of the population mean on the
criterion score, and this estimate is more representative of the
population of subjects that the researcher set out to measure--not
just subjects with complete data.

Covariates as an Alternative to Person Vectors

The above discussion has assumed that the use of person vectors
is the path a researcher would wish to take when there is an ex­
pected correlation between individuals' scores at two timepoints.
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But there is another approach that a researcher may wish to
consider when dealing with measures that are repeated over time on
the same subjects, and that approach is the use of a particular
kind of covariate in place of the person vectors.

Using person vectors is essentially covarying for each person's
uniqueness. It is acknowledging the expected correlation between
pre and post scores by assuming that the reason a particular indi­
vidual tends to score high (or low) at both timepoints in relation
to other subjects is simply because he is that unique individual.
But the researcher may know (or have reason to suspect) that there
are measurable dimensions along which her subjects vary and which
relate to the criterion behavior in explaining why individuals tend
to score high (or low) at both timepoints. For example, our re­
searcher may have evidence from prior studies that an infant's
ability to focus on and follow a moving human face at both 10 and
30 days is related to the sex and the birth weight of the infant.
Using scores on these two variables to predict the criterion score
will probably yield a lower R2 (greater errors of prediction) than
predicting on the basis of which scores belong to which individuals
(i.e., using person vectors), but it will be more valuable in a
theory-building attempt as well as more generalizable to another
group of subjects. It will also be a more parsimonious model.
While using person vectors is a powerful technique for testing the
hypothesis of differences between timepoints, it does not tell us
anything about how individuals' differences on other variables
causes them to be different from one another and yet consistent with
themselves on the criterion measure. And since person vectors
represent each person in the sample individually, they cannot be
used to generalize beyond the sample.

Covariates which do not change across timepoints. It is not
possible to use both person vectors and one or more covariates which
do not differ for a subject across timepoints. An infant's sex and
birth weight are this type of potential covariate. Whether one is
considering a 10-day or 30-day criterion score, the sex of the infant
would be the same, as would the birth weight of that infant. If a
variable of this type were used in a regression model in conjunction
with person vectors, a linear dependency would be generated. This is
illustrated in Figure 4, where it is shown that a set of weights can
be found such that the birth weight variable is a linear combination
of the person vectors. A choice must be made, then, between the
covariate and the person vectors. Another way of looking at this
choice is to consider the hypotheses which represent the two choices.
For the hypothesis, "the mean score on visual following will increase
from 10 days to 30 days, over and above the effect of birth weight,"
the researcher would use the birth weight variable as a covariate.
If the researcher chose instead to state the hypothesis, "the mean
score on visual following will increase from 10 days to 30 days, over
and above differences between individual mean scores on the criterion,
person vectors would be used. This author would argue that, if the
researcher has sufficient evidence to expect that a certain covariate
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^2 ^3 ^4 Wj(Birth weight-ounces)

Figure 4. Linear dependency generated by the use of person
vectors and a covariate which does not differ
across timepoints.

or set of covariates is related to the criterion in a repeated
measures design, it would be beneficial to state the hypothesis in
terms of the covariate. The benefits are: (1) the covariate
model is more parsimonious than the person vector model, (2) the
findings are more generalizable to a new sample when the covariate
is used than when person vectors are used, and (3) an advance can be
made in theory building because the analysis containing the covari­
ate gives a more refined estimate (than person vectors) of what
specifically enters into individual differences on the criterion.
In short, the researcher may wish to state the hypothesis in terms
of a covariate rather than person vectors and thus will give up some
of the power of the statistical test of differences over time in
return for gaining generalizability of findings that will also aid
in theory building. (Even if the researcher chooses to use person
vectors, I would recommend that some thought and possibly additional
analyses be devoted to accumulating evidence regarding variables
which do relate to individual differences on the criterion—for
possible use in the future.)

Covariates which change across timepoints. The above discus­
sion has focused on covariates which do not change across timepoints.
A short comment should be made about the use in a repeated measures
design of covariates which do change across timepoints. It is
possible to use in the same analysis both person vectors and covari­
ates which differ across timepoints. If, for example, the covariate
of interest were the weight of the infant at the time of testing,
this would probably be different at 10 days and 30 days. The re­
searcher might then state the following hypothesis: "the mean score
on visual following will increase from 10 days to 30 days, over and
above the effects of weight at the time of testing and differences
between individual mean scores on the criterion." Examples of 
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vectors that would be used to test this hypothesis are shown in
Figure 5. (A changing-over-time covariate might be useful in a
case like this, in which the researcher may wish to know if the
infants' scores increase over time, beyond the increase that could
be predicted by weight gain alone. It should be pointed out, how­
ever, that in a repeated measures design which includes treatment
as a factor, one would not wish to include a covariate on which
change over time is a possible function of that treatment because
the covariate may account for some of the variance in the criterion
which is due to treatment.)

i

Figure 5. Example vectors for a situation in which the
researcher wishes to use both person vectors and
a covariate which changes over time.

Discussion

Two issues regarding the analysis of longitudinal or repeated
measures data have been presented--the handling of missing data
and the use of covariates. These concepts need not be applied
separately in practice; it would be perfectly reasonable to use a
covariate instead of person vectors with a set of data containing
missing scores. Some additional comments on missing data,
covariates, and the basic choice of a repeated measures analysis
are presented in this section.

In handling the problem of missing data, the researcher needs
to consider how many subjects are missing data on how many time-
points--this is a data-based question. It has been pointed out
above that, when there are only two timepoints in an analysis, the
use of subjects who have data for one timepoint in addition to
those with complete data results in no additional degrees of free­
dom. The mean obtained is a better estimate of the population mean,
but are the total results more generalizable to the population?
This writer is not at all certain—my guess is that they are not.
But when there are more than two timepoints, it would appear to me
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that the use of subjects who have data for one or more timepoints
would result in better estimates of both the population mean and
the population variance and would yield results that are more
generalizable to the population one initially intended to sample.

If one can refer to a question of the "power" of the test
when discussing the use of a "repeated measures" analysis versus a
"regular" analysis (person vectors versus no person vectors), then
it seems appropriate to refer to "power" when the decision is be­
tween person vectors and a covariate. This writer would say, then,
that the decision regarding the use of a covariate rather than person
vectors in a repeated measures analysis is one of weighing theory
and statistical power. But if the covariate or set of covariates
account for nearly as much variance in the criterion as do the person
vectors, and if there are far fewer covariates than person vectors,
the covariate analysis may actually be more powerful (rather than
less) because it is more parsimonious and thus generates greater
degrees of freedom.

It seems appropriate at this point to develop one final issue:
when should one use a "repeated measures" analysis. The argument
was made early in this paper that, even though data is obtained on
the same subjects at two timepoints, one may not necessarily wish to
covary for differences in individuals' mean scores (i.e., use a
repeated measures analysis). Just as it is not beneficial to covary
on any variable which is not related to the criterion, it is not
beneficial to control for a correlation between pre and post scores
if no such correlation exists. The example was given earlier of a
criterion-referenced test--one may expect all students to achieve
criterion on the post test. In this case there would be no correla­
tion between pre and post scores. However, the researcher in this
case would probably not be interested in a hypothesis regarding an
increase in scores from pre to post so the question of repeated
measures would not apply. Consider, though, the situation in which
a researcher is developing a measure of, say, mathematics concepts.
In validating the measure, she wants to show that scores increase
from pre to post and also that prescores are correlated with post­
scores. She is interested in both questions—increasing scores and
correlations between scores. The procedure she follows might be
this: First she tests a number of subjects at two timepoints. Then
she inspects the correlation between pre and post scores. This
answers her question regarding the correlation. If there is a sub­
stantial correlation, she proceeds with a repeated measures analysis
on the difference (increase) between pre and post scores. If on the
other hand there is no correlation, she must decide if she is still
interested in the question of increasing scores. In the validation
of the instrument, this may still be a question of interest. She
would therefore test the difference between pre and post scores--
without a repeated measures design (it would be an "uncorrelated"
t test).

This paper has presented the repeated measures type of analysis
as it is formulated in regression models. Issues regarding its use 
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with missing data and covariates have been presented. Before making
decisions on these issues and applying those decisions to data analysis,
the researcher must first decide (1) what hypothesis is being asked,
and (2) how a lack of correlation between timepoints will affect that
hypothesis.

NOTE--added after presentation of paper at AERA, 1975:

As a result of discussion following the presentation of the
above paper, the following note is added.

In the section on missing data above, it was not stated what the '
restriction on the full model and the resultant restricted model
would be when partial data is used. One would not necessarily want
to assume that the restriction is the same as in the example case
with complete data.

If one decides to use the restriction used in the example case
(aj=a2), I believe the research hypothesis being tested would be,
"The mean score at one timepoint is greater than the mean score at
another timepoint, assuming that the person with the missing score
is conceptually average--that is, assuming (1) that the missing score
is equal to the average of the obtained scores at that timepoint and
(2) that the score (s) which was obtained for that individual has a
deviation from its timepoint mean which is equal to the average
deviation of all other individuals' scores from the grand mean.

If one did not wish to make this assumption, the logic to be
followed in making the restriction on the full model would be as
follows: First, return to the case with complete data (Model 1 and
Figure 1). The restriction to test the stated hypothesis--with
complete data--is actually:

(a1+a3)+(a1+a4)+(a1+as)+(a1+a6) (a2+a3)+(a2+a4)+(a2+a5)+(a2+a6)
4 = 4

which simplifies to: 4aj + (35+34+35+35) 4s2 + (35+34+35+35)
______ _ _

4ai 432
"4” = ~

al = a2

This restriction on Model 1 results in restricted Model 2 above.
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Applying the above sequence to the case in Figure 3 where there
is no prescore for subject 1, the restriction would be:

(a1+a4)+(a1+a5)+(a1+a6) (a2+a3)+(a2+a4)+(a2+a5)+(a2+a6)
3 = ~~ 4--------------------------

which simplifies to: 3ai + (a4+a5+a6) ,4a2 + (a3+a4+a5+a6)

3 = 4

(a4+a5+a6) (a3+a4+a5+a6)
al + 3 = a2 + ----------4------------

(a3+a4+a5+a6) (a4+a5+a6)

This restriction is complicated but could be algebraically applied
to the full model (Model 1) and would result in a model conceptually
similar to but looking very different from Model 2.
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STWMULTR; A COMPUTER PROGRAM
TO EXPEDITE THE RETRIEVAL OF

RESIDUAL SCORES

Carl E. Edebum and David P. Ochsner

South Dakota State University

Summary - Residual gain analysis was described in general terms and
a new computer program, STWMULTR, designed to retrieve and punch re­
sidual scores was described. Samples of input and output data cards
were included.

One of the most difficult tasks in psycho-educational research

investigation has been the measurement of change. When pre and post­

testing models have been implemented, the most prevalent application

in most analyses has been the use of raw gain scores. Due to the in­

adequacies of this approach several different solutions, including

residual gain analysis, have been proposed.

The residual gain analysis approach has been discussed by Dubois

(1957, 1970) and Bakan (1970). Others, (Williams and Maresh, 1972,

Buzzahora and Williams, 1973 and Edeburn and Landry, 1974) have ap­

plied this technique in test-retest situations using elementary school

students' scores as elicited by various cognitive and affective measures.

Essentially, the residual gain method can be concieved as a par­

tial correlation between the group membership variable and the resid­

uals in the posttest data using the pretest as a predictor.

One of the physical limitations of the residual gain application

has been the amount of clerical time spent in extracting the residual

scores for each student from the computer printout, and repunchlng them
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on appropriately Identified cards. The present effort was aimed at

overcoming thia limitation.

To a common version of a stepwise multiple linear regression

program (STWMULT) originally adapted from the Scientific Subroutine

Package (IBM, 1972), the present authors have added an optional

feature which-stores and then punches the residual scores for each

subject on a new data card. This new program is identified in the

S.D.S.U. Computing Center as STWMULTR. The only restriction in the

STWMULTR version is that the first card for each subject in the ori­

ginal data set must include 1-8 columns of Alphanumeric I.D. (see

Figure I.).

Subscale Scores CompositeI.D.

Fig. 1.-- An example of the pre-posttest data for student #104.
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By using individual selection cards (pretest predicting posttest

on each subscale) to determine the residuals, and calling for the

punch option, the researcher is able to obtain a new set of data

cards containing up to 8 columns of the original alphanumeric I.D.,

and the residual gain scores for each subject. As will be noted in

Figure 2., these scores are punched in fields of F 7.3, and there is

room for 10 scores on the card. Should the research in question re-

I.D. Residual Gain Scores by Subscale Composite R.G.S.
/ft 041 I e.“497 2.976-15.745 5.801 -8.622 £.598 -1.300 9.636^ 4.775" ,
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Fig. 2.--An example of the residual gain data for student #104.

quire more than 10 scores, the program will continue to punch on

additional cards in the same format, retaining the I.D. for each

new card.

After obtaining the new cards, normal regression procedures can

be easily implemented.

Needless to say, STWMULTR has enhanced the present investigators’

abilities in pursuing residual gain problems. Interested users may
x

contact either of the authors for further details.
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THE ANALYSIS OF COVARIANCE WITH RANDOMIZED BLOCKS DESIGNS BY REGRESSION

John D. Williams and John G. Watson
The University of North Dakota

A regression solution is given for a research
situation that includes both the analysis of covariance
and randomized blocks. Basically, the solution
includes the successive use of three linear models.
The first model uses the covariate as the predictor while
the second model uses both the covariate and the group
membership variables; the difference (in R units) between
these two models is the proportion of the variance that is
attributable to the group membership variables independent
of the covariate. The third model includes the covariate,
the group membership variables and the blocks. The difference
(in Rz units) between the third model and the second model
is the proportion of the variance due to the blocks independent
of both the group variables and the covariate.

Over the last several years, several writers have shown regression
analogs to analysis of variance designs; the usual designs (t test, one
way analysis of variance, two way analysis of variance, the analysis
of covariance or randomized blocks designs) have found their way into
recently written texts from a regression viewpoint (Ward and Jennings,
1973; Williams, 1974, and McNeil, Kelly, and McNeil, 1975). More
complex designs have been explicated in a regression approach as well.
Pyle (1974) showed a regression solution to the split-plot (AxBxS)
design. Other repeated measures designs have been considered by
Olson (1973), Fanning and Newman (1974) and Pohlman and McShane (1974).
Higher order factoral analysis designs with disproportionate cell
frequencies has been considered by Williams (1974a)and Deitchman,
Newman, Burkholder and Sanders (1974).

Need for the Design

In extending regression to a solution to a randomized blocks
design with an analysis of a covariance, necessity, as usual, is the
"mother of invention". In a substantive application, the following
problem presented itself. An analysis of the difference in motivation
of black and white managers was being investigated. Black and white
managers (N = 64 pairs) were chosen such that one black and one white
manager from the same participating organization were included in the
sample; in two companies, two pairs were chosen, so that 62 different
business organizations were selected (four cojnnercial banking companies,
four life insurance companies, four transportation companies, eight
utilities, 36 industrials, and six assorted companies). The Thematic
Apperception Test (TAT) was mailed to each participant; detailed
directions for self administration of the test were included.



- 69 -

As the TAT scoring utilizes count information for measuring the strength
of various motives (need for achievement, need for affiliation and need
for power), it was felt, in absence of administering the instruments
to each participant and thus keep control over time, that the use of
number of words in the TAT stories might serve as a useful covariate
to help achieve statistical control. Thus, the necessary statistical
analysis was seen to be randomized block design (each pair of a black
and white managers serves as a block) with an analysis of covariance
imposed upon the design (to control for word length). While the
scores on each of the 128 subjects is not duplicated here, a prototype
of the solution is given.

An Example

To see how a solution can be formulated by regression for a
randomized block design with the analysis of covariance, a hypothetical
example with 12 blocks, three groups of subjects and a covariate
are given. First, several variables can be defined:

Y = the criterion variables;

Xj= the covariate;

X2= 1 if a score from a member of the first group, 0 otherwise;

X3= 1 if a score from a member of the second group, 0 otherwise;

X4= 1 if a score from block 1, 0 otherwise, and

X5"X13= 1 if a score respectively from blocks 2-11, 0 otherwise.

Table 1 contains the information for a regression solution



70 -

To accomplish this analysis, it might first be recalled that the
analysis of covariance attemps to assess the independent contribution
of the group membership variables; on the other hand, the randomized
block design is usually employed to increase the precision (alternatively
reduce the error variance) in an experiment.

With this distinction in mind, three linear models can be defined:

Y = bg + bjXi + e-|, (1)

TABLE 1

Data for Randomized Block Design with the Analysis, of Covariance

y x-| x2 x3 x4 x5 Xg x7 x8 Xg x10 xn x12 x13 x14

27 18 1 0
29 20 0 1
22 16 0 0
27 22 1 0
29 27 0 1
25 20 0 0
24 24 1 0
25 28 0 1
28 25 0 0
23 21 1 0
28 27 0 1
17 20 0 0
17 18 1 0
25 20 0 1
22 19 0 0
23 23 1 0
28 21 0 1
27 22 0 0
21 20 1 0
27 20 0 1
19 20 0 0
26 25 1 0
27 23 0 1
23 24 0 0
23 24 1 0
25 22 0 1
22 21 0 0
31 26 1 0
28 20 0 1
24 25 0 0
33 30 1 0
27 20 0 1
22 25 0 0
34 31 1 0
38 27 0
31 27 0 0

10 0 0
10 0 0
10 0 0
0 10 0
0 10 0
0 10 0
0 0 10
0 0 10
0 0 10
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
oooo
0 0 0 0
oooo
oooo
oooo
oooo

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
1 0
1 0
0 1
0 1
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
1 0
1 0
0 1
0 1
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
1 0
1 0
0 1
0 1
0 1
0 0
0 0
0 0
0 0
0 0
0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
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Y = b0 + b1X] + b2X2 + b3X3 + e2, and (2)

Y = bQ + b1X1 + b2X2 + b3X3 + b4X4 +...+ b14XM + e3. (3)

In general, b0 will be different for equations 1-3. Similarly,

b]-b3 will be respectively different for equations 1-3. Equation 1

might be thought of as a model wherein the covariate is used as a
predictor of the criterion; the error variance for equation 1 is the total
variation for the remaining sources of variation (groups, blocks, and
error variance). The second equation allows the assessment of the
contribution of the group membership variables independent of the
covariate. In turn, the error variance of equation 2 can be thought
of as due to two sources: blocks and error variance.

The sum of squares for the four sources of variation can be easily
determined through the use of squared multiple correlation (R^) terms.
The sum of squares for the covariate (SSC) will equal the sum of squares

o
total (SSy) times the R term for equation 1:

SSC = (SST) Rf.

The sum of squares for the group membership variables will be
SSG = (SST) (R* - R*).

The sum for the blocks is given by
SSB = (SST) (R^ - r|).

Finally, the error sum of squares is given by

SSE = (SST) (1 - R|).

Table 2 contains a summary table with this information.

TABLE 2

Summary Table for the Analysis of Covariance with Randomized Blocks Design

* significant at .01 level.

Source of variation df SS MS F

Covariate 1 254.125

Groups 2 92.279 46.140 6.446*

Blocks 11 196.033

Error 21 150.313 7.158
Total 35 692.750
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Some readers might recognize that theprocess described here is
actually a hierachical model with the following ordering: covariate,
groups and blocks. In that this is a hierachical model, some researchers
might prefer the following ordering: covariates, blocks and groups,
finding that part of the variation with the group membership variables
independent of both the covariate and blocks. While these writers
have no quarrel with those who prefer the second ordering if it fits
their research purpose, it should be pointed out that the first ordering
utilized the blocks as a way to increase the precision of the experiment,
whereas the second ordering could be concievably construed as an analysis
of covariance where both the covariate and the blocks are covaried!

Finding The Adjusted Means

If there is interest in finding the adjusted means, then the
following equation can be utilized:

Y-jadj = Yj - b^-Xy) (4)

where Y = the regression coefficient for the covariate in_equation 2,
X-j = the mean of the ith group on the covariate, and the Xy = the overall
mean of the covariate.

For the data in Table 1, b = .72667, Yj = 25.75, Y2= 28.00, Y3= 23.50,

Xj = 23.50, X2 = 22.92, X3= 22.00 and Xy = 22.81. Then Y1adj= 25.75-

.72667(23.50-22.81)= 25.25. In a similar manner, Y2adj= 27.92 and

X3adj = 24.09. If more than one covariate is desired, it can be easily
included. The adjusted means are found in a manner analogous to
that described here. Complete details regarding the use of multiple
covariates are given in Williams (1974b, pp. 109-112, 115.)

Study On Black and White Managers

In the comparison of black and white managers, Watson and Williams
(1975) used the models as described here. Their result for need for
power is shown in Table 3. White managers were found to have a sig­
nificantly higher need for power. Interestingly, the use of randomized
blocks sliqhtlv decreased the efficiency of the experiment, in that
had the blocking not taken place, the mean square for error would have
been slightly smaller. Given the manner in which the blocks were formed,
(a paired black and white manager from a giveicompany), it is still
intuitively a "cleaner" study to include the blocks.
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TABLE 3

Analysis of Covariance with Randomized Blocks Design for Comparing
Black and White Managers On Need for Power

* significant at .05 level

Source of variation df SS MS F

Words 1 122.200

Group 1 32.164 32.164 4.710*

Subjects 63 358.257

Error 62 423.357 6.828
Total " 127 935.978
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A REGRESSION FORMULATION OF DUNN'S AND SCHEFFE'S TESTS

John D. Williams
University of North Dakota

Perhaps one of the most widely disseminated multiple
comparison procedures is Scheff£'s (1953) S-method for judging
all possible contrasts. As Scheff^'s test has the property
that it can be used on an a posteriori basis after the
rejection of the overall F test in the analysis of
variance and still maintain an experimentwise error rate,
applied researchers find the test to be particularly use­
ful in investigating unplanned contrasts that are suggested
by the data.

On the other hand, Dunn (1961) devised a multiple
comparison technique that allows the researcher to state
the hypotheses to be tested on an a priori basis; if the
number of comparisons to be made can be severely limited,
Dunn's test can be the most powerful multiple comparison
method under these circumstances, and retains a per exper­
iment error rate. Dunn's test would be particularly appro­
priate in those theory testing situations that require
less than all possible simple comparisons of means.

Both Tukey's (1953) and Dunnett's (1955) tests have
been explored in a regression formulation. Both tests
have been shown to be rather simple applications of using
a regression approach, being a by-product of testing each
regression coefficient for significance (Williams, 1971, 1974).

An Example

In that Dunn's test requires a severe limitation of
the number of comparisons of interest, suppose the compari­
sons of interest when four groups are being included in the
analysis are

to X3

X-! to X4

to X4.
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Before completing the analysis, comments on other
multiple comparison procedures with these specific
hypotheses should be made. First, Dunnett's test would
not apply, as there is no single group being compared to
other groups. Orthogonal comparisons would not apply,
as the stated comparisons do not transform to an ortho­
gonal set of comparisons. Both Tukey's and ScheffG's
tests would appropriately contain these comparisons (among
a much larger set), but with considerably less power.
Thus, the kind of experimental situation implied in the
posited comparisons fits very well the test proposed by
Dunn.

TABLE 1

Group One

Data From Four Hypothetical Groups

Group Two Group Three Group Four

9 8 13 15
8 7 10 12
6 8 12 10
3 6 11 17
4 6 14 11

= 6.0, X2 = 7.0, X3 = 12.0 and X4 = 13.0

In that the three posited comparisons are "simple" in
that no more than two means are being compared at any one
time, a methodology very similar to that given in Williams
(1971, 1974) can be employed. The process involves
employing a pseudo-replication of Dunnett's test until
all comparisons can be made. The comparisons of X-j to

and to X3 can be found from using the linear model

Y “ Ko ♦ b2X2 + b3X3 ♦ b4X4 + e,. (1)

The comparison of to x4 can be found from using the linear

Y = b0 + b1X1 + b3X3 + b4X4 + er (2)

For equations 1 and 2,

X1 = 1 if the score is from a member of Group One;
0 otherwise,
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X = 1 if the score is from a member of Group Two;
6 0 otherwise,

X3 = 1 if the score is from a member of Group Three;
0 otherwise,

X4 = 1 if the score is from a member of Group Four:
0 otherwise,

bg = the Y-intercept,

b-| = the regression coefficient for Group One,

bp = the regression coefficient for Group Two,

b3 = the regression coefficient for Group Three,

b^ = the regression coefficient for Group Four; and

e-j = the error involved in prediction.

It should be noted that the value for bg will in

general be different for each equation. In fact, it has been
shown (Williams, 1971) that bg will equal the mean of the group

that is being compared to the other groups. For example,
in equation 1, bQ = X^. Similarly, bp b£, b3 and b^ will

differ for the two equations. For example, b3 = 6 for

equation 1, and b3 = 5 for equation 2. It can also be

noted that the regression coefficients are the difference
between the means of each group to the group "left out"
in a particular analysis. Thus, X3 - X^ = 12 - 6 = 6,

which of course is b^ for equation 1. The value for e^

will remain the same for each of the equations, as each
of these equations can be conceptualized as a reparametrization
of an analysis of variance model.

The information necessary for a regression solution
to Dunn's and Scheff&'s tests is given in Table 2.
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TABLE 2
Regression Formulation for Dunn s and Scheffd’s Tests

X4Y X] x2 x3

9
8
6
3
4
8
7
8
6
6

13
10
12
11
14
15
12
10
17
11

Using the

1 0
1 0
1 o
1 o
1 o
0 1
0 1
0 I
0 1
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

two linear models,

0 o
0 o
0 o
0 o
0 o
0 o
0 o
0 0
0 o
0 0
1 0
1 0
1 o
1 o
1 0
0 1
0 1
0 1
0 1
0 1

most computer programs
include a "computed t value" for each regression coef-
fi ci ent. Each linear model generates three computed t
values; however, only three of the six computed t values
are of interest.

The computed t values for equation 1 are

t = .735 for comparing X-| to X^ (not a comParls
of interest),  

t = 4.411 for comparing X^ to X^» and

t = 5.147 for comparing X^ to X^.

The computed t values for equation 2 are

t = -.735 for comparing X? to X^ (not a comparison
of interest),  

t = 3.676 for comparing L to X, (not a comparison
of interest),  

t - 4.411 for comparing to X^.
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To evaluate these t values, Dunn's {1961) table can
be used. With 3 comparisons and df =16, the critical

w
value is 3.45, with a = .01.

TABLE 3

Computed t Values for Dunn's and Scheffi's Tests
in a Regression Formulation

Comparison t

to X3 4.411*

X-j to X4 5.147*

X2 to X4 4.411*

*Significant at the .01 level

The formulation given for Dunn's test is identical for
completing Scheff&'s test. The only difference in the
interpretation lies in determining the critical value;
for Scheff^’s test,

S = (k-1)aF|<_] n-k» which, for a = .01, k = 4,

n = 20, is S = 3.98. The corresponding critical value for
Tukey's test is £ or 3.67. That Dunn's test is

&
more powerful than Scheffd's test for this set of posited
simple comparisons is due to the limited number of
comparisons. For the application given, then, Dunn's
test is the most powerful and Scheff^'s test the least
powerful, with Tukey's test being intermediate. For the
three comparisons, given, however, significance at the .01
level for all three comparisons by all three tests was
attained.

Complex Comparisons

Both Dunn's test and Scheff£'s test allow for more
complex comparisons (more typically called contrasts) of
the means than is indicated by the three comparisons already
shown. The more complex comparisons typically will
require a more complex solution than was demonstrated
for the simple comparisons.
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Suppose the following four comparisons were of
interest:

+ y2 to y3 to yc4

hX-j + JiX2 to X4

1/3X- + 2/3X2 to 3/7X3 + 4/7X4

Y2 to x3.

There are several approaches to solving for these
comparisons. One approach is to define ful1 and
restricted models, following the methodology of Ward
and Jennings (1973). To consider the first comparison,
the full model is identical to any one of the previously
given equations 1 or 2, as they all yield the same

2
R value of .71429. Actually, the full model can be
thought of as Y = bp.| + b2X2 + b3X3 + b4X4 + e-j. (3)

In that most computer programs automatically generate a
constant term (bQ), equation 3 will typically not produce

a desired result; if, for example, b4X4 is thought of

as being bg, then one solution would be to use equation 1

where bQ will equal X^ The restricted model could then

be formed from the restriction implied in the comparison
Jsb1 + y>2 = + ?2b4. If this restriction is shown in

terms of b], it is given as b1 = b3 + b4 - b2. If this

restriction is made on the full model (equation 3)

Y = (b3 + b4 - b2)X^ + bgX2 + b3X3 + b^X4 + e2,

Y = b2(X2 - xp + b3(X3 + Xp + b4(X4 + xp + e2,

or

Y = b V + b V + b V + e , where
C. I O £ *T J £
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V, =1 if a member of Group Two, -1 if a member of
Group One, 0 otherwise;

V„ = 1 if a member of Group Three, 1 if a member of
Group One, 0 otherwise;

V_ = 1 if a member of Group Four, 1 if a member of
Group One, 0 otherwise.

Then, a restricted model could be used which uses any
two of the variables of V., V9 and V_. Using V, and V ,

1 c i '2
the restricted model is

Y = b0 + b5Vl + b6V2 + e2‘

The resulting P, for equation 4 is .01931.

To evaluate the significance of this restriction,
the equation

F = <r2FH " r2RM^' _ (S)
(' - «2FM)/dfw

9 9
can be used, where R refers to the R value from theFM9 9
full model, R DM refers to the R value from the

Krl

restricted model and df refers to the degrees of freedom
w

for the within term in the full model.

For the comparison to kX^ +

F = (.71429 - .01931)/! = 38.925.
(1 - .71429)/16

If i/f~ is found, VF = 6.239, which can be interpreted as a
t value for Dunn's test (or as the value of S in Scheff£'s
test) for this comparison.

A simpler approach can be used to gain the same result.
If a new predictor V4 is defined as = h for a member of

Group One, h for a member of Group Two, for a member of
Group Three or for a member of Group Four, so that V4

is a direct utilization of the comparison of interest,
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othen the R value found from using V4 as a predictor
2 2

is .69498, which is equal to R FM - R RM:
2

.71429 - .01931 = .69498. The value for R for the use
of V4 can be directly utilized as equal to

2 2R FM " R RM th eAuation Similar solutions can be

given for the comparisons

to X4 (F = 30.463, t = 5.519)

1/3^ + 2/3X2 to 3/7X + 4/7X4 (F = 35.380, t = 5.948)

and

X to X (F = 13.513, t = 3.676).

The last comparison is of particular interest in that
it is of the type given earlier for simple comparisons and
is in fact identically equal to the earlier obtained
result from the value given from the use of equation 2,
although it was not then a comparison of interest.

To evaluate these comparisons for significance, the
tabled value for Dunn's test at the .01 level for four
comparisons is 3.59. Each of the four comparisons are
significant. The critical value for Scheff^'s test
remains as 3.98. While Tukey's test also yields signi­
ficance on the four posited tests, it is of interest to
note that on each of the three complex comparisons,
Scheff£'s test has a shorter interval than does Tukey's test.

As was noticed, including four comparisons rather
than three reduced somewhat the advantages of Dunn's
test over ScheffS's test. For a = .01, k = 4, df = 16,

w
Dunn's test will be more powerful than Scheff^'s test for
any number of comparisons up to 9 comparisons. Beyond 9
comparisons, Scheff&'s test is more powerful. As both
Dunn's and Scheff&'s tests employ the same standard error
tor a contrast, they are easily comparable. On the other
hand, comparisons to Tukey's test are more difficult.
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Tukey's test_maximizes its power with simple comparisons
of the form X-j - X j; for complex comparisons Schefffe's

test tends to be more powerful.

If all seven of the previously given comparisons had
been posited a priori, then Dunn's test has a critical
value of 3.86, with Scheff£'s test critical value remaining
at 3.98. For such a situation, Tukey's test would be more
powerful for the four simple comparisons, but both Dunn's
and Scheff^'s tests are more powerful on the complex
comparisons, with Dunn's test being slightly the more
powerful of the two.
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THREE REASONS WHY PERCENT VARIANCE

ACCOUNTED FOR IS IMPORTANT TO THE
DEVELOPMENT OF THEORY*

by
James Gillham and Darlene Napady

THE UNIVERSITY OF AKRON

Abstract

Percent variance accounted for describes the degree of ambiguity in
a test of a theory. This percentage is a parsimonious statement of the
relative success of each attempt to solve a particular puzzle; it is
also a guide to forming still better solutions.

At professional meetings discussants can find themselves confronted

with a group of papers.nominally related in subject matter but so diver­

gent in theoretical approach that substantive comparisons are difficult.

In a larger sense, of course, this dilemma faces anyone wishing to

evaluate the goodness of one theory against that of another. Although

it has received little attention in this regard, the percent of variance

accounted for can serve as a highly practical tool for such comparisons

of theories (Klein and Newman, 1974; Byrne and McNeil, 1975).

Three papers presented at one session of the American Sociological

Association's 1974 annual meeting illustrate the enormous differences

that can be uncovered by this approach. Among these three papers, the 

*We are indebted to Keith McNeil for his very helpful comments on
an earlier version.
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percentage of variance accounted for ranged from an astounding 96

percent down to a miniscule 11 percent.

The paper (Segal, 1974) with the astonishingly high percentage of

variance figure reported a Spearman’s rho of .98. It provided rather

unambiguous support for the relationship between spatial propinquity and

interpersonal attraction.

The second paper (Moschetti, 1974) accounted for 64 percent of the

variance between written instructions and continuance of the criterion

behavior. Although this figure also seems high, the operationalization

left ambiguous the effects of verbal instructions that accompanied the

written instructions (for a summary of this evidence, see McGuire, 1969).

The third paper (Sykes and Fox, 1974) accounted for only 11 percent

of variance in its argument that persons tend to interact more with those

with whom they share certain characteristics rather than with those with

different characteristics. A long line of research (summarized by Sears

and Abeles, 1969) already had thoroughly repudiated several versions of

this homophily hypothesis, so this small figure is to be expected. But

the authors made no mention of this literature. They also failed to take

to account the tendency of some people to be more gregarious than others

characteristics that make some people more attractive than others

(Smith and Freedman, 1972; Tomeh, 1973; Lindzey and Byrne, 1969). No

wonder the percent variance accounted for was so small!

these papers, sent to the discussant prior to the meeting,

P ciously strong. Each reported results significant at

high but, in this instance, deceptive—figure. In

g ificance tests are not always helpful because they only



- 85 -

indicate how much the theory's results surpass complete randomness, which

is sheer chaos. Data can be extremely non-random without even approaching

a meaningful relationship between observed and predicted values.

None of these papers, however, actually reported the percentage of

variance accounted for. For the first paper, of course, this readily

could be calculated by squaring the Spearman's rho figure. The second

paper, however, presented an analysis of variance,which required the

reader to apply Hayes' (1963:407) formula to obtain the percentage of

variance for which it accounted.

Originally, the third paper also presented an analysis of variance,

which, through Hayes' formula, yielded the 11 percent variance-accounted-

for figure. In a revised version, however, the authors substituted

Goodman's log-linear model (1971), a statistical procedure not related to

multiple regression. Although they apparently acted out of concern over

violating the classical assumptions underlying multiple regression, they

admitted that they had made no systematic effort to determine if these

assumptions, indeed, had been violated. Goodman's model has been put to

fruitful use elsewhere, but it provides no means of even calculating a

percentage-of-variance-accounted-for figure. The authors, therefore,

perpetrated an even greater disservice to the development and evaluation

of theory.

As a tool in theory development and evaluation, the comparison of

percent variance accounted for has several unique strengths. First, it

is parsimonious. Expressed numerically, it is much more succinct than

verbal evaluations of ambiguity that involve criticizing either concepts 
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or operationalization. Since it is derived mathematically, percent

variance accounted for also incorporates formal logic to a greater

degree than do most verbal approaches.

Secondly, percent variance accounted for provides a record of the

relative success of each past attempt to solve a particular puzzle.

Science, as Kuhn (1970) points out, can best be viewed as a series of

such attempts to solve commonly agreed upon puzzles. Each new theory,

therefore, contributes to the advancement of science only if its

solution to such a puzzle is better than those of its predecessors.

Here again, percent variance accounted for permits a direct comparison.

Unless the new theory accounts for a higher percentage of variance than

established theories, it should not be allowed to supercede them,

regardless of its intuitive appeal.*

Thirdly, percentage of variance accounted for can guide subsequent

investigators in formulating new theories that can provide still better 

solutions to the puzzle. In selecting variables for a study, an

investigator initially can look to previous works that accounted for

relatively high percentage of variance. Then, of course, the investigator 

must carry the matter further, incorporating new variables or combini g

traditional ones in novel ways. Here the process virtually becomes a

form of art, demanding creativity and insight on the part of the inves

gator. Even such a sophisticated and productive statistical techniqn

as multiple regression provides no assistance. The error figure reve 

most sttia^ei^ p^efer to Judge theories by their generalizability,
make generalist- • e°ries have yet to account for enough variance to

generalizations feasible (Phillips, 1971; Gibbs, 1972; Chapter 3).
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only that something has been left out or that at least some of the

included variables were not measured appropriately. But it provides no

indication of what, specifically, was omitted or even whether the problem

stemmed from omission or poor measurement. The investigator must look

elsewhere for answers to these questions. Unfortunately, many investi­

gators probably do not pay close enough attention to what actually happens

to the persons in their observations; consequently, they tend to overlook

valuable clues to the true state of nature.

The authors of the third paper presented at the ASA session not only

failed to carry their inquiry to the art form stage but also, by neglecting

previous research, overlooked a valuable source of scientific guidance.

They then compounded the damage by reporting their results in a way that

made direct comparisons with other work difficult, to say the least.

But if behavior sciences are to make any progress in the accumulation

of knowledge, its practitioners must fight off this temptation to obscure

weak results. Investigators, understandably, may be reluctant to report

percentage of variance accounted for; in most cases this figure is

embarrassingly small. Although it may be ego-deflating, investigators

should report their results in a manner that permits their fellow

scholars at least to calculate this figure. When investigators fail

to do so, their colleagues should demand this information, for, as a

statistical tool, percentage of variance accounted for provides a

direct measure of how far a discipline has come in its efforts to reduce

ambiguity.
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