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ABSTRACT

Several of the more common multiple comparison techniques are explored

in a regression approach. Dunnett's test for comparing several groups to a

single group, Tukey's(a) honestly significant different test, Newman-Keul's,

Tukey's(b) and Duncan's tests are considered. Complex comparisons (contrasts)

are shown through Dunn's and Scheffd's test and through orthogonal comparisons.

Orthogonal polynomials are also shown for testing for trend. A method for

finding a maximized Scheff6 contrast such that the contrast will yield the
2

same R value as the original full model is also included.

The intent of the present monograph is to more fully explore the use

of alternate methodologies to the usual multiple F tests when more than

one restriction is placed on a full model.
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CHAPTER I

INTRODUCTION: DUNNETT'S TEST

Several researchers have presented multiple linear regression as a data

analysis technique. A major impetus to this approach was the publication by

Bottenberg and Ward (1963). Jennings (1967) continued in the same vein in an

article concerning the two-way fixed effects analysis of variance from a

regression viewpoint. Ward (1969) compared four different approaches to data

analysis and showed that all four approaches had many basic ideas in common.

The difficulty of recognition of the relationship between the use of

regression analysis and standard analysis of variance designs was pointed out

by Cohen (1968). A more recent statement on their approach to regression was

made by Ward and Jennings (1973).

Similar approaches to the Bottenberg-Ward-Jennings have also been made.

Kelly, Beggs and McNeil (1969) have elaborated this approach with several

educational research applications; this particular presentation has recently

been updated (McNeil, Kelly and McNeil, 1975). The text by Williams (1974a)

also has its origin in the Bottenberg-Ward-Jennings approach.

Other authors have somewhat similar book length treatments on regression

as well. Mendenhall (1969), Kerlinger and Pedhazur (1974) and Cohen and

Cohen (1975) are prominent examples of such tests.

Multiple Comparisons

The rejection of the null hypothesis p-j = pg = p3 . . .= p would

rarely seem to be completely satisfying. It is only natural to ask,

if there are differences, where are those differences? Since the overall

1
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F test does not provide the solution, then it would seem natural to seek

a direct solution to the researcher's problem(s). If multiple use of the

t test were made, the reported probability level would be seriously violated;

hence the use of multiple t tests would be inappropriate. What is approprate

depends upon the situation. Several multiple comparison tests have been

devised to satisfy a particular demand or analysis upon the data. Thus, it

would seem that there is no best multiple comparison method that universally

fits all situations; rather, if the researcher can point out the comparisons

of interest, then an appropriate multiple comparison method can be

chosen.

The present monograph is oriented toward examining several of the more

often used multiple comparison procedures. Thus, Dunnett's (1955, 1964)

test for several treatment groups with a control, Tukey's (1953), Dunn's

(1961), Duncan's (1955) Scheff^'s (1953), Newman (1939) and Keuls' (1952) tests

and the orthogonal contrasts are separately considered.

Error Rates in Regression

One consideration within the regression framework that still needs

additional concern is the consideration of error rates. Commonly a full

model is specified and then one or more restricted models are tested. If

more than one restricted model is specified,then an appropriate adjustment

should be made concerning the probability level. To be specific about the

adjustment of the probability levels, it is helpful to consider differentiating

among five terms relating to multiple comparisons: error rate per compari­

son, error rate per experiment, experimentwise error rate, error rate

per family and the family wise error rate.

These error rates have been defined as follows:
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Per comparison = No. of comparisons incorrectly called significant
total number of comparisons ; (1.1)

Per experiment = No. of comparisons incorrectly called significant
total number of experiments ; (1.2)

Experimentwise = No. of experiments containing erroneous statements
of significance_______________________________________
total number of experiments F (1.3)

Per family = No. of comparisons incorrectly called significant
total number of statements in the family ; (1.4)

Familywise = No. of experiments containing erroneous statements
of significance_________________________ _____________
total number of statements in the family 7 (1.5)

It can be seen that in general the first three error rates will be

different, with the error rate per comparison being the least stringent,

and the error rate per experiment being the most stringent. Ryan (1959, 1962)

has indicated that the use of the per comparison error rate should be

discouraged, and that one of the other approaches should be adopted. An

example discriminating among the first three types of error rates follows;

discussion of the family and familywise error rates is postponed until

after the first three are discussed.

Suppose a set of six comparisons of four means are contemplated:

X] to Yg* X] to X3, to X4, X^g to ^3» *2 t0 ^4 anc' ^3 t0 ^4*

100 replications are made of this experiment. Suppose also in

the population all hypotheses are true. For the sample data, suppose the 

following results are found:
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Experiments with
Number of Incorrect Rejections

zero incorrect rejections
one incorrect rejection 

three incorrect rejections
four incorrect rejections
five incorrect rejections
six incorrect rejections

two incorrect rejections
4
3
0

0
4
6
0
4

10
6

Then, the per comparison error rate is 30 - .05; the experimentwise error
W

rate is 11 = .11; and the per experiment error rate is 30 = .30.
TOO W

In general, the per experiment error rate is the most conservative in that

a higher critical value is usually required than the other two error rates.

Also, experimenters are encouraged to use the experiment as the unit of

analysis; while the experimentwise error rate or per experiment error rate

are seen as being acceptable, the per comparison error rate is viewed as being

generally unacceptable (Ryan, 1962). The per comparison error rate is very

similar to using multiple t tests.

The Family Error Rates

For a full discussion of family error rates, Miller (1966) can be con­

sulted. In particular, Miller points out the ambiguity of the term

family". In actual practice, if the family of comparisons of interest are

identical to the comparisons made in the experiment, then the familywise

error rate is identical to the experimentwise error rate and the per family

error rate is identical to the per experiment error rate. If, however, more

than one family is defined for an experiment, this relationship no longer

holds.

For example, if a two-way analysis of variance is performed, the

experimenter may define three families of comparisons: one family for rows

one family for columns and one family for interactions. Within a family 
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of comparisons (e.g., rows) an experimentwise .05 level might be maintained.

If the entire experiment is considered as the unit of analysis, and if each

family is tested at the .05 level, then the experimentwise error rate for the

complete experiment is 3(.05) = .15.

A Priori and A Posteriori Tests

Another consideration in regard to multiple comparison tests is the

concept of a priori and a posteriori tests. An a priori test is one in which

the comparisons have been decided on in advance of the gathering of data.

On the other hand, a posteriori tests allow the researcher to decide on

the hypotheses to be tested even after the data has been inspected. Thus,

the a posteriori tests allow the researcher the flexibility to consider

relationships of interest after a preliminary data analysis has been

completed. The cost of this flexibility is loss in power; that is, the

tests where the researcher has set the hypotheses to be tested in advance of

the data collection will generally have somewhat more power and will allow

the null hypothesis to be rejected more often than if the hypotheses have

not been set in advance.

A very crude, but useful rule to follow in choosing between an

a priori test and an a posteriori test is the following: if you know

what you're doing, use an a priori test; otherwise, use an a posteriori test.

In other words, the a priori tests are quite useful in theory testing and

theory building situations; the a posteriori tests are more of a general

purpose type of test.
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One and Two Tailed Tests

A natural extension of using a priori, tests is the consideration of

using a one-tailed test. McNeil and Beggs (1971) previously have considered

the use of directional hypotheses in multiple linear regression. Some

multiple comparison methods lend themselves to one-tailed tests when the

comparisons have been posited a priori. If the experimenter is willing to

predict the direction of an outcome of a posited test on an a priori basis,

then a more powerful test can result. The reader should be cautioned that,

with the exception of Dunnett's test, all tables in the Appendix to this

monograph are two-tailed tests. The tables can be used for one-tailed tests

by halving the reported probabilities.

Dunnett's Test for Comparisons of Several Treatment Groups
with a Control

Dunnett (1955, 1964) devised a test that would allow the comparisons

of several treatment groups with a control group and still retain an ex­

perimentwise error rate. This test could also be used whenever an ex­

perimenter wished to test a group which might be called the "experimental

group" against several existing (but different) groups.

For example, a business educator may have devised a new approach to

teaching beginning typewriting. The business educator may find that

instead of finding one typical approach to teaching typewriting there may

be several methods being used. Rather than lumping all of the existing

methods together and calling them a control group, it would seem more

logical to test the new approach against each existing group separately,

but in a single experiment. Dunnett's test is appropriate for this

situation. So that the various tests can be compared to one another, a

single data set is used throughout this monograph. That data set is

given in Table 1.1.
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DATA FOR DUNNETT'S TEST

X] = 6.0, X2 = 7.0, X3 = 12.0, X4 = 13.0 .

TABLE 1.1

Control Group
Group One

Group Two Group Three Group Four

9 8 13 15
8 7 10 12
6 8 12 10
3 6 11 17
4 6 14 11

Suppose the interest is in comparing the Control Group to Groups Two, Three

and Four.

Viewing the problem from a regression viewpoint, it is helpful to

define four binary predictors:

X-] = 1 if the score is from a member of the control grouo
(Group One): and 0 otherwise,

X2 = 1 if the score is from a member of Group Two; and 0 otherwise,

= 1 if the score is from a member of Group Three; and 0 otherwise, and

X^ = 1 if the score is from a member of Group Four; and 0 otherwise.

A linear model can be written for this situation:

Y = b0 + b2X2 + b3X3 + b4X4 + ep (1.6)

where

bg = the Y-intercept,

b2 = the regression coefficient for Group Two,

bg = the regression coefficient for Group Three,

b4 = the regression coefficient for Group Four, and

e.| = the error involved in prediction.

It can be noticed that the control group has seemingly been left out.

However, if equation 1.6 is solved for the expected value for a member of
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the control group ,

E(Y) = b0 + fc>2(0) + b3(0) + b4(0),

E(Y) = bQ.

The expectancy for a member of the control group is by definition X1. Thus,

a least squares solution for bQ is , the mean of the control group.

For a member in Group Two, the expected value is

E(Y) = b + b (1) + b (0) + b4(0),

E(Y) = bQ + b2,

E(Y) = X-j + b2-

A least squares solution for the expectancy of a given member of

Group Two is the mean of Group Two. Thus

X? = X-j + b2> from equation 1.7, or

X2 - X1 = b2. (1-8)

Likewise

b„ = X, - X, and b. = X. - X,.

Equation 1.6 can be rewritten

Y = ^ + (X2 - xpx2 + (X3 - X-])X3 + (X4 - xpx4 + e. (1-9)

Equation 1.9 lists precisely the comparisons of interest for comparing

several treatments with a control. Since equation 1.6 (and, therefore,

equation 1.9) is the same model as has been given for a one-way analysis

of variance (Williams, 197], 1974a), this approach also yields results

identical to the analysis of variance situation. Thus, using equation 1.6,

it can be seen that these two useful results can be obtained simultaneously:

the usual analysis of variance as one part of the output, and Dunnett's
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test as the other part.

The information necessary for a regression solution, with equation 1.6

as the linear model, can be conveniently placed in tabular form (see Table 1.2).

TABLE 1.2

REGRESSION FORMULATION FOR COMPARING SEVERAL
TREATMENTS WITH A CONTROL

Y X1 X2 X3 X4

9 1 0 0 0
8 1 0 0 0
6 1 0 0 0
3 1 0 0 0
4 1 0 0 0
8 0 1 0 0
7 0 1 0 0
8 0 1 0 0
6 0 1 0 0
6 0 1 0 0

13 0 0 1 0
10 0 0 1 0
12 0 0 1 0
11 0 0 1 0
14 0 0 1 0
15 0 0 0 1
12 0 0 0 1
10 0 0 0 1
17 0 0 0 1
11 0 0 0 1
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For the data in Table 1.2, a general purpose multiple regression program

was used. Table 1.3 contains the printout from that analysis. The variable

number in Table 1.3 refers to the order in Table 1.2; the criterion variable

is variable number 1; variable 2 refers to the control group, variable 3

to Group Two, variable 4 to Group Three and variable 5 to Group Four.

Because variable 2 refers to the Control Group, no information appears

in the printout using that variable number. The table of residuals

has not been included herein.

Table 1.3 contains the previously mentioned items. It can be

recalled that X, = 6.0, X„ = 7.0, X^ = 12.0, X. = 13.0. The intercept
I C- 0 T1

is 6.0 (within rounding error) and is X-]. Also, b2 = 1 = X2 " X1 ’ and is

in keeping with equation 1.9. Similar statements could be made concerning

bg and b^. The computed t values in Table 1.3 are identically the same

values as would result from the use of Dunnett's test. It is only necessary

to compare each of these values to Dunnett's table for the test of significance.

From Table Id, a computed t value of 3.39 is needed for significance at

the .01 level on a two-tailed test. Thus, both Groups Three and Four are

significantly higher than the Control Group. It thus can be seen that the

computed t values, which are tests of the partial regression weights, should

be evaluated in this instance not by the traditional t table, but by

use of Dunnett's tables.
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CHAPTER II

MAKING ALL SIMPLE COMPARISONS:
TUKEY'S, NEWMAN-KEULS'AND DUNCAN'S TESTS

This chapter considers four tests that differ only in their use of

probability; from a regression viewpoint, the hypotheses being tested are

identical. The four tests are Tukey's (a) test, sometimes called the

honestly significant different test, Newman-Kuels' test, Tukey's (b) test

and Duncan's multiple range test. The tests are normally used if all

(£) simple comparisons are of interest; the tests are often employed on an

a posteriori basis. For purposes of comparison among these four tests

and al so for comparing these tests to the other tests, the data given in

Table 1.1 are used.

Tukey's (a) Test: The Honestly Significant Different (HSD) Test

A useful test which can be used on an a posteriori basis and retain

an experimentwise error rate is Tukey's (1953) HSD test. Quite often,

Tukey's test is used when a significant F value has been found, and

the interest is in pinpointing where the differences are. It is not

necessary that the overall F test be applied to use Tukey's test,

however. Also, Tukey's test is usually applied to all pairs (^) of

means in the situation where there are more than two groups. Thus, if there
4

were four groups, then there would be (g) or 6 comparisons.
4

For the data presented in Table 1.1, there are (2), or 6 comparisons

of interest (that is, all possible comparisons of pairs) for Tukey's

test.

They are the following:
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Xj to Xg>

X] to X3>

I] to X4,

Xg to Xgj

x2 to Y4 and

X3 to X4.

There are several ways that Tukey's test can be achieved, even using a

regression approach. The particular method described here has one major

advantage over other descriptions of the calculations of Tukey's test: it

is by far the easiest to accomplish, using a computer. A much more elegant

solution is given by Williams (1972). The present solution was first given

in Williams (1974b).

A Simplified Solution to Tukey's Test

Tukey's test can be accomplished with k - 1 successive uses of regression

equations (where k is the number of groups) where models similar to equation

1.6 are solved; in each successive solution, a different group is omitted

from the equation.

Thus, for the data in Table 1.1, the solution given for Dunnett's test

also includes three of the six comparisons of interest for Tukey's test.

Each of the succeeding models also include three of the six comparisons of

interest.

To be more specific, Group Two can be omitted from the model, yielding

Y = b0 + + b3X3 + b4X4 + er (2.1)

SimHarly, Group Three can be omitted from the model, yielding

Y = b0 + b]X] + b2X2 + b4X4 + er (2.2)
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It should be noted that the values for and the remaining regression

coefficients will be different for equations 1.6, 2.1 and 2.2 The value

for bQ is equal to the mean of the of the group "left out" of the model.

For equation 2.1, bg = ~ 7.0; for equation 2.2, bg = Xj = 12.0.

As indicated, bp b£, b^ and b^ will in general be different from equation

to equation. As an example, b^ occurs in equatiore 1.6, 2.1 and 2.2. For

equation 1.6, b4 = X4-X-| = 13-6 = 7; for equation 2.1, b^ = X"4 - X2 = 6;

for equation 2.2, b^ = X^ - X^ = 1. As is indicated here, the regression

coefficients are the difference between the means of each group to the

group left out in a particular analysis. However, the value for e^ will

remain the same for each of the equations, as each of these equations can be

conceptualized as a reparameterization of an analysis of variance model.

The computed t values for equation 2.1 can be found for the following comparisons:

t = -.735 for comparing X-| to X2 (this was also available from the first

model, equation 1.6);

t = 3.676 for comparing Xg to X^; and

t = 4.411 for comparing X^ to X"2.

The computed t values for equation 2.2 can be found for the following comparisons:

t = -4.411 for comparing X-| to X^ (this was also available from the

first model, equation 1.6);

t = -3.676 for comparing Xo to X, (this was also available from the

second model, equation 2.1); and

t = .735 for comparing X^ to X3.

A change in sign from one equation to the next in computed t values is to be

expected. In the first model, whose results are shown in Table 1.3, the

computed t value for comparing X-j to X2 is .735. From equation 2.1, the
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computed t value for comparing X2 t0 X1 1S "•735- Thls 15 because the means

are being compared in a different order. The first test shows X^ > X-j.

As we would surely expect, the second test showed < X2.

To evaluate these t values, the Tables of the Studentized range

statistic are to be used, but a modification is first necessary. Using

such a table, the value of q for 4 groups and df = 16, at the .01 level is

q = 5.192. To evaluate the computed t values, the value for q should be

divided by'l;2: the critical value = q = 5.192 = 3.671 . A modified
T75T4

72

Studentized Range table is included as Tables Ila and lib in the Appendix.

These tables have been modified so that the computed t values can be tested

directly; they have been constructed so that the values are calculated from

3. where q was the value from the original Studentized range statistic tables.

^2

The values in Tables Ila and lib can be used to construct confidence limits

in a manner analogous to ordinary confidence limits using the usual t table.

Table 2.1 contains the results for Tukey's test (omitting minus signs).

TABLE 2.1

TUKEY'S TEST IN A REGRESSION FORMULATION

Comparison

X^ to X?

X, to X-

X-] to X4

X? to X-

X2 to X4

X. to X,
Significant at the .01 level

t

.735

4.411*

5.147*

3.676*

4.411*

.735



Multiple Linear Regression Viewpoints
Vol. 7, No. 1, 1976
Monograph. Series #2

16

Four of the six comparisons are significant at the .01 level.

A computer program has been written (Lindem and Williams, 1975) that

automatically calculates Tukey's test for all possible simple comparisons

Results are given in both t and q values, so that conventional tables can

be used if the researcher so desires.
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The Newman-Keuls1 Test

The Newman-Keuls' test is one of several multiple range tests (others

considered in ths chapter are Tukey's (b) test and Duncan's test). The

Newman-Keuls' test controls the error rate experimentwise only for the

complete null hypothesis. While the nominal level is a , the actual experi­

mentwise rate can rise to ka where k is the number of groups.
2

The same linear models are necessary with the Newman-Keuls1 test as was used

in the Tukey (a) test. To complete the Newman-Keuls1 test, the means

should first be ordered from lowest to highest: as the original means were

X-l = 6, X2 = 7, JCj = 12 and = 13, the order from lowest to highest means

is X^ X^’ ^3 and X^. A t table can be constructed using the computed t

values. See Table 2.2.

TABLE 2.2

COMPUTED t VALUES FOR DATA IN TABLE 1.1
FOR NEWMAN-KEULS'TEST

X1 x2 X3 x4

X1 .735 4.411* 5.147*

X2 3.676* 4.411*

X3 .734

♦Significant at the .01 level

First, the largest mean (X4) is compared to the smallest mean (X^;

the computed t value, 5.147 > 3.671, the t4 value at the .01 level with

16, r 4 from Table lib. Hence, this difference is significant at

level. Had this difference been non-significant, no further tests

would be considered; if the lowest mean is not significantly less than the
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highest mean, then Newman-Keuls reasoned that no other means should be

different from one another either (assuming equal sample sizes).

In that the first test is significant, means that are in a range that

hclude three means can be tested. That is, is compared to X3 and

X2 is compared to X4. In this case, the critical t value is found from

Table lib with v = 16 and r = 3; the critical t_ is 3.384. The computed t

value for comparing X^ to is 4.411 (d < .01); also, the same t value

(4.411) is found for comparing X2 to (p < .01). Because both tests

are significant, all tests that include adjacent means can now be entertained.

Had no significances been found at this stage, the testing would have been

concluded. If only one of the tests showed significance (say to Xg), then

only those comparisons in the same row as the comparison judged significant

would be of interest; in that case, the remaining comparisons would have

been X. compared to X and X compared to 7 .
I c. c. 0

In that both of the previous comparisons were significant, all

adjacent means are of interest for testing. The critical t value for

adjacent means is given by v = 16, r = 2; t? = 2.921. Only the comparison

of X2 to X^ is significant at the .01 level; t = 3.676.

In reviewing the process, the t^ for Newman-Keul^ test, 3.671, is

identical to the critical value for Tukey's (a) test. However, t3 = 3.384

is smaller than the value for Tukey's (a) test; tg= 2.921 is in fact identical

to the critical t value for the usual t test. The superior power of the

Newman-Keuls1 test is due to using a less stringent error rate than an

experimentwise level for all comparisons undertaken.
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Tukey's (b) Test - Tukey's Compromise

Tukey's (a) test given earlier was based upon building simultaneous

confidence limits for each group. If the interest is in completing significance

tests, then the order of the groups can be used, much as was done in the

Newman-Keuls’test. Tukey's (b) test differs in only one detail from the

Newman-Keuls'test—instead of using the values from the Studentized range

as has Newman-Keuls', the Tukey (b) test uses the midpoint of the corresponding

values for the Tukey (a) HSD test and the Newman-Keuls' test.

Table 2.3 contains the required t values for significance at the .01

level for Tukey's (a) HSD test, the Newman-Keuls1 test and Tukey's (b) test.

TABLE 2.3

VALUES OF THE t REQUIRED FOR SIGNIFICANCE
AT THE .01 LEVEL FOR TUKEY'S (a) HSD TEST,

NEWMAN-KEULS’TEST AND TUKEY'S (b) test

corresponding critical values for the Tukey (a) HSD test and the Newman-

r 2 3 4

Tukey's (a) HSD 3.671 3.671 3.671

Newman-Keuls’ 2.921 3.384 3.671

Tukey's (b) 3.296 3.528 3.671

The critical value for Tukey's (b) test can be seen to be the mean of the

Kuels1 test. In applying the Tukey (b) test, the testing procedure is

identical to Newman-Keuls' "layer" procedure. Under these restrictions,

the test maintains an experimentwise error rate, according to Ryan (1959).
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Duncan's Multiple Range Test

Perhaps one of the more controversial approaches to multiple comparisons

has been due to Duncan. The controversy revolves around his use of the

so-called "protection levels." To understand the use of protection levels,

it is somewhat useful to attempt to reconstruct the thinking that might

have been involved in arriving at Duncan's multiple range test. Two

different researchers may independently test hypotheses using a t with

a = .05. If we incorporate the two findings into a single interpretation,

the probability of a Type I error is 1 - (.95)2 or .0975. Duncan would

argue that the appropriate error rate for a nominal .05 level would be

.0975 when two tests have been performed. The general form of the
, ,k’l

protection level with a nominal .05 error rate is 1 - (.95) where k is

the number of groups and the comparisons are made in the layer fashion

of Newman-Keuls.

If several values are solved for the .05 nominal level (or .05 protection

level, as Duncan would term it), the experimentwise error rates would be

2-1
for two means, 1 - (.95) = .05;

3-1
for three means, 1 - (.95) = .0975;

4-1
for four means, 1 - (.95) = .1426;

for five means, 1 - (.95)° = .1855;

for six means, 1 - (.95)6 I  ^262 and

7-1
for seven means, 1 - (.95) = .2649.

Duncan then used the Studentized range statistic by finding the point

that corresponded: to .05 for r = 2, to .0975 for r = 3; to .1426 for r - 4,

• • to .2649 for r = 7.
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The use of protection levels has already been adequately criticized

in the statistical literature and there is no need to continue that

criticism here. The interested reader could consult Miller (1966), Scheff£

(1959) and Ryan (1959).

The regression solution for Duncan's test is identical to that of

Tukey's test and the Newman-Keuls' test. The only difference in the method

occurs when the tables are consulted. Table Illa and Illb record necessary

t values for significance with Duncan's test at the .05 and .01 levels

respectively.

The t values given earlier in Table 2.2 could also be evaluated by

» Duncan's test. Table 2.4 contains the information given earlier in Table

2.3 and also contains the critical values for Duncan's test.

TABLE 2.4

VALUES OF t REQUIRED FOR SIGNIFICANCE
AT THE .01 LEVEL FOR TUKEY'S (a) HSD TEST,

NEWMAN-KEULS'TEST, TUKEY'S (b) TEST AND DUNCAN'S TEST

r 2 3 4

Tukey's (a) HSD 3.671 3.671 3.671

Newman-Keuls* 2.921 3.384 3.671

Tukey's (b) 3.296 3.528 3.671

Duncan's 2.921 3.047 3.129

While Duncan's test is clearly the more powerful, it achieves

this power through the use of protection levels rather than through

some other mechanism.
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Comparing the Four Tests

The four tests (Tukey's (a), (b), Newman-Keul s', Duncan's) have one

thing in common: all have a more stringent error rate.than the per comparison

error rate. However, only Tukey's tests retain an experimentwise error rate

for the total set of comparisons. Also, only Tukey's (a) HSD test will allow

the construction of confidence intervals. All four tests also utilize the

Studentized range statistic in defining the probability levels. The way

in which the Studentized range statistic is used is different for each

of the four tests, however. The comparisons involved in the present chapter

were such that all groups had equal frequencies. If unequal frequencies occur,

strictly speaking, none of the tests are appropriate as the tests assume

equal sample sizes. However, Tukey's (a) HSD would seem to be robust under

the violation of unequal sample sizes. If all simple comparisons are of

interest (and no complex comparisons are of interest) and the frequencies in

each group are not too unequal (admittedly a value judgment), the Tukey's (a)

HSD becomes an approximate test. If the cell frequencies are quite different,

then perhaps Dunn's test or Scheff£'s test (see Chapter Four) would be more

appropriate.
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CHAPTER III

ORTHOGONAL CONTRASTS

A multiple comparison method that seems to have a fairly wide

acceptance is the use of orthogonal contrasts. Descriptions of the process

are given in several widely used texts (for example, Hays, 1973, Winer,

1971 and Edwards, 1972 ). The popularity of the orthogonal methodology

is due to the fact that contrasts constructed within this framework are

independent of one another. Actually, orthogonality is of significant use

beyond its use in multiple comparisons; when the cell frequencies in the

two-way analysis of variance are proportional, the two main effects and

the interaction are independent (or orthogonal); also, orthogonal polynomials

are useful in trend analysis.

Constructing Orthogonal Contrasts

A contrast (i.e., comparison) is defined by

d}. = a1X1 + a2X2 + . . . +akXk where jja^ = 0.

For the data in Table 1.2, if a = 1, a? = -1, a3 = 0 and a^ = 0, the

resulting equation is d-j = T| - anc* 1S a contrast. Consider another

set of values for the a^.s: Let a-^ = 0, a2 = 0, a^ = 1 and a^ = '1. Not

only is the resulting equation, d2 = X^ - X^, a contrast, but d^ is

orthogonal to d2> To see this, it is helpful to nut the contrast coefficients

in a table. See Table 3.1.



Multiple Linear Regression Viewpoints
Vol. 7, No. 1, 1976
Monograph Seties i/2

24

TABLE 3.1

ORTHOGONAL COEFFICIENTS FOR TWO CONTRASTS

dl ' d2

al 1 0

a2 -1 0

a3 0 1

a4 0 -1

The contrasts d-j and d2 are orthogonal when the products of the

corresponding d. coefficients sum to zero; for the data in Table 3.1, the

sum is (1)(0) + (-l)(0) + (0)(l) + (0)(-l) = 0 .

Finding orthogonal coefficients is no easy task, particularly for those

who are not mathematically inclined. A maximum of k-1 such contrasts can

be found when there are k groups. A third contrast can be made using

a-j = h, a2 = a3 = and a^ = -H- To show d^ is orthogonal to both d-j

and d2» the corresponding values for the a- coefficients have to be

multiplied and then summed. To show d-j is orthogonal to d^,

(D(M + (-D(Ji) + (0)(-15) + (0)(->2) = 0.

Also, d2 is orthogonal to d^:

(o)O$) + (o)Gs) + (i)(-^) + (-i)(-h) = o.
Interestingly, d3 is the only contrast that is orthogonal to both d] and

d2' On the other hand, several contrasts can be found that are orthogonal

to d^ or d^ (but not orthogonal to both).

Suppose a second set of orthogonal contrasts is sought. For dp

let a-] = a2 = a3 = and a4 =

2’ let a-j a2 - Jg, 33 = Jg and a4 = -Jg. it can be seen that
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d is orthogonal to d^:

+ (}i)(J5) + (-Js)(5s) + (J5)(-J5) = 0.

As mentioned earlier, only one will be orthogonal to both d] and d2<

It is easily shown that d3 for this set is identical to the d- from the first
w

set: a] = h, a2 = a3 = -b and a^ = Table 3.2 contains both sets of

orthogonal contrasts.

TABLE 3.2

TWO SETS OF ORTHOGONAL COEFFICIENTS WITH FOUR GROUPS

Set 1 Set 2

dl d2

0

0

1

-1

nr
 kT 

q
.

C
O

xT 
A" 

A* 
A* 

A"
i 

i

d2

->s

%

d3

h»1. 1

a2

a3 0

a4 0

Set 1 can be used to show the regression solution for orthogonal contrasts.

New variables Xc, X,
b 6 and X7 can be constructed to correspond to dj, d£ and

d3: Xg = 1 if from a member in Group One , - 1 if from a member in Group

Two, 0 otherwise;

Xg = 1 if from a member in Group Three, -1 if from a member in Group

Four, 0 otherwise; and

X7 = if from either Groups One or Two, -Jj if from either Groups

Three or Four. The complete formulation is given in Table 3.3.
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REGRESSION FORMULATION FOR ORTHOGONAL CONTRASTS

TABLE 3.3

Y X1 x2 X3 X4 X5 X6 X7

9
8
6
3
4
8

1
1
1
1
1
0

0
0
0
0
0
1

0
0
0
0
0
0

0
0
0
0
0
0

1
1
1
1
1

-1

0
0
0
0
0
0

>s
h
h
h
h
\

7 0 1 0 0 -1 0 h

8 0 1 0 0 -1 0

6 0 1 0 0 -1 0 X

6 0 1 0 0 -1 0 X

13 0 0 1 0 0 1 -X

10 0 0 1 0 0 1 "^2

12 0 0 1 0 0 1 -X

11 0 0 1 0 0 1 -X

14 0 0 1 0 0 1
15 0 0 0 1 0 -1 ~X
12 0 0 0 1 0 -1
10 0 0 0 1 0 -1 A
17 0 0 0 1 0 -1 "^2

11 0

The results

0

of using

0

X5’ X6 and X7

1 0

as predictors

-1

of Y yields

~X

R = .84515, R2 = .71429. The computed t values are t^ = -.735 (for d-|);

t2 = .735 (for d 2) and t3 = -6.238 (for d3). These t values are

traditionally compared to an ordinary t table (this practice bears additional

comment in the next section): only t3 is significant (p < .01).

.09825, r2y5= r2y6 = .00965 and rY7 - .83666, r2y? ■= .69499. Then
Mso rY6= rY6

2 2 2r Y5 + r Y6 + r Y7 = -00965 + -00965 + .69499 = .71429 = R2.

2
Further, R (SST) = .71429 (259.00) = 185.00; thus R2(SST) can be seen to be

identical to the value for SS^ if a simple analysis of variance is performed.

Any complete set of k - 1 orthogonal contrasts will have the property of

having R2(SST) = SSfl.
I H
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Comments on the Use of Orthogonal Contrasts

Three areas need further comment regarding the use of orthogonal contrasts.

First, the error rate, experimentwise, is 1 - (1 - a )k"\ This error rate

is identical to the error rate for Duncan's "protection level." Indeed, Duncan's

best defense for the concept of the "protection level" is that it was in agree­

ment with the same probabilities associated with orthogonal contrasts. On

the other hand, each contrast is independent of all other contrasts, so

that each finding might be interpreted independently of all other findings.

A second concern is that orthogonal contrasts would seldom seem to be in

direct relation to the hypotheses a researcher wished to test. The contrasts of

interest generally would not be orthogonal. A third concern is that

researchers who are not mathematically oriented may have exceeding difficulty

in finding a useful set of orthogonal contrasts. It might appear that the

second and third concerns would eliminate orthogonal contrasts as being

basic to a researcher's background. Interestingly, the application of

orthogonal polynomials to trend analysis is at least one application that

satisfies both these concerns. Before explaining orthogonal polynomials,

it is useful to consider simple polynomials.

Polynomial Regression

Suppose the data in Table 1.2 (and also in Table 3.3) represent four

groups of subjects who have received varying amounts of instruction, and

that the Y values represent test scores. Also, Groun One subjects have

received one unit of instruction; Group Two subjects have received two units

of instruction; Group Three subjects have received three units of instruction

and Group Four subjects have received four units of instruction. Several
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new questions could be asked of the data. What type of trend exists?

Does a simple linear trend exist, or does a higher ordered polynomial give a

better explanation of the data?

Polynomial trends can be given by the equation

Y = b0 + b^ + b2X2 + b3X3 + . . . + e£. (3.1)

Here the X value represents the amount (or time) of the predictor variable.

For the data in Table 1.2, three new predictors can be defined;

X8 = 1 if from a member of Group One, 2 if from a member of Group 2,

3 if from a member of Group 3, or 4 if from a member of Group 4;

2 3
Xg = Xg ; and X^q = Xg . The reason that three predictors (or implying

a third degree polynomial) were defined is that the maximum degree polynomial

possible is one less than the number of unique X values; since X takes

on the values 1, 2, 3 and 4, the maximum polynomial is a third degree

polynomial. For a formulation of the polynomial regression, see Table 3.4.
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Y X1

FORMULATION

x2

TABLE 3.4

FOR POLYNOMIAL

X3 X4

REGRESSION

X8 X9 X10

9 1 0 0 0 1 1 1
8 1 0 0 0 1 1 1
6 1 0 0 0 1 1 1
3 1 0 0 0 1 1 1
4 1 0 0 0 1 1 1
8 0 1 0 0 2 4 8
7 0 1 0 0 2 4 8
8 0 1 0 0 2 4 8
6 0 1 0 0 2 4 8
6 0 1 0 0 2 4 8

13 0 0 1 0 3 9 27
10 0 0 1 0 3 9 27
12 0 0 1 0 3 9 27
11 0 0 1 0 3 9 27
14 0 0 1 0 3 9 27
15 0 0 0 1 4 16 64
12 0 0 0 1 4 16 64
10 0 0 0 1 4 16 64
17 0 0 0 1 4 16 64
11 0 0 0 1 4 16 64

To accomplish a trend analysis with the data in Table 3.4, a hierarchical

solution is necessary. Three successive linear models are solved:

Y = bg + b-|X + e^ (3.2)

Y = bn + b,X + b9X^- e. and (3.3)
0 12 4

Y = b + b-.X + b9X2 + b7X3 + e,. (3-4)
0 1 Z 3 2

Table 3.5 contains the sum of squares, R's and R values for equations

3.2 - 3.4.
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TABLE 3.5

TREND ANALYSIS FOR DATA IN TABLE 3.4

R R2
Trend df SS MS F

Linear 1 169.00 169.00 36.541 .80778 .65251

Linear
Unique to Second

2
1

169.00
0.00 0.00 0.00 .80778 .65251

Linear +
Unique

Second + Thi rd
to Third

3
1

184.87
15.87 15.87 3.431 .84486 .71378

Deviation from
Full Model 16 74.00 4.625

The F values in Table 3.5 have been traditionally evaluated by using

the F distribution with df = 1, k - 1; this clearly is identical to using

the t test (t = Vf ) to evaluate the significance of each component. An

alternative process would use the Studentized range statistic with r = 2

for the linear component, r = 3 for the second degree component and r = 4

for the third degree component. Using Table lib, the linear component

is significant (p < .01) since t = ^6.541 = 6.045 > 2.921. The

second degree component is not significant since t =Vo' = 0 < 3.384 The

third degree component is not significant, since t = V3.431 = 1.852 < 3 671

One difficulty with the direct use of the X term in polynomial regression

can be noted in Table 3.5. The model representing equation 3.4, the third

degree polynomial, has an associated sum of squares of 184.87 in Table

3.5. In that a maximum of only a third degree polynomial is possible

the sum of squares should be 185.00. Thus, some computational i "accuracy

has entered into the process. Further, if higher degree polynomials are

used, the inaccuracies become so gross that they invalidate the analysis
This
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inaccuracy is somewhat due to the computer program being used, but is

primarily due to collinearity. If a correlation matrix of the Y, X,
2 3

X and X values are investigated, the collinearity becomes obvious.

TABLE 3.6

INTERCORRELATIONS OF Y, X, X2 and X3

v x x2 x3

Y .80778 .79516 .76168

X .98437 .95137

X2
.99053

X3

One major way of avoiding collinearity is through the use of orthogonal

polynomials.

Orthogonal Polynomials

The use of orthogonal polynomials allows a direct solution to the col­

linearity problem. By having each component orthogonal to all other com­

ponents, not only is the solution much more accurate than the solution

given in the previous section, but the components are additive. Because

of the usefulness of orthogonal polynomials, tables of the coefficients

are widely available; a table is also reproduced in the Appendix (Table IV).

As there are four groups, the third set of coefficients in Table IV

are appropriate. Using these coefficients, three new predictors can be

defined:

x = -3 if a member of Group One, -1 if a member of Group Two, 1 if

a member of Group Three, or 3 if a member of Group Four;

X12 = 1 if a member of Group One, -1 if a member of Group Two, -1 if

a member of Group Three, or 1 if a member of Group Four; and
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analysis

value in

One, 3 if a member of Group Two, -3 if

member of Group 4.

a table like Table 3.4 could be constructed

Table 3.7 contains the trend

Further, any component

obe found directly (the R and R values

and third are found directly), since the

third degree equation sought, the orthogonal

results, while the direct approach of using

•+b|<-iX|<_i + e tends to quickly show

point at which this occurs differs from program

X1? = -1 if a member of Group

a member of Group Three, or 1 if a

While it is not done so here,

containing Y, X^, X^ and X^.

using orthogonal coefficients.

TABLE 3.7

The last F value 3.459 differs somewhat from the corresponding

Table 3.6 (the SS for Linear + Second + Third and Third also differ); the

results in Table 3.7 are the more accurate.

(Linear or Second or Third) can

respectively for linear, second

predictors are orthogonal.

Had there been more than a

process continues to give exact

Y = bQ + b1X] + b2X2 + . .

computational inaccuracies (the

to program). On the other hand, researchers prefer to stay away from higher

degree polynomials for another reason; using a fourth degree or larger

TREND ANALYSIS USING ORTHOGONAL COEFFICIENTS

Trend df SS MS F R R2

Linear 1 169.00 169.00 36.541 .80778 .65251

Linear + Second 2 169.00 .80778 .65251

Second 1 0.00 0.00 0.00 .00000 .00000
Linear + Second + Third 3 185.00 .84515 .71429

Third 1 16.00 16.00 3.459 .24855 .06178
Deviation from
Full Model

16 74.00 4.625

The results given in Table 3.7 are quite similar to those in Table 3.6.
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polynomial rarely yields a parsimonious explanation of the data.

Thus, the use of orthogonal coding schemes for either multiple

comparisons or trend analysis likely rests with the needs and means of

the individual researcher. As a generalized multiple comparison

technique, the orthogonalization process will be found lacking by many

researchers. Some will find them inconvenient to use because of the

difficulty in finding useful orthogonal sets. Others may find that using

orthogonal comparisons often leaves untested relevant hypotheses while

simultaneously testing orthogonal, but experimentally uninteresting contrasts..

Still others would find typically reported error rates to be wanting in

comparison to other tests that maintain at least an experimentwise error

rate. The use of orthogonal coding can prove to be useful in trend analysis,

particularly if higher degree polynomials are sought.
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CHAPTER IV

DUNN'S TEST AND SCHEFFE'S TEST

Perhaps one of the most widely disseminated multiple comparison

procedures is Scheff£'s (1953) S-method for judging all possible contrasts.

As Scheffd's test has the property that it can be used on an a posteriori

basis after the rejection of the overall F test in the analysis of variance

and still maintain an experimentwise error rate, applied researchers find

the test to be particularly useful in investigating unplanned contrasts

that are suggested by the data.

Dunn (1961) devised a multiple comparison technique that allows

the researcher to state the hypotheses to be tested on an a priori basis;

if the number of comparisons to be made can be severely limited, Dunn's

test can be the most powerful multiple comparison method under these

circumstances, and retains a per experiment error rate. Dunn's test would

be particularly appropriate in those theory testing situations that require

less than all possible simple comparisons of means. A regression formula­

tion of Dunn's test and Scheffd's test was given in Williams (1975).

An Example

In that Dunn's test requires a severe limitation of the number

of comparisons of interest, suppose the comparisons of interest when

four groups are being included in the analysis are

to X3 ,

X-| to X4 , and

X2 to Y4.
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Before completing the analysis, comments on other multiple comparison

procedures with these specific hypotheses should be made. First, Dunnett's

test would not apply, as there is no single group being compared to other

groups. Orthogonal comparisons would not apply, as the stated comparisons

do not transform to an orthogonal set of comparisons. Both Tukey's and

Scheffd's tests would appropriately contain these comparisons (among a

much larger set), but with considerably less power. Thus, the kind

of experimental situation implied in the posited comparisons fits very

well the test proposed by Dunn. In that the three posited comparisons

are "simple" in that no more than two means are being compared at any

one time, a methodology very similar to that given in Chapter Two can be

employed. The process involves employing a pseudo-replication of Dunnett's

test until all comoarisons are made. As was done previously, the data

in Table 1.1 is used. The comparisons of X-] to X4 and X^ to I3 can -be

found from using the linear model

Y = t>0 + b2X2 + b3X3 + b4X4 + eT <4J>

The comparison of Xg to X4 can be found from using the linear model

Y = b0 + b1X1 + b3X3 + b4X4 + ep (4.2)

It should be pointed out that equations 4.1 and 4.2 are respectively

identical to equations 1.6 and 2.1.

As was true with Tukey's test, the value for bQ will in general

different for each equation; b^ will equal the mean of the group that

is being compared to the other groups. Also, the regression coefficients

are the difference between ttemeans of each group and the group "left out"

in a particular analysis. The value for e, will remain the same for each

of the equations, as each of these equations can be conceptualized as a
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reparameterization of an analysis of variance model. Using the two

linear models, the computed t value for each regression coefficient is

found. Each linear model generates three computed t values; however, only

three of the six computed t values are of interest.

The computed t values for equation 4.1 are

t = .735 for comparing X-j to X”2 (not a comparison of interest),

t = 4.411 for comparing to X^, and

t = 5.147 for comparing X] to X^.

The computed t values for equation 4.2 are

t = -.735 for comparing Y2 to X] (not a comparison of interest),

t = 3.676 for comparing X2 to X 3 (not a comparison of interest),

t = 4.411 for comparing X"2 to X^.

To evaluate these t values, Dunn's (1961) table can be used; Table

V a, b, reproduced in the Appendix, are respectively Dunn's tables for the

.05 and .01 levels. With 3 comparisons and df = 16, the critical value

is 3.45 (found by linear interpolation), with a= .01.

TABLE 4.1

COMPUTED t VALUES FOR DUNN'S AND SCHEFFE'S TESTS
IN A REGRESSION FORMULATION

Comparison

X] to X3

to X4

X„ to X.
2 4

t

4.411*

4.147*

4,411*

*Significant at the .01 level
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The formulation given for Dunn's test is identical for comoleting Scheff^'s

test. The only difference in the interpretation lies in determining the

critical value; for Scheff^'s test;

S =|/(k-] 1 f , which for a = .01, k = 4, n = 20, is S = 3.98.
* a k-1,n-k

The corresponding critical value for Tukey's test is 3,67, Th$t

Dunn's test is more Dowerful than Scheff£'s test for this set of posited

simple comparisons is due to the limited number of comoarisons.

For the application given, then, Dunn's test is the most powerful and

ScheffG's test the least powerful, with Tukey's test being intermediate.

For the three comparisons given, however, significance at the JOI level

for all three comparisons by all three tests was attained.

Complex Comparisons

Both Dunn's test and Scheff^'s test allow for more complex comparisons

(more typically called contrasts) of the means than is indicated by the

three comparisons already shown. The more complex comparisons typically

will require a more complex solution than was demonstrated for the

simple comparisons.

Suppose the following four comparisons were of interest:

+ ^X2 to ,

+ JjX2 to X4 ,

1/3^ + 2/3X2 to 3/7X3 + 4/7X4 and

X2 to X3.

There are several approaches to solving for these comparisons. One

approach is to define full and restricted models, fol Towing the methodology

of Ward and Jennings (1973). To consider the first comparison, the
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full model is identical to any one of the oreviously given equations
2

4.1 or 4.2 as they all yield the same R vlaue of .71429. Actually, the

full model can be thought of as

Y = b]X1 + b2X2 + b3X3 + b4X4 + er (4.3)

In that most computer programs automatically generate a constant term (bQ),

equation 4.3 will typically not produce a desired result; if, for example,

b4X4 is thought of as being bQ, then one solution would be to use

equation 4.1, where bQ will equal X4> The restricted model could then

be formed from the restriction implied in the comparison

hb1 + Hb2 = *ib3 + Jjb4.

If this restriction is shown in terms of b^, it is given as

b-j = b3 + b4 - b2- If this restriction is made on the full model

(equation 4.3),

Y = (b3 + b4 - b2)X] + b2X2 + b3X3 + b4X4 + e2,

Y = b2(X2 - xp + b3(X3 + XJ + b4(X4 + xp + e2,

or

Y = b2V] + b3V2 + b4V3 + e2, where

V-| = 1 if a member of Group Two, -1 if a member of Group One,

0 otherwise;

V2 = 1 if a member of Group Three, 1 if a member of Group One, 0

otherwise;

V = 1 if a member of Group Four, 1 if a member of Group One, 0
w

otherwise.

Then, a restricted model could be used which uses any two of variables

of V,, Vo and V,. Using V, and V2, the restricted model is
I C $ ' C
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'I- i>0 + b5Vl + b6v2 + e6- (M)

The resulting R2 for equation 4.4 is .01931.

To evaluate the significance of this restriction, the eouation

F . (R2™ ' r2rm)/1 , (4.5)

(1 - <„)MW

2 2can be used, where R refers to the R value from the full model,
FM

2 2R RM refers to the R value from the restricted model and df refers to

the degrees of freedom for the within term in the full model.

For the comparison ^X-j+ ^X2 to ^X3 + ^X4,

. F = (.71429 - .01931)/! = 38.920.
(1 - .71429)/16 ~

If 7? is found, Vf = 6.239, which can be interpreted as a t value for

Dunn's test (or as the value of S in Scheff£'s test) for this comparison.

A simpler approach can be used to gain the same result. If a new

predictor V4 is defined as = >5 for a member of Group One, for a

member of Group Two, -h for a member of Group Three or -ij for a member

of Group Four, so that V4 is a direct utilization of the comparison of

interest, then the R value found from using V4 as a predictor is .69498,
2 2

which is equal to R - R .71429 - .01931 = .69498. The value of

R2 with the use of V4 can be directly utilized as equal to

R2ril - R2Dm in equation 4.5. Similar solutions can be given for the
FM KM

comparisons

+ hX2 to X4 (F = 30.451, t = 5.518),

1/3X] + 2/3X2 to 3/7X3 + 4/7X4 (F = 35.368, t = 5.947) and

X_ to X (F = 13.514, t = 3.676). 
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The last comparison is of particular interest in that it is of the

type given earlier for simple comparisons and is in fact identically equal

to the earlier obtained result from the value given from the use of

equation 4.2,■although it was not then a comparison of interest.

To evaluate these comparisons for significance, the tabled (using interpolation)

value for Dunn's test at the .01 level for four comparisons is 3.59. Each

of the four comparisons is significant. The critical value for Scheff^'s

test remains as 3.98. While Tukey's test also yields significance on the

four posited tests, it is of interest to note that on each of the three

complex comparisons, Scheff£'s test has a shorter interval than does

Tukey's test.

As was noticed, including four comparisons rather than three reduced

somewhat the advantages of Dunn's test over Scheff^'s test. For a = .01,

k = 4, df = 16, Dunn's test will be more powerful than Scheffd's

test for any number of comparisons up to 9 comparisons. Beyond 9 compari­

sons, Scheff&'s test is more powerful. As both Dunn's and Scheff£'s test

employ the same standard error for a contrast, they are easily comparable.

On the other hand, comparisons to Tukey's test are more difficult.

If there is interest in finding complex comparisons using Tukey's

test, and the following conventions hold: Ea^ = 0, E|a.| ~ 2, so that

the sum of the positive contrast coefficients is 1 and the sum of the

negative contrast coefficients is -1, then a transformation of the

computed t value can be made so that Tables Ila, b can be used directly.

(4.6)

The transformation is given by

Tukey's t =i %

where t is the computed t value. For the complex comparison ^X-j + ^X2
c

to y3 + the contrast can be written
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d, - W, + W, - W - w4. Then Ea 2 = >s2 + ’a2 * <->s)2 + <->s)2 - 1.

Tukey's t = t

= (.7071)(6.239) = 4.411.

This same Tukey t value was found on two occasions in Chapter Two. The

comparisons were X] to X3 and X2 to X4. In both those cases, the differences

in the means is 6.0. In the present contrast, the difference in the

means is also 6.0, since *5(6.0) + *s(7.0)-*j(12.0) - ^(13.0) = -6.0.

For the other three contrasts, Tukey's t values are:

t ={fJni)2~+ te)2 + 12T) (5.518) = 4.779

for the contrast d? = ^X-j + *5X2 - X4;

t = {7*2 L(l/3)2 + (2/3)2 + (3/7)2 + (4/7)2] }(5.947) = 4.341

for the contrast d3 = 1/3X-J + 2/3X2 - 3/7X3 - 4/7X^; and

t = <77 (I2 + I2) 3 (3.676) = 3.676

for the contrast d^ = ~

Tukey's test maximizes its power with simple comparisons of the

form X. - Xj; for complex comparisons Schefffe's test tends to be more

powerful.

If all seven of the previously given comparisons had been posited

a priori, then Dunn's test has a critical value of 3.86, with Scheff&'s

test critical value remaining at 3.98. For such a situation, Tukey's test

would be more powerful for the four simple comparisons, but both Dunn's

and Schefffe's tests are more powerful on the complex comparisons, with

Dunn's test being slightly the more powerful of the two.



Multiple Linear Regression Viewpoints
Vol. 7, No. 1, 1976
Monograph Series #2

42

CHAPTER V

FINDING THE MAXIMIZED SCHEFFE CONTRAST
THROUGH MULTIPLE REGRESSION

Schefffe has indicated that whenever an overall F test allows the

rejection of the overall hypothesis, then at least one linear contrast

will be significant; this, however, has to many researchers seemed to be an

empty promise; how do you find that significant contrast? The present chapter

is directed to the solution to the just posed question.

As was true of the previous chapters, the data in Table 1.1 is used.

While the data does include some simple comparisons that would yield

significance, the present focus is on finding the most powerful contrast.

Once that contrast is found, comparisons may suggest themselves that will be

"close to" the maximized contrast.

If standardized regression coefficients are employed in the solution

to the data in Table 1.1, an equation like

zy = Bjz, + B2z2 + . . . + B^Z,.., + e7 (5.1)

results. In equation 5.1 the data has first been standardized so that

each variable has a mean of 0 and a standard deviation of 1. Using the beta

coefficients given in Table 1.3,

zy = ,12033z2 + •72197z3 + .84230z4 + e8. (5.2)

If the predicted values for zy are found, the resulting values will

constitute the coefficients for a maximized Scheffti contrast. To find z2,

zo and zA, the mean for X2, X3 and X4 are available from the printout given

in Table 1 3 and all three variables have a mean of .25. In this case, the mean

is simply the proportion of scores in each group. Also, the standard

deviation for each variable is given as .44426. This number might seem
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somewhat synthetic as a standard deviation, since five of the scores are 1

and the remaining 15 scores are 0 for variables X2, X3 and X4. However, the

standard deviation is useful in a computational sense. Then

z2 = X2 - .25

.44426

Similarly,

z3 = X3 - .25

.44426

and

z4 = X4 - .25

.44426

Equation 5.2 can be rewritten as

zy = .12033* f(X2 - .25)/.44426 ] i .72197*[(X3 - .25)/.444261?

+ .84230* [(X4 - .25)/.44426 ]. ' (

If equation 5.3 is solved for a member of Group One,

z^ = .12033* [(0-.25)/.44426 3 + .72197* [(0 - .25)/.44426 J

+ .84230* [(0 - .25)/.44426]= -.94798.

In a similar manner, the predicted values of zy can be found for members

of the other three groups:

V5= -.94798 for members of Group 1;

-.67713 for members of Group 2;

.67713 for members of Group 3;

.94798 for members of Group 4.

Then a contrast can be defined as

T, =-.94798X. - .67713X, + .67713X + .94798X •
1 1 6 3 4 (5.4)
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The linear model for this contrast is

Y = b0 + b]V5 + er (5.5)

The use of the contrast given by equation 5.4 in the linear model in equation

5.5 also yields

R = .84515

and

R2 = .71429.

In other words, the entire difference among the four groups is expressed by

the contrast in equation 5.4. Thus, if the F test is signfficant, this

contrast will also be significant. While the example given here had equal

n in each group, equal n are not necessary to find the maximum Scheffi

contrast.

When using unequal n, it is necessary to use the mean and standard

deviation for a given group, where the mean is the proportion of subjects

in that group, and the standard deviation is a standard deviation for this

proportion. These values typically accompany most general purpose multiple

regression programs.

The choice of X2 - X4 was arbitrary in the sense that any three of the

four group membership variables will yield the same coefficients as is

indicated for equation 5.4. The contrast found by this process is unique up

to a multiplication by a constant.
o

In that any contrast that is proportional to will yield an R

value identical to the R2 found in the analysis of variance, the researcher

is free to fix at any value (other than zero) a given weighting and weight

the remaining groups. For example, some researchers may prefer to take the
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largest (in absolute value) weighting and divide all other weights by

this weighting (in absolute value). For example, if all weights in ’F-|

are divided by .94798, then the derived contrast is

Y = -1.00X] - .71X2 + .71Xg + I.OOX4 (rounded to two decimal points);

V? also yields

R = .84515 and

R2 = .71429

but has the advantage of being somewhat more interpretable than T-j.



Multiple Linear Regression Viewpoints
Vol 7, No. 1, 1976
Monograph Series #2 46

CHAPTER VI

ON CHOOSING A MULTIPLE COMPARISON METHOD

An attempt was made to present the various multiple comparison methods

in their best light in Chapters I-V; few judgments regarding their usefulness

are made therein. In the present chapter, an attempt is made to indicate

the domain of usefulness of the various tests; some value judgments are

included.

In deciding which test to employ, several questions should be answered: .

1. Is the researcher willing to state the contrasts of interest

before the data is collected?

2. Are simple comparisons of means of highest importance, or do some

complex comparisons (contrasts) have equal (or higher) research

. interest?

3. What kind of error rate is viewed as being appropriate?

If the answer to question 1 (beforehand contrasts) is yes, thei, of

course, the researcher should state them. If the stated contrasts are

exactly comparing one group to all other groups, then Dunnett's test is

appropriate. If the number of comparisons is small, but not identical to

those tested by Dunnett's test, then either Dunn's test or orthogonal

comparisons might be used; orthogonal comparisons are appropriate only if

the comparisons stated a priori are orthogonal (a seemingly unlikely event);

then, of course, the orthogonal comparison procedure can be used provided

the error rate is adjusted to being experimentwise (an admitted value

judgment). Otherwise, Dunn's test is more appropriate.

If the answer to question 1 is no, then question 2 should be answered.

If the number of comparisons (contrasts) greatly exceeds 2(£) where k is

the number of groups, then Scheff6's test should probably be used, particularly
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if the complex comparisons are of major research interest. Even if the
k

number of comparisons does not exceed 2(2)> if the majority of contrasts of

interest are complex, Scheffi's test would still have the highest

probability of rejecting a null hypothesis on an a posteriori basis and

still retain an experimentwise error rate.

If the comparisons of interest form an exact set of orthogonal contrasts,

then the orthogonal comparisons might be used on an a posteriori basis. (Some

might dispute this usage, preferring that the orthogonal contrasts be used

only on an a priori basis).

If only the simple comparisons of the means are of interest, and

if all simple comparisons are being pursued on an a posteriori basis, then 

the methods considered in Chapter IV are appropriate: Tukey's (a) H.S.D.

test, Tukey's (b) test, Newman-Keul's test and Duncan's test. Choosing 

among these four tests depends upon how one views probability. Clearly,

Tukey s (a) H.S.D. test is appropriate, but is not as powerful as the other

methods. So that the reader is forewarned, the present writer is going to

take a stand against the other three tests. Duncan's approach to fixing

the level of an experiment is particularly perplexing. If Duncan's

test reports an alpha of .05, one might ask, 5% of what? The alpha level

does not represent a probability value (except in the trivial case when

k = 2); it would appear that many users of the Duncan method do so without 

understanding the limitations of the Duncan "protection levels" The

Newman-Keuls procedure (and by inference, the Tukey (b) test) implictly

requires at least a weak ordering of the means in the population to

correspond to the sample findings. If the sample findings are

X] < x2 < x3 < X^, then an implicit assumption is that U1 1 U2 <U3 <p4.
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the number

As an

by the number of tests performed.

situation), the probability should be adjusted in keeping with

of tests.

p-j = .0027, p2 = .0100, p3 = .04,

be 3p1 = 3(.0027) = .0081,

a change might not be popular

is to achieve stability in research

(and perhaps massage the ego of a

The adjustment of the probabilities through either

example, suppose three a priori restricted models are imposed

on the same full model. To use the F table to evaluate each of
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The additional cost associated with the Tukey (a) H.S.D. test seems

worth the dropping of this assumption.

Thus, a recommendation is made that users of regression become

familiar with at least the Tukey (a) H.S.D, Dunnett’s, Dunn's and

Scheffd's tests. Additionally, the orthogonal methodology may occasionally

be useful for multiple comparisons but will likely be useful in situations

■ dealing with trends. A point that bears emphasis is that when multiple

tests are being made on the same full model (such as occurs in the multiple

compari son

these outcomes separately necessarily takes advantage of chance. One

simple (but conservative) way to extricate the taking advantage of chance

is to multiply each probability found

If the three probabilities found were

then the reported probabilities would

3p2 = .03; and 3p3 = .12. While such

with researchers, the goal of science

findings, not to report chance events

"lucky" researcher).

the multiple comparison methods (if appropriate) or by multiplying the

obtained probabilities by the number of tests performed (thereby achieving

a per experiment error rate) is clearly preferable to reporting chance

findings as significant.
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While the preceding suggestions implicitly assume that those using

multiple linear regression have been neglectful of the effect on probability

when making multiple use of the same full model without taking into account

the multiple usage, other researchers have shown concern as well. Connett

(1971) and Newman and Fry (1972) have presented tables for Kimball's (1951)

method for keeping a levels constant when making a number of comparisons.

In a related vein, Newman et al. (1976) have considered the "Type VI error"

in regression. A Type VI error is an inconsistency between the researcher's

question of interest and the statistical procedures employed to analyze

the data. While it might be presumptuous to label the overusage of a single

full model without adjusting the probability level as a "Type VII error," it

is tempting.
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TABLES

Tables la, lb, Ic, and Id are reproduced from C. W. Dunnett, A multiple
comparison procedure for comparing several treatments with a control.
Journal of the American Statistical Association, 1955, 50, 1096-1122,
and C. W. Dunnett, New tables for multiple comparisons with a control.
Biometrics, 1964, 20, 482-491, with permission of the author.

Tables Ila and lib were calculated by the present writer by transforming
the values in Harter (1960)by division by <2.

.Tables Illa and Illb were calculated by the present writer by transforming
values in Duncan (1955) by division by'/2.

Table IV was taken from Anderson and Houseman (1942)» by permission of first author.

Tables Va and Vb are reproduced from 0. J. Dunn, Multiple comparisons among
means. Journal of the American Statistical Association, 1961,
56: 52-64 by permission of the author.

In Tables la, lb, Ic, Id, Ila, lib, Illa, Illb, Va, and Vb, v refers to the
degrees of freedom within (df ).

w

In Tables Ila, lib, Illa, Illb, r refers to the number of means in the range.

In Tables la, lb, Ic, Id, k refers to the number of groups compared to the
control (excluding the control).

In Tables Va and Vb, m refers to the total number of a priori contrasts.
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TABLE la

PERCENTAGE POINTS OF DUNNETT'S TEST
(.05 LEVEL)

One-tailed

1 2 3 4 5 6 7 8 9

5 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
6 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
8 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92
9 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86

10 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
11 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
12 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
13 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
14 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69

15 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
16 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2’. 65
17 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64
18 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
19 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61

20 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60
30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
40 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2 51
60 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2 48

120 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2 41 2 45CO 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42
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TABLE lb

PERCENTAGE POINTS OF DUNNETT'S TEST
(.01 LEVEL)

One-tailed

V 1 2 3 4 5 6 7 8 9

5 3.37
6 3.14
7 3.00
8 2.90
9 2.82

10 2.76
11 2.72
12 2.68
13 2.65
14 2.62

15 2.60
16 2.58
17 2-57
18 2.55
19 2.54

20 2.53
30 2.46
40 2.42
60 2.39

120 2.36
<» 2.33

3.90
3.61
3.42
3.29
3.19

4.21
3.88
3.66
3.51
3.40

3.11 3.31
3.06 3.25
3.01 3.19
2.97 3.15
2.94 3.11

2.91 3.08
2.88 3.05
2.86 3.03
2.84 3.01
2.83 2.99

2.81 2.97
2.72 2.87
2.68 2.82
2.64 2.78
2.60 2.73
2.56 2.68

4.43 4.60
4.07 4.21
3.83 3.96
3.67 3.79
3.55 3.66

3.45 3.56
3.38 3.48
3.32 3.42
3.27 3.37
3.23 3.32

3.20 3.29
3.17 3.26
3.14 3.23
3.12 3.21
3.10 3.18

3.08 2.17
2.97 3.05
2.92 2.99
2.87 2.94
2.82 2.89
2.77 2.84

4.73 4.85
4.33 4.43
4.07 4.15
3.88 3.96
3.75 3.83

3.64 3.71
3.56 3.63
3.50 3.56
3.44 3.51
3.40 3.46

3.36 3.42
3.33 3.39
3.30 3.36
3.27 3,33
3.25 3.31

3.23 3.29
3.11 3.16
3.05 3.10
3.00 3.04
2.94 2.99
2.89 2.93

4.94
4.51
4.23
4.03
3.89

5.03
4.59
4.30
4.09
3.94

3.78 3.83
3.69 3.74
3.62 3.67
3.56 3.61
3.51 . 3.56

3.47 3.52
3.44' 3.48
3.41 3.45
3.38 3.42
3.36 3.40

3.34 3.38
3.21 3.24
3.14 3.18
3.08 3.12
3.03 3.06
2.97 3.00
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TABLE Ic

PERCENTAGE POINTS OF DUNNETT'S TEST
(.05 LEVEL)

Two-tailed

\k
v\ 1 2 3 4 5 6 7 8 9

5 2.57 3.03 3.29 3.48 3.69 3.73 3.82 3.90 3.97
6 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71
7 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53
8 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.5 3.41
9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32

10 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24
11 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19
12 2.18 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14
13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10
14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07

15 2.13 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3'. 04
16 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3,02
17 2.11 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00
18 2.10 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98
19 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96

20 2.09 2.38 2.54 2.56 2.73 2.80 2.86 2.90 2.95
30 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86
40 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81
60 2.00 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77

120 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73
00 1.96 2.21 2.35 2.44 2.51 2.56 2.61 2.65 2.69
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TABLE Id

PERCENTAGE POINTS OF DUNNETT'S TEST
(.01 LEVEL)

v

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20
30
40
60

120

1 2 3

4.03 4.63 4.98
3.71 4.21 4.51
3.50 3.95 4.21
3.36 3.77 4.00
3.25 3.63 3.85

3.17 3.53 3.74
3.11 3.45 3.65
3.05 3.39 3.58
3.01 3.33 3.52
2.98 3.29 3.47

2.95 3.25 3.43
2.92 3.22 3.39
2.90 3.19 3.36
2.88 3.17 3.33
2.86 3.15 3.31
2.85 3.13 3.29
2.75 3.01 3.15

2.70 2.95 3.09
2.66 2.90 3.03

2.62
2.58

2.85
2.79

2.97
2.92

Two-tailed

4 5 6 7 8 9

5.22 5.41 5.56 5.69 5.80 5.89
4.71 4.87 5.00 5.10 5.20 5.28
4.39 4.53 4.64 4.74 4.82 4.89
4.17 4.29 4.40 4.48 4.56 4.62
4.01 4.12 4.22 4.30 4.37 4.43

3.88 3.99 4.08 4.16 4.22 4.28
3.79 3.89 3.98 4.05 4.11 4.16
3.71 3.81 3.89 3.95 4.02 4.07
3.65 3.74 3.82 3.89 3.94 3.99
3.59 3.69 3.76 3.83 3.88 3.93

3.55 3.64 3.71 3.78 3.83 3.88.
3.51 3.60 3.67 3.73 3.78 3.83
3.47 3.56 3.63 3.69 3.74 3.79
3.44 3.53 3.60 3.66 3.71 3.75
3.42 3.50 3.56 3.63 3.68 3.72
3.40 3.48 3.55 3.60 3.65 3.69

3.25 3.33 3.39 3.44 3.49 3.52
3.19 3.26 3.32 3.37 3.41 3.44
3.12 3.19 3.25 3.29 3.33 3.37
3.06 3.12 3.18 3.22 3.26 3.29
3.00 3.06 3.11 3.15 3.19 3.22



55

TABLE Ila

PERCENTAGE POINTS OF THE STUDENTIZED RANGE
REPORTED AS t VALUES (.05 LEVEL)

\ r
v\ 2 3 4 5 6 7 8 9 10 20

5 2.470 3.254 3.690 4.011 4.266 4.476 4.654 4.810 4.946 5.804
6 2.447 3.068 3.462 3.751 3.980 4.168 4.329 4.468 4.591 5.365
7 2.365 2.945 3.310 3.578 3.789 3.964 4.112 4.241 4.354 5.070
8 2.306 2.857 3.202 3.455 3.654 3.818 3.958 4.078 4.185 4.858
9 2.262 2.792 3.122 3.363 3.553 3.709 3.841 3.956 4.058 4.698

10 2.228 2.749 3.060 3.291 3.473 3.623 3.751 3.862 3.959 4.573
11 2.201 2.701 3.009 3.234 3.410 3.555 3.678 3.785 3.880 4.473
12 2.179 2.668 2.969 3.188 3.359 3.500 3.620 3.723 3.815 4.390
13 2.160 2.641 2.935 3.149 3.316 3.454 3.550 3.671 3.760 4.322
14 2.145 2.618 2.907 3.116 3.280 3.415 3.528 3.628 3.715 4.263

15 2.131 2.598 2.882 3.088 3.249 3.381 3.493 3.590 3.676 4.213
16 2.120 2.580 2.861 3.064 3.222 3.352 3.463 3.557 3.642 4.170
17 2.110 2.565 2.843 3.043 3.199 3.327 3.435 3.529 3.612 4.131
18 2.101 2.553 2.826 3.024 3.178 3.304 3.411 3.504 3.586 4.097
19 2.093 2.541 2.812 3.007 3.160 3.285 3.390 3.482 3'. 562 4.067

20 2.086 2.530 2.799 2.992 3.143 3.267 3.371 3.462 3.541 4.040
30 2.042 2.465 2.719 2.913 3.042 3.157 3.254 3.338 3.411 3.871
40 2.021 2.434 2.681 2.856 2.992 3.103 3.197 3.277 3.348 3.789
60 2.071 2.403 2.642 2.812 2.944 3.050 3.140 3.217 3.285 3.706
20 1.980 2.373 2.606 2.770 2.896 2.999 3.085 3.159 3.224 3.625
CO 1.960 2.343 2.569 2.727 2.850 2.949 3.031 3.102 3.164 3.544
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TABLE lib

PERCENTAGE POINTS OF THE STUDENTIZED RANGE
REPORTED AS t VALUES (.01 LEVEL)

\ r
v\ 2 3 4 5 6 7 8 9 10 20

5 4.032 4.933 5.518 5.955 6.302 6.591 6.837 7.051 7.241 8.456
6 3.707 4.476 4.973 5.343 5.638 5.882 6.909 6.271 6.433 7.453
7 3.499 4.185 4.627 4.953 5.213 5.430 5.614 5.774 5.917 6.821
8 3.356 3.985 4.387 4.685 4.921 5.117 5.285 5.431 5.560 6.383
9 3.259 3.838 4.212 4.489 4.708 4.890 5.044 5.180 5.300 6.062

10 3.169 3.726 4.079 4.339 4.545 4.716 4.861 4.953 5.100 5.817
11 3.106 3.639 3.975 4.221 4.417 4.579 4.718 4.838 4.944 5.623
12 3.055 3.568 3.891 4.127 4.314 4.470 4.601 4.716 4.818 5.467
13 3.012 3.510 3.821 4.050 4.229 4.378 4.474 4.616 4.714 5.337
14 2.977 3.461 3.763 3.982 4.158 4.303 4.425 4.532 4.627 5.229

15 2.947 3.420 3.714 3.929 4.098 4.238 4.357 4.461 4.553 5.136
16 2.921 3.384 3.671 3.881 4.046 4.183 4.299 4.400 4.489 5.057
17 2.898 3.353 3.635 3.840 4.002 4.134 4.248 4,347 4.434 4.987
18 2.879 3.326 3.602 3.804 3.962 4.093 4.203 4,300 4.385 4.927
19 2.861 3.302 3.574 3.772 3.927 4.055 4.164 4.258 4.342 4.873

20 2.845 3.280 3.548 3.743 3.896 4.022 4.129 4.221 4.304 4.825
30 2.750 3.150 3.393 3.569 3.707 3.819 3.915 3.997 4.070 4.530
40 2.705 3.088 3.321 3.487 3.616 3.723 3.813 3.891 3,959 4.390
60 2.660 3.028 3.249 3.407 3.529 3.630 3.714 3.787 3.852 4.253

120 2.618 2.970 3.180 3.330 3.445 3.539 3.619 3.687 3.747 4.120
00 2.576 2.913 3.113 3.255 3.364 3.452 3.526 3.591 3,647 3.992
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TABLE Illa

PERCENTAGE POINTS OF DUNCAN'S MULTIPLE RANGE TEST
REPORTED AS t VALUES (.05 LEVEL)

r
V\ 2 3 4 5 6 7 8 9 10 20

5 2.570 2.651 2.685 2.697 2.697 2.697 2.697 2.697 2.697 2.697

6 2.447 2.536 2.580 2.602 2.612 2.614 2.614 2.614 2.614 2.614

7 2.365 2.459 2.509 2.537 2.553 2.561 2.564 2.564 2.564 2.564

8 2.306 2.403 2.457 2.490 2.510 2.522 2.528 2.531 2.531 2.531
9 2.262 2.361 2.418 2.454 2.476 2.491 2.500 2.506 2.508 2.508

10
10 2.228 2.329 2.387 2.425 2.450 2.469 2.478 2.486 2.490 2.493
11 2.201 2.302 2.363 2.402 2.429 2.448 2.461 2.470 2.476 2.482
12 2.179 2.280 2.343 2.383 2.411 2.432 2.446 2.456 2.462 2.474
13 2.160 2.263 2.326 2.367 2.396 2.418 2.434 2.445 2.453 2.468
14 2.145 2.247 2.311 2.354 2.384 2.406 2.423 2.435 2.444 2.464

15 2.131 2.234 2.298 2.342 2.373 2.396 2.413 2.427 2.437 2.461
16 2.120 2.223 2.287 2.332 2.364 2.387 2.406 2.420 2.430 2.459
17 2.110 2.213 2.278 2.323 2.355 2.380 2.399 2.413 2.425 2.458
18 2.101 2.205 2.270 2.315 2.345 2.373 2.392 2.408 2.419 2.456
19 2.093 2.197 2.262 2.308 2.341 2.367 2.386 3.402 Z.415 2.456

20 2.086 2.190 2.256 2.302 2.336 2.361 2.382 2.398 2.411 2.456
30 2.042 2.146 2.214 2.262 2.298 2.326 2.349 2.368 2.384 2.454
40 2.021 2.126 2.193 2.242 2.280 2.309 2.333 2.353 2.370 2.453
60 2.000 2.104 2.173 2.222 2.261 2.292 2.317 2.338 2.357 2.452

120 1.980 2.084 2.153 2.203 2.243 2.275 2.301 2.324 2.343 2.451
00 1.960 2.063 2.133 2.184 2.225 2.258 2.285 2.309 2.329 2.451
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TABLE Illb

PERCENTAGE POINTS OF DUNCAN'S MULTIPLE RANGE TEST
REPORTED AS t VALUES (.01 LEVEL)

\ rv\ 2 3 4 5 6 7 8 9 10 20

5 4.032 4.167 4.235 4.271 4.289 4.295 4.295 4.295 4.295 4.295
6 3.707 3.846 3.924 3.970 3.999 4.016 4.026 4.031 4.033 4.033
7 3.499 3.638 3.719 3.772 3.806 3.830 3.846 3.857 3.864 3.870
8 3.356 3.492 3.576 3.631 3.669 3.696 3.717 3.731 3.741 3.760
9 3.250 3.385 3.469 3.526 3.566 3.596 3.619 3.636 3.649 3.681

10 3.169 3.303 3.387 3.444 3.487 3.518 3.543 3.562 3.577 3.623
11 3.106 3.238 3.321 3.380 3.423 3.456 3.482 3.502 3.518 3.577
12 3.055 3.185 3.268 3.328 3.371 3.405 3.431 3.453 3.470 3.540
13 3.012 3.141 3.224 3.284 3.328 3.362 3.389 3.411 3.430 3.507
14 1.977 3.105 3.188 3.246 3.291 3.326 3.354 3.366 3.396 3.480

15 2.947 3.074 3.156 3.215 3.260 2.295 3.323 3.347 3.366 3.456
16 2.921 3.047 3.129 3.188 3.233 3.268 3.297 3.321 3.340 3.435
17 2.898 3.023 3.105 3.164 3.210 3.251 3.274 3.298 3.318 3.417
18 2.879 3.002 3.084 3.143 3.188 3.224 3.253 3.277 3.298 3.400
19 2.861 2.984 3.075 3.125 3.170 3.206 3.235 3.260 3.280 3.386

20 2.845 2.968 3.049 3.108 3.153 3.189 3.219 3.243 3.265 3.372
30 2.750 2.868 2.947 3.005 3.050 3.066 3.118 3.943 3.166 3.288

40 2.705 3.820 2.898 2.956 3.001 3.038 3.068 3.094 3.117 3.246

60 2.660 2.773 2.850 2.907 2.951 2.988 3.019 3.046 3.069 3.203

20 2.618 2.728 2.804 2.860 2.904 2.940 2.971 2.997 3.021 3.160
00 2.576 2.684 7.758 2.813 2.857 2.893 2.924 2.950 2.973 3.117
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TABLE IV

COEFFICIENTS OF ORTHOGONAL POLYNOMIALS

k Polynomial X = 1 2 3 4 5 6 7 8 9 10

3 Linear -1 0 1
Quadratic 1 -2 1

4 1 Linear -3 -1 1 3
Quadratic 1 -1 -1 1
Cubic -1 3 -3 1

Linear -2 -1 0 1 2
5 Quadratic 2 -1 -2 -1 2

Cubic -1 2 0 -2 1
Quartic 1 -4 6 -4 1

Linear -5 -3 -1 1 3 5
Quadratic 5 -1 -4 -4 -1 5
Cubi c -5 7 4 -4 -7 5
Quarti c 1 -3 2 2 -3 1

Linear -3 -2 -1 0 1 2 3
7 Quadratic 5 0 -3 -4 -3 0 5 •

Cubic -1 1 1 0 -1 -1 1
Quartic 3 -7 1 6 1 -7 3

Linear -7 -5 -3 -1 1 3 5 7
Quadratic 7 1 -3 -5 -5 -3 1 7

8 Cubic -7 5 7 3 -3 -7 -5 7
Quartic 7 -13 -3 9 -9 -3 -13 7
Quintic -7 23 -17 -15 15 17 -23 7

Linear -4 -3 -2 -1 0 1 2 3 4
Quadratic 23 7 -8 -17 -20 -17 -8 7 28

9 Cubic . -14 7 13 9 0 -9 -13 -7 14
Quartic 14 -21 -11 9 18 9 -11 -21 14
Quintic -4 11 -4 -9 0 9 4 -11 4

Linear -9 -7 -5 -3 -1 1 3 5 7 9
Quadratic 6 2 -1 -3 -4 -4 -3 -1 2 6

10 Cubic -42 14 35 31 12 -12 -31 -35 -14 42
Quarti c 18 -22 -17 3 18 18 3 -17 -22 18
Quintic -6 14 -1 -11 -6 6 11 1 -14 6
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TABLE Va

VALUES FOR DUNN'S TEST
(.05 LEVEL)

\m
v\ 2 3 4 5 6 7 8 9 10 20

5 3.17 3.54 3.81 4.04 4.22 4.38 4.53 4.66 4.78 5.60
7 2.84 3.13 3.34 3.50 3.64 3.76 3.86 3.95 4.03' 4.59

10 ' 2.64 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 4.01
12 2.56 2.78 2.94 3.06 3.15 3.24 3.31 3.37 3.43 3.80
15 2.49 2.69 2.84 2.95 3.04 3.11 3.18 3.24 3.29 3.62
20 2.42 2.61 2.75 2.85 2.93 3.00 3.06 3.11 3.16 3.46
24 2.39 2.58 2.70 2.80 2.88 2.94 3.00 3.05 3.09 3.38
30 2.36 2.54 2.66 2.75 2.83 2.89 2.94 2.99 3.03 3.30
40 2.33 2.50 2.62 2.71 2.78 2.84 2.89 2.93 2.97 3.23
60 2.30 2.47 2.58 2.66 2.73 2.79 2.84 2.88 2.92 3.16
20 2.27 2.43 2.54 2.62 2.68 2.74 2.79 2.83 2.86 3.09

CO 2.24 2.39 2.50 2.58 2.64 2.69 2.74 2.77 2.81 3.02
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TABLE Vb

VALUES FOR DUNN'S TEST
(.01 LEVEL)

\ m
v\ 2 3 4 5 6 7 8 9 10 20

5 4.78 5.25 5.60 5.89 6.15 6.36 6.56 6.70 6.86 8.00
7 4.03 4.36 4.59 4.78 4.95 5.09 5.21 5.31 5.40 6.08

10 3.58 3.83 4.01 4.15 4.27 4.37 4.45 4.53 4.59 5.06
12 3.43 3.65 3.80 3.93 4.04 4.13 4.20 4.26 4.32 4.73
15 3.29 3.48 3.62 3.74 3.82 3.90 3.97 4.02 4.07 4.42
20 3.16 3.33 3.46 3.55 3.63 3.80 3.76 3.80 3.85 4.15
24 3.09 3.26 3.38 3.47 3.54 3.61 3.66 3.70 3.74 4.04
30 3.03 3.19 3.30 3.39 3.46 3.52 3.57 3.61 3.65 3.90
40 2.97 3.12 3.23 3.31 3.38 3.43 3.48 3.51 3.55 3.79
60 2.92 3.06 3.16 3.24 3.30 3.34 3.39 3.42 3.46 3.69

120 2.86 2.99 3.09 3.16 3.22 3.27 3.31 3.34 3.37 3.58
00 2.81 2.94 3.02 3.09 3.15 3.19 3.23 3.26 3.29 3.48
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