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Multiple Linear Regression Viewpoints
Volume 8 Number 1

FULL RANK AND NON-FULL RANK MODELS WITH CONTRAST AND BJ BINARY CODING
SYSTEMS FOR TWO-WAY DISPROPORTIONATE CELL FREQUENCY ANALYSES

JOHN D. WILLIAMS
The University of North Dakota

The two-way non-orthogonal design has been a source of considerable
controversy. Several recent publications have emphasized the full rank
model solution and discouraged the use of the fitting constants solution,
the hierarchical model and the unadjusted main effects solution. By using
a cell coding system instead of an effects coding system, a full rank
model different from that of Timm and Carlson (1975) is found: this
model was first suggested by Jennings (1967). The second full rank
solution can be found to be computationally identical to the unadjusted
main effects solution.

Speed and Hocking (1976) made a considerable contribution to the two-

way disproportionate cell literature; in it, they describe both non-full

rank and full rank solutions for the two-way disproportionate cell

frequencies situation. They make five points worthy of reiteration:

1) Using the full rank model, the main effect solutions are not
always unique (nor always defined);

2) The R's obtained by the two types of models often yield different
solutions:

3) The hypotheses being tested are unclear;

4) It is possible to misinterpret what is being tested; and

5) Several types of contrasts are not possible using this approach.

Finally, Speed and Hocking point out that the description of Option 9

of the SPSS program (Nie et al., 1975) for the analysis of variance with

disproportionate cells does not correspond to the actual solution executed

by the program. As important, and useful, as the Speed and Hocking

article is, it fails to clarify another problem with the full rank model;

when binary coding is used, the results vary from the contrast coding scheme;

also, the main effect R (and sums of squares) values vary depending on how

the binary coding was accomplished; this difficulty has also been pointed

out by Klimko (1976). To'demonstrate the various concerns, the data
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in Table 1 are utilized; these data were taken from Williams (1972) in

describing three non-full rank solutions and were re-considered by Timm

and Carlson (1975) in a full rank solution.

TABLE 1

DATA FOR TWO-WAY DISPROPORTIONATE CELL FREQUENCIES

B1 B2 B3

A, 8 1 61 6 1 2
4

10 7 10
a2 5 9

4 7
4 5
3 4

several vectors are defined that are subsequently used in theFirst,

various analyses:

Y =• thei criterion; •

BINARY CODING

X1 “ 1 if a member of Ap 0 otherwise;

x2 “ 1 is a member of 0 otherwise;

x3 ■= 1 if a member of Bj, 0 otherwise;

x4 = 1 if a member of B2, 0 otherwise;

x5 - 1 if a member of B^, 0 otherwise;

X6 = X1 • V

x7-xi *X4;

x8 - xx ‘ X5;

x9 ° x2 • X3;

= x n * X ; and10 2 4
X = X,„ ’ X .u :2 5
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CONTRAST CODING

1 if member ofa

1Xi3 if member ofa

0 if member of B1a

B1

X14

X15

X12 A1

X12

of B3;

-1 if a member of Ap

of Bp

X13; and

1 if a member of B2, -1 if a member

0 if a member of B^, -1 if a member

X16 = X12 ’ X14‘

Any of the following models yield identical R values and sums of

squares (SS):

EQUATIONS FOR FULL MODELS:

Y = bn + b.X, + b,X_+b,X. + b,Xc + b7X_, + e.; (la)

Y = bQ + bp^ + b3X3 + b5X5 + b6X6 + bgX8 + ep (lb)

Y = bQ + b1X1 + b4X4 + b5X5 + b7X7 + b8X8 + ep (1c)

Y = b0 + b2X2 + b3X3 + b4X4 + b9Xg + b10X1Q + ep (Id)

Y = bQ + b2X2 + b3X3 + b^ + bgXg + bnX11 + ep (le)

Y = b0 + b2X2 + b4X4 + b5X5 + b1QX10 + buXu + ep (If) and

Y = bQ + b12X12 + bl3X13 + b14X14 + b15X15 + b16Xig + el*

For equations la - 1g, R^ = .61212, SSj = 80.80.

EQUATIONS FOR A EFFECT:

Y = b0 + bjXj + e2; (2a)

Y = b0 + b2X2 + e ; (2b) and

Y = b0 + b12X12 + e2. (2c)
For equations 2a - 2c, R^ .15427, SS2,’a 20.36.
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EQUATIONS FOR B EFFECT:

Y - bQ + b3X3 + b^ + e3 ; (3a)

Y = b0 + b3X3 + b5X5 + e3; (3b)

Y = bQ + b4X4 + b5X5 + e3J (3c) and

Y - b0 + b13X!3 + b14X14 + '3- <3d)

For equations 3a — 3d, R3 = .28355, SS^ = 37.43.

EQUATIONS FOR COMBINED A AND B EFFECTS:

Y = bQ + b1X1 + b3X3 + b4X4 + e4; (4a)

Y = bQ + biXx + b3X3 + b5X5 + e4; (4b)

Y = bQ + b^ + b4X4 + b5X5 + e4; (4c)

Y = b„ + b9X0 + bQX, + b.X. + e,; (4d)

Y = b0 + b7X + b„X + b X + e ; (4e)
L 2 55 4

Y = bn + b„X_ + b X, + b X + e,;' (4f) andu 2. 4 4 55 4

Y = b0 + b12X12 + b13X13 + b14X14 + e4. (4g)

For equations 4a - 4g, R^ - .60796, SS = 80.25.
4 4

Also, for equations la-4g, the values of the b^s will in general be

different from equation to equation. For each equation, SS-p. = 132.00.

Equations like those here are often used to generate the fitting constants

solution (see Anderson and Bancroft, 1952 and Overall and Spiegel, 1969),

the hierarchical model (see Cohen, 1968) and the unadjusted main effects

solution (see Jennings, 1967 and Williams, 1972). All three solutions

are integrated into Table 2.
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TABLE 2

TWO-WAY SOLUTION FOR DISPROPORTIONATE

CELL FREQUENCY DATA (NON-FULL RANK)

Source of Variation df SS MS F R^

A 1 20.36 20.36 4.77 .15427

A (independent of B) 1 42.82 42.82 10.03 .32441

B 2 37.43 18.71 4.41 .28355

B (independent of A) 2 59.89 29.95 7.01 .45369

AB 2 .55 .28 .07 .00416

Within 12 51.20 4.27

Total 17 132.00

The A (independent of B) effect is found as SS^ - SS= 80.25 - 37.43,

or alternatively, as SS„ (R2A g “ R^g) •

The B (independent of A) effect is found as SS^ - SS^ = 80.25 - 20.36,

or alternatively as SST (r^a,B “^A) • The fitting constants solution

uses the following sources of variation: SS^ (independent of B), SSg

(independent of A), SSAR AND SS , , , . The hierarchical model useswithin
either SSA, SSg (independent of A), SS^, sSw^t^n and SST or SSg,

SS^ (independent of B), SSAB, SS and SST; the solution used depends

upon which effect (A or B) is to be found first. The unadjusted main

effects solution uses SSA, SSg, SSAg and ssWjLthin*

Some authors prefer to include both types of sources of variation

£for example, both SSA and SSA (independent of in a decision base.

Applebaum and Cramer (1974) have given a decision tree for such a situation.

Perhaps the most widely known multiple decision base is that of Searle

(1971). Searle considers 16 different possible outcomes and gives a 

table for interpreting those outcomes (p.278).
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THE USE OF FULL RANK MODELS

The publication of Timm and Carlson (1975) gave a major impetus to

the usage of full rank models. Overall and Spiegel (1969) originally

rejected the use of full rank models because such models failed to yield

results that agreed with conventional analyses of proportional but non­

equal cell frequency designs. However, Overall, Spiegel and Cohen (1975)

reversed their position by recommending the full rank model solution

for non-orthogonal designs for two reasons. First, they present data

wherein they artificially create non-orthogonality by duplicating all

entries in some cells but not others and show that only the full rank

models yield the same parameter estimates in both the orthogonal and non-

othogonal cases. Also, they point out that non-full rank models

implicitly assume the non-existence of interaction effects, whereas

the full rank models neccessarily take interaction into account when

estimating main effects.

One might hazard a guess that statistical practice, which formerly

emphasized the use of the fitting constants solution (see also Rao, 1965,

and Winer, 1971), has seen the pendulum begin the swing to the use of

full rank models. While One could dismiss the disagreement among

statisticians as simply an intra-fratemity squabble, the more important

issue is the effect this "squabble" has on non-members of the statistical

fraternity who may be more inclined to look for conclusions rather

than the reasoning process that lead to a particular conclusion. While

it is easy to say, "Let the researcher be aware of the drawbacks of a

particular methodology, and choose'his/her strategy on the basis of this

knowledge," all too often, the important issue regards the effect upon

decision-makers in research, i.e., journal editors and referees. Other 

things being equal, it would appear that an article has a higher probability 
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of being accepted by a journal in a substantive area if it uses methodologies

that agree with "standard statistical practice." While the present writer

is in full agreement with the precept that researchers should choose their

analytic techniques on the basis of their fully understanding the strengths

and weaknesses of the analytic techniques, unfortunately, decision-makers

in research (journal editors and referees), under the guise of "maintaining

the standards of quality" sometimes deny the researcher this option.

FULL RANK MODELS FOR A EFFECT

The following models would appear to generate a full rank solution

for the row (A) main effect as a restriction of the corresponding full

model (la - 1g):

Y = bQ + b3X3 + b4X4 + b6X6 + b7X7 + e5; (5a)

Y = b0 + b3X3 + b5X5 + b6X6 + bgX8 + e6; (5b)

Y = bQ + b4X4 + b5X5 + b?X7 + bgX8 + e?; (5c)

Y = bQ + b3X3 + b4X4 + b9Xg + b10X10 + e8; (5d)

Y ■= bQ + b3X3 + b5X5 + b9Xg + b11Xn + e9; (5e)

Y = bQ + b4X4 + b5X5 + b10X10 + bnXu +e10; (5f) and

Y - + bnX13 + b14Xu + bl5X15 + buX16 + en. (5g)

The following R^s and sums of squares result and are shown in Table 3
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TABLE 3

RESULTS FROM USING DIFFERENT FULL RANK MODELS

Equation

FOR FINDING A EFFECT

R2 SS Rx2 - R52 SSj - SS5 F

5a .51472 67.94 .09740 12.86 3.01

5b .47186 62.29 .14026 18.51 4.33

5c .52121 68.80 .09091 12.00 2.81

5d .51472 67.94 .09740 12.86 3.01

5d .47186 62.29 .14026 18.51 4.33

5f .52121 68.80 .09091 12.00 2.81

5g .30070 39.69 .31142 41.11 9.63

Clearly, the results from the use of models 5a - 5g are different from

one another; only those for 5g (using contrast coding) agree with those of

Timm and Carlson (1975); this state of affairs is made more understandable by

reference to Speed and Hocking's (1976) paper.

If we concentrate on the regression coefficients for (say) la,

we can gather an idea regarding the restriction made in 5a.

Equation la could be rewritten as

Y = (Y13 - y23)X1 + (y21 - Y23)x3 + (¥22 - y23)x4 + (Yn - y13 - v21 + y23)x6

+ (Y12 - Y13 - Y22 + Y23)X7 + ep (6a)

Finding this solution for the regression coefficients follows from

finding the expected values for each cell and then solving.the simultaneous 

equations:
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E(Yn) =b0 + b1 + b3+b6= Y11;

E(Yi2) = b0 + bx + b4+ b7= Y12;

e(y13) = bQ + bx = y13;

e(y21) = b0 + b3 = y21.

e(y22) = bQ + b^ - Y22;

E(Y23) = b0 = y23.

Thus, bQ Y23, bj = Yj3 - Y23» b3 - Y21 - Y23, b^ = Y22 - Y23,

b6 = *11  " b0 " bl " b3 = *11  " *13  " *21  + *23  and

hy = *12  - bo - bl - b4 = *12  - *13  - *22  + *23-

Using equation 5a as the restricted model is testing the hypothesis

Yn - Y = 0; clearly, this is not the same as testing the A effect.

It can be shown that the restrictions for equations 5a - 5g on equations

la - 1g test the following hypotheses (given in Tabled'):

TABLE 4

HYPOTHESES TESTED BY RESTRICTIONS IN 5a - 5g

Note: T is the unweighted mean of the cell means .

Equation

5a

Associated
Full Model

la

Hypothesis

*13 -

Being Tested

y23 = 0

5b lb *12 - y22 = 0

5c 1c *11 “ y2i - 0

5d Id *23 - *13 = 0

5e le *22 - *12 = 0

5f If *21 " *11 = 0

5g 1g *11 + *12 + *13  - *c  = 0

3
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Only equation 5g tests the hypothesis for the row main effect.

Equations 5a - 5f test individual multiple comparisons that are related

to, but not synonymous with the row main effect. For example, the F value

for hypothesis 5a is 3.01; 16.01 = 1.735 which is both the test of

significance for bp in equation la and the test of significance for

either Scheffe's test or Dunn's test, following the methodology in Williams (1976).

It could be concluded that only equation 5g properly could be considered

to be a full rank model; the models given by equations 5a - 5f could be

considered to be pseudo-full rank models.

FULL BANK MODELS FOR COLUMN EFFECT

Models could be written corresponding to equations la - 1g as

the column (B effect) restrictions. Intuition would lead one to suspect

that the restrictions on equations la - If would lead to pseudo-full

rank model restrictions, in a manner similiar to the row effects; in

this case, the intuitive judgment would appear to be justified. The

column restrictions could be given as:

Y = b0 + b^ + b6X6 + b7X7 + e12; (6a)

Y = b0 + b^ + b6X6 + b3X8 + e13; (6b)

Y = b0 + bjXj + b7X7 + b8X8 + e14; (6c)

Y = bQ + b2X2 + b9X9 + b10X1Q + e^; (6d)

Y = bQ + b2X2 + b9X9 + bnX11 + e^; (6e)

Y = b0 + b2X2 + b10X10 + bpXp + e17. (6f) and

Y = bQ + b12X12 + b^X^ + b^X^ + e18. (6g)
2

Table 5 gives the hypotheses being tested, the R values, the sum of

9squares, the difference in Rs between the full and restricted models 

and the corresponding sum of squares.
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TABLE 5

HYPOTHESES BEING TESTED, R'? VALUES, SUMS OF SQUARES,
DIFFERENCES IN R2 VALUES IN FULL AND RESTRICTED

MODELS AND CORRESPONDING SUMS OF SQUARES

EQUATION HYPOTHESES R2

6a y - Y = 0: Y - Y = 0 .38154
_21 _23 ’ _22 _23

6b Y21 - Y22 = 0; Y23 - y22 = 0 .38154

6c Y„_ - Y_. = 0; Y__ - Y21 = 0 .38154

6d Yn - Y^ = 0; Y12 - Y13 - 0 .38485

6e Y - Y12 = 0; Y13 - ?12 = 0 .38485

6f Y12 - Yn = 0; ?13 - y1X = 0 .38485

SS R2 - R2 SS, - SS,
16 16

50.36 .23058 30.44

50.36 .23058 30.44

50.36 .23058 30.44

50.80 .22727 30.00

50.80 .22727 30.00

50.80 .22727 30.00

6g Y, + Y„. - Y =0; Y,- + Y„9 -Y =0 .18750 24.75 .42462 56.0511 21 c 12 22 c

2 2

NOTE: The associated full models are respectively la - 1g.

Again, only the equations in 6g test’the column main effect hypotheses.

One conclusion that could be drawn from these findings is that if main

effects are of interest in the presence of interaction, then the contrast

coding scheme is to be used rather than a simple binary system. On the

other-hand, it is of at least of passing interest to note that many

experimenters prefer not to interpret main effects whenever significant 

interactions exist.

RELATIONSHIP TO THE SPSS OPTION 9

The difficulty with Option 9 of the SPSS ANOVA program was alluded to

earlier; actually, Option 9 will execute one of the sets of solutions

for full rank models. Six different sets of solutions will be possible 

depending upon the way in which the data is coded. One such solution
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would have the row effect given by 5a (SS^ = 12.86) and the column effect

given by 6a (SSB = 30.44). The other five solutions would correspond

to 5b, 6b - 5f, 6f. Consequently, the hypotheses tested would correspond

to those given here. Unfortunately, these differences in the solutions

are not described in any available SPSS publication, nor is there

any indication which of the solutions is to be given. While the solutions

given may be of some usefulness, the lack of specific information

renders them to be of doubtful usefulness to the typical SPSS user.

ANOTHER LOOK AT THE UNADJUSTED MAIN EFFECT SOLUTION

Most recent authors have shown a preference for either the full

rank model solution or the fitting constants solution. Either they

fail to consider the unadjusted main effects solution or dismiss it

as unworthy of extensive investigation. However, consider the following:

Y = blxu + b2x12 + b3x13 + b4x21 + bsx22 + b6x23 + .J <’>

where

b - bg are regression coeficients.

X11 = 1 if a member of the row 1 column 1 cell, 0 otherwise;

X12 = 1 if a member of the row 1 column 2 cell, 0 otherwise;

X13 = 1 if a member of the row 1 column 3 cell, 0 otherwise;

X21 = 1 if a member of the row 2 column 1 cell, 0 otherwise;

X22 = 1 if a member of the row 2 column 2 cell, 0 otherwise;

X23 = 1 if a member of the row 2 column 3 cell, 0 otherwise;

A hypothesis likely to be of interest for testing the row main

effects is the following (if the n are equal for all cells):

bl + b2 + b3 = b4 + b5 + b6’ Tbat ls» tbe average effect for the first

row equals the average effect for the second row. For unequal n 's,
ij

the restriction can be written



nllbl + n!2b2 + n13b3 = n21b4 + n22b5 + n23b6 <8> 13

nU + n12 + n13 n21 + n22 + n23

If equation 8 is solved in terms of (saj) b^, the result is

bl (nU + n12 + n13) (n21b4 + n22b5 + n23b6) " ni2b2 " n13b3- (9)

nll(n21 + n22 + n23) nll nn

IE the substitution of the right hand side of equation 9 is made for b
1

into equation 8, the result is

'11 + U12 + ni3^n21b4 + n22b5 + n23b6^ “ n12b2 ~ n13b3

. nll (n21 + n22 + n23^ nU nll

+ b2X12 + b3X13 + b4X21 + b5X22 + bgX23 + e19>

After rearranging terms,

Y = b2(X12 - n12XH> + b3(X13 " n13 Xll>

+ b4(X21 + n21(nn + ni2 + n13} Xi? + b5 (X22 + n22(nU + n12 + n13) X1P

nU(n21 + n22 + n23) nil(n21 + n22 + n23>

+ b6 (X23 + n23(nll + n12 + n13) XU>+ e19’

nilCn21 + n22 + n23>“ (10)

Except for the change in the notational scheme, equation 10 is identical

to Jennings' (1967) Model VII.

Equations 7 and 10 can be implemented directly in programs such as

Ward and Jennings’ (1973) MODEL or McNeil, Kelly and McNeil's (1975)

will fail to invert the matrix due to a dependency relationship caused by

the predictors in both equations 7 and solution to occur; if any one of

10 are deleted (i.e., set b, = 0. o
2

is found. The results are R ? =

LINEAR. However, the usual general purpose multiple regression program

the inclusion of the unit vector. A slight modification will allow a

in both equations) then a useful result
2

.61212, SS7 = 80.80; R = .45785,
10
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2 2
SS = 60.44. Thus, R 7 " R 10 = «15427; ss7 “ ss10 = 20.36, results

identical to those given earlier for the unadjusted main effects solution

for rows. It can then be seen that the use of the computational procedure
2

for the unadjusted main effects solution yields R and sums of squares

that are identical to a hypothesis (restriction) that is likely to

be of interest.

A sitniliar finding will also occur from the likely column main effect

hypotheses:

”llbl +n21b4 -”12b2 +”22b5 ' °13b3X13 * ' <U)

”11 + ”21 ”12 + ”22 ”13 + ”23

Using an algebraic logic as was shown for the row effects, equation 11
2

results in two restrictions on equation 7 that yield R - .32857,

SS = 43.37, so that R* 2 - R2 = .28355, SS - SS = 37.43 (after deleting
11 7 11 7 11

any one of the remaining predictors), results identical for the unadjusted

main effects solution for columns.

ADVANTAGES AND DISADVANTAGES OF THE DIFFERENT CODING SYSTEMS

To explicate the entire set of ramifications of different coding

systems is beyond the scope of the present paper. However, if the

researcher is interested only in the usual analysis of variance

components and is not interested in the full rank model solution, the

coding system is not too important an issue. If, however, a full rank

solution is of interest, one fairly easy way of obtaining this solution

is through contrast coding. This is not to say the full rank solution is

beyond the capabilities of the binary coding system; if the hypotheses

in 5g and 6g are incorporated into the model as restrictions on equation

7, the same results occur. The present writer has a preference for binary
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coding both for heuristic (that is classroom teaching) and hypothesis

testing ease. However, the contrast coding scheme does have a direct

interpretation in traditional analysis of variance hypotheses testing

and can prove attractive for those situations.

Finally, another note should be made here regarding terminology.

The term contrast coding has been used throughout; others, such as Cohen

and Cohen (1975) refer to this process as effect coding.

ADVANTAGES AND DISADVANTAGES OF THE DIFFERENT SOLUTIONS

The full rank model appears to be getting greater acceptance within

the research community. Its greatest advantage is that it does not

require the assumption of a non-existent interaction. Each main effect

is measured in the presence of the interaction effect. Among the dis­

advantages of the full rank model (as proposed by Timm and Carlson, 1975)

are the lack of an additive solution except in the case of equal cell fre­

quencies. This method appears to be in a position to begin dominating

the other methods for disproportionate cell data; indeed, Dalton (1977)

used the full rank model solution as the criterion to judge the adequacy

of other solutions in an article in VIEWPOINTS.

The fitting constants solution has enjoyed the distinction of being

considered to be "the" solution to the disproportionate cell frequency

case and is widely described in standard advanced statistical methodology

texts. Each main effect is found independent of the other main effect.

When the cell frequencies are disproportional, the fitting constants

solution is non-additive. The hierarchical model (Cohen, 1968) can be

useful if the researcher clearly has a preferred order of the m

effects. It should be noted that some researchers (e.g. Cohen) recommend 



16

that the most important effect be the first fitted effect, and other

researchers (e.g. Applebaum and Cramer) recommend the most important

effect be the second fitted effect. Because of this controversy, the

hierarchical model is not used to the same extent as the fitting constants

solution. The hierarchical model is an additive model. The unadjusted

main effects solution appears to suffer from the criticism that the main

effects are allowed to be found wherein a dependency relationship may

be occurring between them.

If we allow researchers to take a pragmatic view that the unadjusted

main effects solution is being used only as a computational convenience,

and the actual hypotheses being tested are those given in equations 8 and

11, then a quite different point of view can be taken. If the researcher

states the hypotheses as those given by equations 8 and 11, and begins

with equation 7, then the researcher can quite properly say that a full

rank solution (but different from Timm and Carlson’s) has been found.

It would seem reasonable to allow a researcher who is fully cognizant of

the hypotheses being tested to use a computational shortcut if that

shortcut yields a solution equivalent to the hypotheses to be tested.

Thus, the unadjusted main effect solution can be seen to be useful as a

computational aid in. a meaningful test made on a full rank model.

A FINAL NOTE ON OPTION 9

It appears that a recent (April, 1977) updated version of Option 9

deleted the previous version and replaced it with a method that gives

results that agree with Timm and Carlson’s full rank model.
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INTERVAL ESTIMATION OF THE*
POPULATION SQUARED MULTIPLE CORRELATION

JOHN T. POHLMANN & JAMES F. MOORE
Southern Illinois University, Carbondale

Key words: Squared multiple correlation, Regression
analysis, Interval estimation

Abstract

A technique is presented which applies the Neyman
theory of confidence intervals to interval estimation
of the squared multiple correlation. The technique
makes use of the equivalence between R2 and F, p2
and X, the non-centrality parameter of the non-central
F distribution. A computer program is also presented
which can be used to apply the technique.

2
The squared multiple correlation (R ) is one of the most

frequently used statistics in social science and educational

research, yet it can also be a very biased estimator of the
2population squared multiple correlation (p ). The bias in

the point estimation of p is a function of the variables/

observations ratio. Formulas have been developed to provide

unbiased point estimates of p given a sample R derived from

a multiple regression equation with p linearly independent

predictors, exclusive of the unit vector, on n observations.

Olkin and Pratt (1958) developed an exact formula for the

unbiased point estimation of p^, and the commonly used shrink­

age formula (Cohen 5 Cohen, 1975, p. 106) is a very good approxi­

mation of the Olkin and Pratt formula.

*0ne of the reviewers stated that Formula (6) is the formular for large
degrees of freedom for both Vj and Vp. We could not find any other
formula. If anyone in MLRV audience ’knows of such an apporopriate
formula, we would appreciate receiving their information.

18
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2
A procedure for interval estimation of p has not been

satisfactorily developed for the non-statistician researcher.

Tables and charts for interval estimation of p, the multiple

correlation coefficient, are available in the literature

(Ezekiel § Fox, 1959; Kramer, 1963) for selected values of

p and n, but the values of p and n in these tables are very

limited.

Hypothesis testing with R s is easily done for hypotheses

of the form p2 = 0, with the central F distribution, but in

many cases this is a meaningless hypothesis to reject. The

approach presented here permits the testing of hypotheses of
2

the form p = C, where 0 £ C < 1, since hypothesis testing

can be considered as a special application of interval esti-

mation procedures. Finally, interval estimation of p better

allows for the comparison of findings from different studies

in which regression analysis was used. If the interval for

p from one study overlaps the confidence interval for p2

from another study, one might conclude the studies replicate

each other with respect to the parameter p2.

Mathematical Development

The distribution function of (R2:p2) was formulated by

Fisher (1928) as follows:

a 2P’ b " jCn-p-l) and F denote the hypergeometric
function.

(1) H(R2) = (l-p2)a+b(R2)a by 1 ja+p + l) | (l-R2)pF(-p,-b a,R2p2)

P=0 (a-1)!p!(l-R2p2)a+b+P
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Unfortunately [1) is only applicable when (n-p-1) is an

even number, and (1) was the formula used by Ezekiel and Fox

(1959) and Kramer (1963) to develop their tables. They solved

(1) for .95 and reported the resulting R values, i.e. the
95th percentile R value given Pt A user who then observes

an R value at the 95th percentile on H(R :p^), concludes with

a confidence level of 95% that p >_ p^.
2

If (1) is used to form confidence intervals for p , one
2 2 2 2would solve for two values of p , and p2, for fixed R , n

and p such that formula (1) would equal a/2, and l-ct/2 respec­

tively. According to Neyman (Cramer, 1946) these two values'
2 2for p would define a 1-a confidence region for p .

Formula (1) could be used to form confidence intervals
2

for p , but it is limited to cases when n-p-1 is an even num­

ber, and the hypergeometric function and the factorial terms

make it a difficult formula to solve with large n. For these

reasons another approach was attempted which capitalized upon

the relationship between the F distribution and the distribu­

tion of R2. For example, F and R2 can be expressed as direct

functions of one another.

(2) F(Vi,v2)
R2/vx

(1-R2)/v2

(3) v2+v1F(V1,v2)

where v^ = p and v2 = n-p-1
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The relationship between P2 and the non-central F distribution

can be seen through the following equalities:

1-P

C r ■» 2 _ A
p " X+n

where X is the non-centrality parameter of the non­

central F distribution (Kendall § Stewart, 1973).

Finally, a function which contained these values that was

amenable to easy solution was found in a normal approximation

to the non-central F distribution (Zelen and Severe, 1960):

The use of (6) to form confidence intervals on p is 

accomplished as follows:

1. Given: v^ = p

v2 = n-p-1

F . r2/vi
CV1’V2) ' (1-R2)/v2

l-a - the confidence coefficient

2. Solve (6) iterating on X until z = za/2 and again

until z = z1_a/2. The two values of p2 = X/(X+n)

thus obtained define the 1-a confidence limits for p2.
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The accuracy of this approach is primarily dependent on

the convergence criterion established for z. If four signifi­

cant digits on z are used, the reported upper and lower limits

on p will have two significant digits. This was the conver­

gence criterion used in the program presented with this paper.

The results using this approach have been checked against the

results reported by Ezekiel and Fox (.1959) and Kramer (.1963)

and have been found to be accurate.

Table! shows the results of this algorithm applied to
2

selected values of R , n (the sample size), and p (the number

of linearly independent predictors). Inspection of Table 1
2 2reveals the degree of bias involved in estimating p with R ,

especially when p is large relative to n. Consider the case

when p = 20, and n = 50. The upper limit of each of the 90%
2confidence intervals is less than the observed R value. This

2 2degree of bias makes the use of R as an estimator of p ques­

tionable to say the least.

insert Table 1 about here

SUMMARY

The approach presented here provides a mechanism for the

formal statistical comparison of R^s from similar regression

studies. Also, the technique allows for a more refined infer­

ential analysis of the squared multiple correlation. With its
• +• f 2

use, a researcher can make a more reasonable estimate o p ,

rather than having'to rely on the shrinkage formula to make
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7 2
only a point estimate of p . The limits on p provided by

2
this method can also be used to test hypotheses about p

7
other than the common hypothesis p =0. Consider the hy­

pothesis p2 = C (0 < C < 1). If the confidence interval

reported here does not contain C, then the hypothesis can

be rejected.

This method can also be used to estimate confidence
2

intervals for increments in p when comparing full and re­

stricted regression models, by rewriting (2) and (4) as

follows:

(7) F = CCRf - R^/vp/d - Rf)/v2

(8) A = n(p2 - p2)/(l - p2)

2 2where = an R for a full model

2 2Rp = an R for a model containing a linear restriction
2

on the model producing R^

2 2 o 2Pf and p^ = the parameter counterparts of R^ and Rp.

Since the fixed effects analysis of variance (ANOVA) is

a special case of least squares general linear model analysis,

certain statistics formed in the context of ANOVA can also be

analyzed with this technique. The q2 statistic (SSA/SST) and

its unbiased estimator w2 (Hays, 1973) are comparable to R2

and the shrunken R . In fact, q2 and R2 possess the same

sampling distribution (Kendall (j Stewart, 1973). Hence, q2

may be substituted for R2 in the preceding development and

confidence intervals may be formed for its parameter.
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Table 1

LIMITS FOR THE 90% CONFIDENCE INTERVAL
FOR SELECTED VALUES OF R2, N, AND P.

r2=
p/ N

.1 . 3 .5 .7 .9

2
PL

2
pu

2
PL

2
pU

2
pL

2
pU

2
PL

2
pU

oi _qQ
.

C
M 3Q

.

2/ 10 .00 . 28 .00 . 50 .00 .66 . 14 . 79 .60 .93
2/ 30 .00 . 24 .05 .45 . 23 .62 .49 . 78 .82 .93
2/ 50 .00 . 21 . 11 .43 . 31 .60 . 56 . 77 . 85 .92
2/100 .02 .18 .17 .40 . 37 . 58 .61 . 75 .87 .92
2/200 .04 .16 .21 . 37 .42 .56 .64 .74 .88 .91
4/ 10 .00 .00 .00 .35 .00 . 56 . 00 . 74 . 33 .91
4/ 30 .00 .17 .00 .42 .17 .60 . 44 . 76 .80 .92
4/ 50 .00 .18 .08 .41 . 28 . 59 . 54 . 76 . 84 .92
4/100 .00 .17 .15 . 39 . 36 . 57 .60 . 75 .86 .92
4/200 .03 .15 . 20 . 37 .41 . 56 .64 . 74 .88 .91
6/ 10 .00 .00 .00 .01 .00 .38 .00 .64 .00 .88
6/ 30 .00 .09 .00 . 37 .10 .57 . 39 .75 . 78 .92
6/ 50 .00 . 13 .04 . 38 .24 .57 .51 . 75 .83 ■ .92
6/100 .00 .15 .14 .37 . 35 . 56 . 59 . 74 .86 .91
6/200 .02 .14 .19 . 36 . 40 .55 .63 .73 . 88 .91
8/ 30 .00 .00 .00 . 32 .02 .54 . 32 . 73 . 75 .91
8/ 50 .00 .09 .00 . 35 .20 .55 .48 .74 . 82 .91
8/100 .00 .13 .12 .36 . 33 .56 .58 .74 .86 .91
8/200 .01 .13 .19 . 35 .40 .55 .63 . 73 . 88 .91
8/300 .03 .13 .21 . 35 .42 . 54 .65 . 73 .88 .91

10/ 30 .00 .00 .00 . 25 .00 .49 . 24 . 70 . 71 .9010/ 50 .00 .03 .00 . 32 .16 . 53 .45 . 73 . 81 .91
10/100 .00 .10 .10 .35 . 32 . 55 . 57 . 73 . 85 .9110/200 .01 .12 .18 . 35 . 39 . 54 .63 . 73 .87 .9110/300 .03 . 13 . 21 . 34 .42 . 54 .64 . 73 .88 .91
15/ 30
15/ 50
15/100
15/200
15/300

.00

.00

.00

.00

.01

.00

.00

.04

.10

. 11

.00

.00

.05

.16

.19

.00

. 22

. 31

. 33

.33

.00

.04

.27

.37

.41

.35

.47

.52

. 53

.53

.00

.36

. 55

.62

.64

.62

.69

. 72

. 72

. 72

.57

. 77

.84

. 87

.88

.87

.90

.91

.91

.91
20/ 30
20/ 50
20/100
20/200
20/300

.00

.00

.00

.00

.00

.00

.00

.00

.07

.09

.00

.00

.00

.13

.18

.00

.09

.27

. 31

.32

.00

.00

. 23

.36

.40

.05

.40

.49

.52

. 52

.00

. 24

. 51

.60

.63

.47

.65

. 70

. 72

. 72

. 20

. 72

.83

. 87

. 88

.82

.88

.90

.91

.91
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PROGRAM COFIN PAGE 1

c ******************************************************************
C
C SUBROUTINE COFIN
C
C ALGORITHM DEVELOPED BY JOHN POHLMANN
C SUPPLEMENTARY CODE BY JAMES MOORE
C SOUTHERN ILLINOIS UNIVERSITY AT CARBONDALE
C
C
C CALL COFIN (OBS,PRCT,,RSQF,PRDF,RSQR,PRDR.SRSQ)c
C ALL PARAMETERS ARE FLOATING POINT MODE
C
C INPUT PARAMETERS ARE
C
C OBS=NUMBER OF OBSERVATIONS
C PRCT=THE PERCENT OF CONFIDENCE FOR THE INTERVAL
C RSQF=R**2  OR THE R**2  ASSOCIATED WITH THE FULL MODEL
C PRDF=NUMBER OF PREDICTORS OR THE NUMBER OF PREDICTORS
C ASSOCIATED WITH THE FULL MODEL
C RSQR=R**2  FOR THE RESTRICTED MODEL OR 0
C PRDR=NUMBER OF PREDICTORS IN THE RESTRICTED
C MODEL OR 0
C SRSQ=1 IF SINGLE R**2;  OR 2 IF R**2FULL-R**2  RESTRICTED
C
C KEY VARIABLE NAMES
C
C REXP- SHRUNKEN R**2
C VI- NUMERATOR DEGREES OF FREEDOM
C V2- DENOMINATOR DEGREES OF FREEDOM
C RLOW- LOWER BOUND OF THE CONFIDENCE INTERVAL
C RHIGH- UPPER BOUND OF THE CONFIDENCE INTERVAL
C
C
C ************jt***********************************************x*****

SUBROUTINE COFIN {.OBS , PRCT, RSQF, PRDF, RSQR, PRDR, SRSQ)
C
C CHECK R**2  TO BE SURE THEY ARE LESS THAN OR EQUAL TO 1
C

IF (.RSQF. LE. 1. AND. RSQR. LE. 1JGOTO1
WRITE(6 2 51

25 FORMAT(’ R-SQUARE MUST BE LESS THAN OR EQUAL TO 1.0’)
RETURN

C
C CALCULATE DEGREES OF FREEDOM FOR F-TEST
C
1 V1=PRDF-PRDR

V2=OBS-PRDF-1.



c
c
c

c
c
c

2
3
30

35

4
50

9

10
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PAGE 2PROGRAM COFIN

R-SQ

F= ( (RSQF-RSQR) /VI) / ( (1.O-RSQF) /V2)
REXP=1.0-[1.0 -(RSQF-RSQR)) * ((OBS-1.0)/V2)
Pl=(1.0-(PRCT/100.))/2 .
P2=l.-Pl

BR IS BYARS AND ROSCOE'S INVERSE GAUSSIAN FUNCTION

Tl-BR(Pl)
T2=BR(P2)

RSQF ESTABLISHES THE BOUNDS OF THE CONFIDENCE INTERVAL

CALL RSQP(V1,V2,F,T1,RHIGH)
CALL RSQP(VI,V2,F,T2,RLOW)
IF(SRSQ-2.) 3,4,2
RETURN
WRITE (6,30)F,RSQF,RSQR,VI,RSQF,V2,REXP,PRCT,RLOW,RHIGH
FORMAT(//' F=’ ,F8.4, ' = (.(' ,F4.3, ' - ' ,F4.3, ’)/' ,F7.4, ')/(l-' ,

*F4.3,’/’,F7.1, ') ' ,/' SHRUNKEN R-SQUARE=',F7.5/
*' FOR THE ’,F4.1,'% CONFIDENCE INTERVAL R-SQUARE L0W=',F6.2,'
*UARE HIGH®’,F6.2)

RLOW=SQRT(RLOW)
RHIGH=SQRT(RHIGH)
WRITE(6,35)RLOW,RHIGH
FORMAT('

*ULT-R HIGH®’,F6.2)
RETURN
WRITE (6,50) F, RSQF, RSQR, VI, RSQF, V2, REXP, PRCT, RLOW, RHIGH
FORMATC//' F=',F8.4, ' = ((’,F4.3,,F4.3,')/' ,F7.4, ')/(!-', n,nT/,__

*F4.3,'/',F7.1,')'/' SHRUNKEN INCREMENT IN R-SQUARE (FULL-RESTRIC t
*D(=',F7.5/' FOR THE ',F4.1,'% CONFIDENCE INTERVAL FOR THE PARTIAL
*MULT1PLE R-SQUARE, LOW®',F6.2,/70X,'HIGH®’,F6.2)

RETURN
END
SUBROUTINE RSQP(VI,V2,F,T,RP)
REAL L
XN2=V1+V2+1.0
RP=. 5
D2=.2S
K=0
L=XN2*RP/(1.0-RP)
K=K+1
A®((V1*F)/(V1+L)  J* *.  333333
B=(1.0-(2.0/(9.0*V2) ))
C=1.0-(2.0*(V1+2.0*L))/(9.0*((V1+L)**2  0)1
D=(2.0*(Vl +2.0*L))/(9.0«((VliL)**2.0))  }
D-SORTfn!rrV2))*(CCV1*F)/(V1 + L))**- 6666667)

MULT-R L0W=',F6.2,' M
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PROGRAM COFIN PAGE 3

Z=(A*B-C)/D
C=(ABS(Z-T)J
IF(C.LT. .0001)RETURN
IF(K.EQ.30)RETURN
IF(Z.GT.T)RP=RP+D2
IF(Z.LT.T)RP=RP=D2
D2=D2/2.0
IF (RP.LT.0.0)RP=0.0
IF(RP.GE.1.0jRP=.99999
GOTOIO
END
FUNCTION BR(P)
R=P-.5000000
Q=R*R
BR=((2.505922+(-15.73223+23.54337*Q)*Q)*R)/(1.0+C- 7.337743+

*(14.97266-6.016088*Q)*Q)*Q)
RETURN
END
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PROGRAM COFIN PAGE 1

*********************************************************************
SUBROUTINE COFIN

ALGORITHM DEVELOPED BY JOHN POHLMANN
SUPPLEMENTARY CODE BY JAMES MOORE

SOUTHERN ILLINOIS UNIVERSITY AT CARBONDALE

CALL COFIN COBS r PRCTs> i RSQF»PRDF r RSQR r PRDR » SRSQ)

ALL PARAMETERS ARE FLOATING POINT MODE

INPUT PARAMETERS ARE

OBS=NUMBER OF OBSERVATIONS
PRCT=THE PERCENT OF CONFIDENCE FOR THE INTERVAL
RSQF=R**2  OR THE R**2  ASSOCIATED WITH THE FULL MODEL
PRDF=NUMBER OF PREDICTORS OR THE NUMBER OF PREDICTORS

ASSOCIATED WITH THE FULL MODEL
RSQR=R**2  FOR THE RESTRICTED MODEL OR 0
PRDR=NUMBER OF PREDICTORS IN THE RESTRICTED

MODEL OR 0
SRSQ=1 IF SINGLE R**25  OR 2 IF R**2FULL-R**2  RESTRICTED

KEY VARIABLE NAMES

REXP- SHRUNKEN R**2
VI- NUMERATOR DEGREES OF FREEDOM
V2- DENOMINATOR DEGREES OF FREEDOM
RLOW- LOWER BOUND OF THE CONFIDENCE INTERVAL
RHIGH- UPPER BOUND OF THE CONFIDENCE INTERVAL

SUBROUTINE COFIN(OBS,PRCT>RSQF > PRDF ,RSQR ? PRDR rSRSQ)

CHECK R**2  TO BE SURE THEY ARE LESS THAN OR EQUAL TO 1

WRITEUPS)1 ‘ANn‘RSQR‘LE‘1)G0T01

RETURNR~SQUARE MLJST BE LESS THAN OR EQUAL TO l.O')

CALCULATE DEGREES OF FREEDOM FOR F-TEST

V1=PRDF—PRDR
V2=0BS-PRDF-l.
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PROGRAM COFIN
PAGE 2

F=((RSQF-RSQR)/VI)/((!.O-RSQF)/V2)
REXP=1.0-(1♦0-(RSQF-RSQR))*<( OBS-1.0)/V2)
Pl = (l .0-(PRCT/1OO♦ > )/2.
P2=l.-Pl

C
C BR IS BYARS AND ROSCOE'S INVERSE GAUSSIAN FUNCTION
C

T1=BR*P1 )
T2=BR*P2)

C
C RSQP ESTABLISHES THE BOUNDS OF THE CONFIDENCE INTERVAL
C

CALL RSQP(VI,V2fFfTIfRHIGH)
CALL RSQP(V1fV2fFfT2fRL0W)
IF(SRSQ-2.>3f4f2

2 RETURN
3 URITE  6 f 30)F f RSQF fRSQRf VI fRSQF>V2,REXP f PRCT f RLOWf RHIGH*
30 FORMAT*//'  F=' f F8.4 , ' = C ( ' , F4.3, ' -', F4.3, ') / ' f F7.4, ' ) / (. 1-' ,

*F4.3f'/'fF7.1,' ) ' ,/' SHRUNKEN R-SQUARE='fF7.5/
*' FOR THE 'fF4.1f'X CONFIDENCE INTERVAL R-SQUARE L0W='fF6.2f' R-SQ
WARE HIGH='fF6.2)

RLOW=SQRT<RLOW)
RHIGH=SQRT(RHIGH)
WRITE* 6f35)RL0WfRHIGH

35 FORMAT*'  ■ MULT-R L0W='fF6.2f' M
*ULT-R HIGH='fF6.2)

RETURN
4 WRITE (6 f 50) F f RSQF f RSQR f VI f RSQF f V2 f REXP f PRCTf RLOUI f RHIGH
50 FORMAT*//'  F='fF8.4f' = (<'fF4»3f'-'fF4.3f')/'fF7.4f')/*  1-'f

*F4»3f'/'fF7.1f ' ) '/' SHRUNKEN INCREMENT IN R-SQUARE <FULL-RESTRICTE
*D)='fF7»5/' FOR THE 'fF4«1f'% CONFIDENCE INTERVAL FOR THE PARTIAL
♦MULTIPLE R-SQUAREf LOW='fF6.2f/70Xf'HIGH='fF6.2)

9 RETURN
END
SUBROUTINE RSQP<VI,V2fFfTfRP)
REAL L
XN2=V1+V2+1»0
RP=»5
D2-.25
K=0

10 L=XN2*RP/(1.O-RP)
K=K+1
A=* (Vl*F)/(VI+L) >**.333333
B=(l.0-(2.0/(9.0*V2 )>)
C=1.0-(2.0*( VI+2.0*L))/(9.0*<(Vl+L)**2.0)  >
D=(2.0*( Vl+2.0*L ))/(9.0** (Vl+L>**2.0) )
E=* 2.0/(9.0*V2 )>*((( V1*F )/* Vl+L))**•6666667>
D=SQRT(D+E)
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PROGRAM COFIN PAGE 3

Z=(A*B-C)/D
C=<ABS<Z-T))
IFCC.LT..0001)RETURN
IF(K.EQ.30)RETURN
IF(Z.GT.T)RP=RP+D2
IF(Z»LT♦T)RP=RP~D2
D2=D2/2»0
IF (RP.LT.0.0)RP=0.0
IF(RP.GE.1.0)RP=.99999
GOTOIO
END
FUNCTION BR(F')
R=P-.5000000
Q-R*R
BR=( (2.505922+ (-15.73223+23.54337*Q )*Q )>KR)/(1.0+<-7.337743+

*<14.97266-6.016088*Q)*Q)*Q)
RETURN
END
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A NOTE ON CODING THE SUBJECTS EFFECT
IN TREATMENTS X SUBJECTS DESIGNS

JOHN D. WILLIAMS
The University of North Dakota

Abstract - Using a recent innovation described by Pedhazur (1977),
a simpler regression solution to the repeated measure design is shown.
Instead of coding N-l vectors to represent the subject effect, the
sum of each subject's criterion scores are entered as a vector. This
single vector yields the same IT value as does the N-l binary coded
subject vectors.

Treatments X subjects designs, when executed in a regression

framework, have typically had an associated cumbersome coding precess.

A design with N subjects and k treatments has, in most formulations,

N-l vectors to represent the subjects effect. When the N becomes at all

large, (say N > 50), the process easily gets out of hand.

Fortunately, Pedhazur (1977) has recently shown an alternative

procedure that necessitates only one vector to represent the subjects

effect. Basically, a vector is formed for each subject such that the

entries for that subject are the sum of the subject's Y score values.

This sum is entered separately for each Y score. To illustrate this

coding process, consider the data in Table 1, taken from Williams

(1974, p. 56), which has ten subjects and three treatments.

32
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Illustration of Design Matrix for Treatments X Subjects Designs

TABLE 1

Y X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

18 60 1 0 1 0 0 0 0 0 0 0 0
27 60 0 1 1 0 0 0 0 0 0 0 0
15 60 0 0 1 0 0 0 0 0 0 0 0
17 55 1 0 0 1 0 0 0 0 0 0 0
24 55 0 1 0 1 0 0 0 0 0 0 0
14 55 0 0 0 1 0 0 0 0 0 0 0
14 39 1 0 0 0 1 0 0 0 0 0 0
13 39 0 1 0 0 1 0 0 0 . 0 0 0
12 39 0 0 0 0 1 0 0 0 0 0 0

5 19 1 0 0 0 0 1 0 0 0 0 0
8 19 0 1 0 0 0 1 0 0 0 0 0
6 19 0 0 0 0 0 1 0 0 0 0 0

11 35 1 0 0 0 0 0 1 0 0 0 0
14 35 0 1 0 0 0 0 1 0 0 0 0
10 35 0 0 0 0 0 0 1 0 0 0 0

9 29 1 0 0 0 0 0 0 1 0 0 0
12 29 0 1 0 0 0 0 0 1 0 0 0
8 29 0 0 0 0 0 0 0 1 0 0 0

14 45 1 0 0 0 0 0 0 0 1 0 0
16 45 0 1 0 0 0 0 0 0 1 0 0
15 45 0 0 0 0 0 0 0 0 1 0 012 38 1 0 0 0 0 0 0 0 0 1 017 38 0 1 0 0 0 0 0 0 0 1 09 38 0 0 0 0 0 0 0 0 0 1 022 59 1 0 0 0 0 0 0 0 0 0 1
21 59 0 1 0 0 0 0 0 0 0 o 1
16 59 0 0 0 0 0 0 0 0 0 o 1
10 43 1 0 0 0 0 0 0 0 o o o18
15

43
43

The

Y =

0 10 0 0
0 0 0 0 0

values in Table 1 are defined

the criterion score;

0 0
0 0

as follows:

0
0

0
0

0
0

0
0

Xl = ^e sum of the criterion scores for each subject separately;

X2= 1 if the score corresponds to Treatment 1, 0 otherwise;

X3= 1 if the score corresponds to Treatment 2, 0 otherwise;

X4= 1 if the score is obtained from Subject 1, 0 otherwise;

X5= 1 if the score is obtained from Subject 2, 0 otherwise;

X6= 1 if the score is obtained from Subject 3, 0 otherwise;
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X7= 1 if the score is obtained from Subject 4, 0 otherwise;

X = 1 if the score is obtained from Subject 5, 0 otherwise;

Xg = 1 if the score is obtained from Subject 6, 0 otherwise;

X a 1 if the score is obtained from Subject 7, 0 otherwise;

X 1 if the score is obtained from Subject 8, 0 otherwise;

X 12= 1 if the score is obtained from Subject 9, 0 otherwise;

Note that treatment 3 and subject 10 do not have separate ve tors,

as they are linearly dependent respectively on X . X and
2 3 - X 12’

The analysis in Williams (1974) proceeds as follows: three linear models

are defined, one for the treatments effect one for the subjects effect and

one for the combined treatments and subjects effects. These models are

given as

V'b0 +b2X2 + b3W (1>
’ lo’So + Il V

b^ +

and

Y ' V 4^ + + b4 V V 4>1> + 4 We + 4, V ho’lo +
bll ’ll + b12 712 + % ’

The associated values and sums of squares (SS) for equations 1-3
? 2 2

are R£ = .1784; SSj = 136.27; = .6823; = 521.20; Rj = .8607;

SS3 = 657.47; SST = 763.86. A complete summary table is shown in

Table 2

Summary Table for the Treatments X Subjects Design

Source of Variation df SS MS F

Treatments 2 136.27 68.13 11.52

Subjects 9 521.20

Error 18 106.39 5.91

Total "29 763.86
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An alternative analysis, using X], the sum of criterion scores for

each subject, would use the following equations.

Y ° b0 * b2X2 + b3X3 + er (1)

Y = bn + b,X, + e?, (4) and

Y ' VblXl + b2X2 + b3X3 + e3‘ (5)

The results, in terms of sums of squares and R values, is identical to that
9 2 2 2

already given, with R, = R„ , SSfl = SS9, R; =? R and SS = SS . However,4 2 4 b 3 53
care must be taken with the degrees of freedom. Equation 4 uses only one

predictor; thus, the "apparent" degrees of freedom is one. It must be

remembered that the actual df = N - 1. Remembering the degrees of freedom

is a small price to pay for a much more parsimonious solution to the

repeated measures designs.

While only a simple treatments x. subjects design has been shown here,

the process works as well for higher dimensional completely crossed designs

as well as for "mixed" designs.
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AN INTRODUCTION TO PATH ANALYSIS

LEE M. WOLFLE
Virginia Polytechnic Institute and State University

Many causal analyses in the social sciences are now being

conducted within the framework of path analysis, or more appro­

priately, the analysis of structural equation models. These

methods are not new, and are commonly attributed in their devel­

opment to some early writings of Sewell Wright (1921, 1925, 1934).

The method was introduced to the social sciences within the past

two decades by Blalock (1962, 1964, 1967, 1971), Boudon (1965,

1968), but most importantly by Duncan (1966, 1968, 1969a, 1969b,

1970, 1972, 1975). Since Duncan's 1966 article, the literature

on path analysis has increased nearly exponentially, and owes

much to contributions by Blau and Duncan (1967), Duncan, Feather­

man and Duncan (1972), Finney (1972), Goldberger (1972), Gold-

berger and Duncan (1973), Hauser and Goldberger (1971), and Heise

(1969, 1972, 1975). Land (1969) has written an adequate intro­

duction to the subject; Duncan (1975) and Heise (1975) have now

produced good texts.

Yet the literature on path analysis in educational journals

remains slim despite its heuristic advantages (but see Anderson

and Evans, 1974; Williams and Klimpel, 1975; Wolfle, 1977).

My purpose here is to provide an introductory discussion of path

analysis, demonstrating how the numeric coefficients may be cal-
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culated. The manner in which causal effects may be decomposed

will be addressed, followed by a brief discussion of strategies

of analysis in structural equation models. Finally, I will dis­

cuss some recent applications of path analysis to educational

topics. In their several parts, little of what will follow is

new—it has all been covered before—but the synthesis is new,

and should provide an introduction to the method of path analy­

sis for those who are interested in pursuing the matter further

in some of the literature cited herein.

CONSTRUCTION OF THE MODELS

Path analysis employs diagrams such as the following:

Figure 1.

A straight arrow represents the researcher's hypothesis of a

causal effect; the arrowhead points toward the influenced variable.

The arrow from to X^, for example, represents the verbal state­

ment X^ is a cause of X^," or "a change in X^ produces a change

in Xj^." The double-headed curved arrow represents a correlation,

in this case between the exogenous variables X and X , to which
J
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we attach no causal interpretation. That is, we allow X2 and X^

to be associated for unknown reasons. The three variables, X

X2, and X^, are explicit variables which have names—income, occupa­

tional prestige, and educational attainment, for example. A

fourth variable, u, in the model does not have an explicit name; it

is called the "disturbance," or the "residual," or "error." It

represents all other sources of variation in X^ not jointly ex­

plained by X^ and X^. Such sources may include explicit variables

not included in the model, deviations from linearity, random

errors, and the like. The expected value of the residual is zero,

and the expected covariations of the residual with the independent

(or, in this case, exogenous) variables, X^ and X^, are zero.

Notice that we have by definition constructed a model which accounts

for all of the variation in X^, some by explicitly named and mea­

sured variables, some by an unnamed disturbance term.

The diagram above actually represents only one of several

models we could have constructed with these variables. We could

have constructed a so-called chain model:

x3---------- »X2 -----------> x2

Figure 2.

The diagram represents a hypothesis that X^ causes X2 which causes

X^, but that there is no direct effect of X^ on X^. Or, we could

allow for such a direct effect by the model:
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Figure 3.

Yet another alternative would suggest that causes X^ and X^,

but that X^ and X^ have no causal effect on each other. Thus,

Figure 4.

Notice that we have considered four different models without re­

versing the inherent order of the three variables. We could also

have considered several other models which allowed different

inherent orders (see Duncan, 1975: 19). How may we decide which

model is the correct one? The answer may come only from a priori

considerations. Without some basis—temporal order, previous re­

search, or theoretical conjecture, for example—we would become

hopelessly enmeshed in a number of models, all of which the data

might support as plausible representations of the variables.

You should conclude that neither path analysis, nor any other

method, provides a way of inferring causality from nonexperimental

data. Path analysis does provide a method for attaching quantitative

estimates to causal effects though to exist on a priori grounds. From
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such quantitative estimates, we might conclude that the data

are inconsistent with a certain model, and reject the model as

implausible. But the data will not suggest an alternative.

COMPUTING PATH COEFFICIENTS

How do we obtain the quantitative estimates, the path coef-

Translating the picture in Figure 1 into its corresponding

ficients? Let's denote these coefficients by the symbol, p ,

where i represents the variable thought to be caused by j; that

is, i is the dependent variable. Returning to the model pictured

of p12 and p13.

_, and r__; we assume r„ = r_ = 0, and want to obtain estimates13 23 2u 3u

in Figure 1, we know the sample correlation coefficients, r^2>

equation, we have

X1 ■ p12X2 + Pi3X3 + piu“ + ’ (1)-

We may transform these variables into standard form by taking

deviations from their respective means and dividing by the appro­

priate standard deviations. This transformation makes the follow­

ing presentation more convenient, but is not necessary. Indeed,

analysis of variables in their original metric is preferred

(Blalock, 1972: 383-385; Duncan, 1975: chap. 4; Kim and Mueller,

1976). Let's indicate the standardized variables by using lower­

case symbols. Thus

. *1  ■ P12x2 + P13X3 + Plu“ <2)'

We may multiply this equation by x2> which yields

X1X2 = P12X2X2 + P13X2X3 + PluX2U (3>‘
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These variable names represent observations on individualsj we

may sum the observations, and divide by N. Doing so results in

Exlx2 - p,„Ex2x2 + p. Ex2x3 + p,» EX2u
—~ 12—N- 13T“ 1 N (4).

Because these are standardized variables, we have

r12 = P12 + P13r23 ’

since r22 = 1, and r2^ = 0 by assumption.

Similarly, we could have multipled equation (2) by x^» which

would yield

r13 ' P12r23 + p13 <6)'

We now have two equations with two unknowns, and simple algebraic

manipulation will show that

r12 ~ r13r23
P12 2

" r23 (7),

r13 ” r12r23
P13 2

23  (8).

Returning to equation (2), we multiply through by u, inter­

mediately yielding

'lu ‘ P12r2u + P13P3u + plur„u (9).

Because r^ = 1, and r2u « r^ - 0 by assumption, we have

rlu ■ plu (10),

which is generalizable to any number of independent variables.

Finally, multiplying equation (2) by x1 results in

rll ‘ 1 " p12r12 + p13r13 + ’ip'lp <U>,



42

and from equation (10) we find

Plu (1 " fp12ri2 + 1 (12).

The expression inside the brackets is the coefficient of deter-
2mination, R , and we have

Z 72
Plu 1 ’ *1.23 (13),

which is also generalizable to any number of independent variables.

Let's look again at the so-called normal equations, (5) and

(6). These may conveniently be depicted in matrix notation: 

1 (14),

from which we have

P12 ' 1 ■ 1 r23 - 1 ri2

P13 . r23 1 r13. (15)

This matrix equation (15) is easily generalized to k independent

variables. Thus, any computer program which can invert and mul­

tiply matrices can be used to obtain path coefficients. These

coefficients are alternatively labeled standardized regression

coefficients, or beta weights (BETA in the popular SPSS [Nie,

et al. , 1975] regression package), and can be obtained from most

standard regression programs.

Path analysis (in its recursive form), therefore, is nothing
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more than regression analysis with standardized variables. Indeed,

as mentioned above, the metric coefficients are now preferred in

most cases to the standardized, which means path analysis is regres­

sion analysis. The advantage of path analysis may not, therefore,

be found in the computation of coefficients, but arises from its

requiring one to think about cause, particularly systems of inter-

causal connections. It is this ability to provide an explicit

link between theoretical notions of what causes what, and estimates

of causal impact, which is the greatest advantage of path analy­

sis.

DECOMPOSITON OF EFFECTS

Consider the hypothetical model in Figure 5.

Figure 5.

The model depicts an a priori notion that X1 depends on the expli­

cit variables X2> X3> and X4; that X2 depends on X3 and X^; that

x3 and X^, are correlated for unknown reasons, and whatever their

causes may be, they come from outside the model (hence the phrase,

"exogenous").
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Path diagrams may be read as follows:

Read back from variable i, then forward to variable
J, forming the product of all paths along the traverse;
then sum these products for all possible traverses. The
same variable cannot be intersected more than once in a
single traverse. In no case can one trace back having
once started forward. The bidirectional correlation is
used in tracing either forward or back, but if more than
one bidirectional correlation appears in the diagram,
only one can be used in a single traverse. The result­
ing expression . . . may consist of a single direct path
plus the sum of several compound paths representing all
the indirect connections allowed by the diagram (Duncan,
1966: 6).

When the variables in the model have been standardized, the sums 

of such products yield the correlation coefficient, r^. (When

the variables are measured in their original metric, the coef­

ficients are partial regression coefficients, and the sum of their 

products along the appropriate traverses equals the zero-order

slope, b..•
ij

Of course, one may no longer use the correlation 

coefficient between exogenous variables, but must use the regres­

sion slopes, b^ or b^, as appropriate.)

Let’s consider the correlation between and X^ in Figure

5. Reading back from to X^, one possible traverse is the path,

P£3> Another is formed by the product, ?24r34- These exhaust

(16).
r23 ‘ p23 + p24r34

Except for the change in subscripts, this equation is identical 

the traverses from to X_; therefore

to equation (5).

Now let's consider the decomposition of the correlation

between X and Xy The resulting expression would be:
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r13 = P13 + P12P23

+ p12p24r34 + P14r34 (17).

The advantage of these decompositions is that we may now attach 

causal interpretations to the various traverses. For example,

the path, p^ is the measure of a direct effect of X3 on

The product P12P23’ is a measure of an indirect causal effect

of X3 on XL through X2- That is, not only does X3 effect X^^

directly, but X3 also has an effect on X2 which in turn effects

X1
Let’s give names to these variables for illustration; let

X = grade-point average, X„ = attendanceX X3 = a measure of

motivation, and X^ = IQ. Assuming p^, p^, and P23 are a-'-l

positive, we would conclude that of the total relationship between

effect—the higher the motivation, the

from the fact that the

attendance, and the greatergreater the

the attendance, the higher the grades.

That leaves two parts

correspondingly hesitant to attach any causal interpretation to 

higher the motivation, the

motivation and grades, r^3> a portion,

and X3 yet to be

both include the

higher the grades. The

of the total relationship between X^

indirect causal effect, P^2P23’ ar^ses

discussed. The two traverses, p,„p„,r„, and p,.r„,12 24 34 14 34

p^3> is a direct causal

correlation r3^> to which we have previously

decided not to attach any causal interpretations. We should be 

a traverse which includes such a term. There is no single label

we may call this part of the decomposition, but perhaps a joint

association is as good as any. In terms of the names we have

attached to these variables, we would say, after direct and in­

direct effects that a portion of the relationship of motivation 
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and grades is due to the fact that motivation and IQ are corre­

lated for unknown reasons, and that IQ also has effects, both

direct and indirect, on grades.

Finally, let's examine the decomposition of the correlation

of and X,>. The correlation may be decomposed into the follow­

ing set of traverses:

r12 = p12 + P13P23 + P14P24

+ P13r34P24 + P14r34P23 <18;h

The path, p^2> is the usual direct effect; and two traverses

include the correlation between exogenous variables, to which we

attach no causal interpretation. But consider the traverse,

P13P23’ t^s Part t^e total relationship arises because X^

and X2 are both caused by X^. That is, X^ is an antecedent cause

of both X^ and X2> and that part of the total relationship we

call a spurious effect due to X^. Similarly, there is a spurious

effect due to X^, namely ■*- n substantively interpreting

these variables, we would say that part of the association between

attendance and grades is a spurious effect of motivation and IQ.

That is, people with higher rates of attendance will receive

higher average grades, but part of this association is due to the

fact that highly motivated people have both greater attendance

and higher grades, and part is due to the fact that more intelli­

gent people also have greater attendance and higher grades.

Total relationships may, therefore, be decomposed through

path analysis into direct effects, Indirect effects, spurious

effects, and joint associations. Direct effects are partial

derivatives; indirect effects occur only through intervening
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variables; spurious effects occur from joint antecedent variables;

joint associations involve as one of their components a correlation

between variables to which no causal interpretation may be attached.

These decomposed effects may be expressed as proportions of the

total relationship. For example, the proportion of the total re­

lationship between X^ and X2 in Figure 5 which may be considered

a direct causal effect is P12/ri2’ 1 mentioned above tbat regres­

sion coefficients in their metric form may be substituted for

the path coefficients; indeed they are preferred. If regression

coefficients are used, the proportion of the total relationship,

b^2> which may be considered a direct causal effect is given by

^12 34^12’ t^at ds» th® rati° the partial regression coef­

ficient controlling for X^ and X^, to the zero-order regression

slope, b . These ratios, whether one uses standardized or metric
12

coefficients, are equal. That is,

p bHij.klm... = ij.klm...
r b
ij ij (19).

The other components of the decomposition are also equivalent,

regardless of whether path coefficients or regression coefficients

are used.

Alwin and Hauser (1975) have explicated the decomposition

of effects through the use of ordinary least squares regression.

Good examples of substantive applications may be found in Alex­

ander and McDill (1976), Alwin (1976), Duncan, Featherman, and
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Duncan (1972), Featherman and Hauser (1976), Hauser, Sewell,

and Alwin (1976), and Wolfle (1977).

Using the rules for reading path diagrams helps in appreciat­

ing the properties of the causal relationships in the model,

but for algebraic manipulation and calculation, it is more con­

venient to use the fundamental theorem of path analysis, which may

be written (Duncan, 1966: 5):

r.. Ep. r.
tj = iq iq (20),

where £ and J denote two variables in the model, and the index 

q runs over all variables from which direct paths lead to X .

For example, the correlation between and in Figure

5 may be written in terms of equation (20):

r12 = P12r22 + P13r23 + P14r24 (21).

Similarly,

r23 = P23r33 + P24r34 <22).

and

r24 = P24r44 + P23r34 <23>•

Any variable correlated with itself is equal to 1. And substitut­

ing equations (22) and (23) into (21), we have

r12 = p12 + P13^P23 + P24r34^

+ p14(p24 + P23r34) '

Expanding this equation, we find

ri2 = p12 + P13P23 + P14P24

+ p13P24r34 + P14P23r34 (25)
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which is equivalent to equation (18) which we obtained from de

composing the model by "reading" the appropriate traverses from

Xi t0 X2-

STRATEGIES OF ANALYSIS

Recursive Equation Models

The models we have been considering so far have all been

recursive. The label applies to models in which there are no

feedback loops; that is, the causal flow in the model is uni­

directional. Stated differently, it means that a variable cannot

be both a cause and an effect of another variable, either directly

or indirectly. Models that include reciprocal effects are called

nonrecursive; estimates of coefficients for such models may not

be obtained by ordinary least squares, and associations are not

decomposable, as I have explicated above. Erlanger and Winsborough

(1976) provide an example of how to solve a simple nonrecursive

model with the two-stage least squares procedure.

The strategy of analysis for recursive models is twofold.

First, one will want to obtain estimates of the extent to which

intervening variables account for relationships among variables.

These are the indirect effects discussed above. For example, in

industrial societies much of the effect a father's socioeconomic

status has on his son's socioeconomic achievement is not a direct

effect, but occurs through the son's educational attainment (Blau

and Duncan, 1967). The second strategy of analysis for recursive

models is to obtain estimates of the extent to which antecedent
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variables account for relationships between other variables.

These are the spurious effects discussed above. For example,

Duncan (1968) found that about 56% of the association (r = .59)

between educational attainment and adult intelligence was a

spurious effect of "early" intelligence.

Block Equation Models

A block equation model is one in which each of a set of 

dependent variables is regressed on the same set of independent 

variables. For example,

Y1 = “1 + Wl + ei2X2 + *13 X3 +

Y2 = “2 + 821\ + P22X2 + B23x3 +

Y3 = a3 + 831x1 + B32x2 + 833x3 +

Y4 = a4 + e41Xl + B42X2 + B43X3 +

The set of equations (26) may be diagrammed as shown in Figure 6.

Figure 6.

ei

e2

e3

e. (26).



51

The analysis goals for this kind of model are (1) to com­

pare the zero-order coefficients with their corresponding partial

coefficients in order to determine how much of the zero-order

association may be considered a direct effect, and how much a

joint association; and (2) to examine the residuals for correlated

errors. That is, we want to determine how good a job the indepen­

dent variables, the X^'s do of accounting for the correlations

among the Y^’s. To effect this comparison, we may decompose the

correlation between two Y^, allowing for the correlation of their

residuals. The lengthy equation would include only one unknown,

the correlation of the residuals. The resulting correlation of

the residuals may be interpreted as that portion of the correlation

between the two Y± which is left unexplained by the X^. In other

words, it is the higher-order partial correlation coefficient,

controlling for the X..

To illustrate this, consider the block equation model

*1 " p13x3 + fle/1

X2 " P23X3 + P2e2e2 <27 >.

which has already been diagrammed in Figure 4.

and P23 would result in

Solving for

P13 = r!3 (28)

P23 = r23 (29),

and

X ■ Z1 - r13
(30)

p2e2 ‘* r23
(31).
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Permitting the residuals to be correlated, we would trace all

possible paths from x,, to x]_ to obtain the correlation coefficient:

r12 ' ’13’23 + ’le,re,e,’2e,
112 2 (32).

By substitution from equations (28) through (31) we obtain

r12 = r13r23 + " r13} reie2 " r23) (33),

which means

r — r rr r12 13 23
p P = ■ ■■ = T

1 2 /------- --- /------- 2“ 12-3 (34);4 - ri3 A - r23

that is, the correlation of the residuals is the partial corre­

lation of x^ and x2» controlling for x^.

Block-Recursive Equation Models

It is entirely possible to have a model which is nothing

more than a combination of a block system and a recursive system.

For example, consider the model in Figure 7.

Figure 7.

We assume r = r
eie2 eie3

= 0, but it is unnecessary to assume

re2e3 = 0.

The analysis goals are defined for us by what we want, and
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by what we can do with block and recursive equation models. In

this example, we might want to:

1) Determine the extent to which X2 and X^ mediate the

effects of the three exogenous variables. For example,

determine the indirect effects of X^ on X^ through X2

and X„.

2) Determine the extent to which X^, X,., and X^ account

for the effects of X2 and X^ on X^. That is, calcu­

late the amount of the association of X^ and X2 (and

X^) which can be considered to arise spuriously from

joint, antecedent, exogenous causes.

3) We can examine the possibility of correlated errors

between X2 and X^. We do so by determining the higher-

order partial correlation coefficient of X2 and X^, con­

trolling for X., Xc, and X,.4 5 6

4) the extent to which

the zero-order relationship between

for by the contemporaneous variable

the decomposition of r^2 would include the product,

X3; and vice versa.

correlated errors, it is possible, indeed probable, that

X^ and X2 is accounted

P13P3e3re2e3P2 e2

That is, once we have discovered that X„ and X have
J

Finally, focus on X2> and determine

part of the zero-order association between X^ and X2

(and X3) includes an effect attributable to the corre­

lated errors of X2 and X^. For example, part of



54

APPLICATIONS TO EDUCATIONAL TOPICS

Wright (1925) developed the technique of path analysis to

explain the causes of observed correlations between corn prices

and hog production. In recent applications, path analysis has

been applied most usefully to understand the process of socio­

economic achievement (for example, Blau and Duncan, 1967; Duncan,

Featherman and Duncan, 1972). Practically all of these models

use educational attainment as a mediating variable between back­

ground variables and measures of socioeconomic achievement.

A number of reports exist that use path analysis to explain

educational performance and attainment. Among the best are

Hauser's (1971) examination of the educational performance in

Nashville. Duncan, Haller, and Portes (1968) employed a nonre-

cursive structural equation model which addressed the effect

that a friends’ educational plans had on ego's plans, and vice

versa. Hauser (1973) used the panel data of 1957 Wisconsin

high school graduates to develop an elaborate model of the pro­

cess by which background characteristics, ability, academic per­

formance, and the influence of significant others effect one s

socioeconomic plans and educational attainment. There has been

a subsequent wave to the panel survey, and Sewell and Hauser (1975)

have reported these new results, which now include measures of

the effects these variables and educational attainment are having

on early career achievements. Recent studies of educational 

attainment disaggregate social processes that occur within
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secondary schools; for example, Alexander and McDill (1976) mea­

sured the influence of curriculum tracking on subsequent levels

of educational attainment.

In Jencks, et al.'s (1972) examination of the effects of

schooling, he addressed the question of the inheritability of

intelligence, using structural equation models to disaggregate

the effects of genotype and environmental influences; Loehlin,

Lindzey, and Spuhler (1975) have suggested some revisions to

Jencks’ conclusions.

Sewell, Hauser and Featherman (1976) recently published a

collection of papers on schooling and achievement processes. These

papers represent a variety of styles, but nearly all are rigorous,

and many include a structural equation approach to their topics.

These few examples do not by any means exhaust the possible applica­

tions of path analysis; more than anything else, they merely

represent the contents of my bookshelf. These sources are, however,

excellent samples of the rigor that is currently being brought to

bear on substantive topics in education.

FURTHER CONSIDERATIONS

Let me finish by mentioning two more advantages of path

analysis, and acknowledging a topic which I have not explicitly

addressed above, but will confront anyone who "does" path analysis.

One of the advantages of path analysis is that it does not depend

on a complete knowledge of all intercorrelations between the

variables in the model; by specifying some causal assumptions it
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Is sometimes possible to derive estimates from piecemeal data.

Examples include the works by Duncan (1968) and Jencks et al.

(1972: Appendix A).

Another advantage of path analysis is its ability to evaluate

in certain circumstances the effects of unmeasured variables.

Hauser and Goldberger (1971) discuss methods for measuring effects

of such variables, and examples using a cannonical correlation

approach and a principal components analysis may be found in Hauser

(1973) and Hauser and Featherman (1977: 39), respectively.

The latter example may more accurately be considered an example

of measurement error, a topic that may also be addressed through

causal models (Siegel and Hodge, 1968; Namboodiri, Carter, and

Blalock, 1975).

Identification becomes a problem when more unknown coefficients

exist in a model than do known intercorrelations. This is par­

ticularly a problem in nonrecursive models. Path analysis does

not provide a solution to this generic problem, but it does help

•make explicit the assumptions made in its resolution. These issues

have been of most concern to econometricians (for example, Gold­

berger, 1964; Johnston, 1972), but are beginning to receive explicit

attention in sociological multivariate texts (for example, Namboo­

diri, Carter, and Blalock, 1975). The other side of the same

coin is overidentification; that is, there are more intercorrelations

than paths to estimate. As a result, there is no unique solution

to the normal equations. In recursive models the solution is to

simply use the ordinary least squares estimates (Duncan, 1975. 46).
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For those interested in pursuing these topics further, your

first step should be Duncan's (1975) excellent text on structural

equation models.
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UNIVERSITY OF MISSOURI-ST. LOUIS

June 30, 1977

School of Education

Department of Behavioral Studies

8001 Natural Bridge Road
St. Louis, Missouri 63121

Telephone: (3141 453-5782

MEMO

TO: MLR/SIG Members

FROM: Steve Spaner, MLR/SIG 1978 Program Chairman

SUBJECT: Call for papers for the 1978 paper session.

The title- of our 1978 SIG paper session will be "Multiple linear regression
substitutions for traditional and other forms of analysis." I am soliciting
a variety of applied analysis papers to demonstrate the breadth and power of
MLR: ANOVA, ANCOVA, repeated measures, trend analysis, path analysis, validity
studies, and any others you have worked through MLR. I would like to limit
the submissions to data based, applied studies even though theory may be an
integral part. I feel the audience we attract are primarily interested in
the how to use MLR and less interested in the why use MLR.

I have requested our chair-elect, John Williams, to conduct a second MLR/SIG
session on path analysis and its relationship and overlap with MLR. John
has written a couple of articles in the Viewpoints on path analysis and, I
feel, knows the topic better than most. John's session could be considered
a mini—workshop or mini-training session since it will be a one man show
(except for his own assistants).

I hope we will have many interested members in both sessions, both as
presenters and participants. Please submit your paper proposals in the
standard AERA-APA form by August 15, 1977 to me:

Steve Spaner
MLR/SIG Program Chairman
Behavioral Studies Department
University of Missouri - St. Louis
St. Louis, Mo. 63121

Please plan to attend the paper session and training session at the AERA
Convention in Toronto, Can next March 27-31, 1978. See you there.

The University of Missouri is an equal employment
and educational opportunity institution.



Report from the Executive Secretary

MINUTES OF THE 1977 ANNUAL MEETING OF MLR/SIG

63

Approximately 20 persons were in attendance at the business meeting.

The chairman, Mike McShane, brought the meeting to order.

1) The first item of business was a report from the MLR Viewpoints editor Izzy
Newman, indicating that the cost of the Viewpoints production has risen to’the point
that we must increase revenue, somehow. The two methods available are increased
page costs to contributors and/or increased membership-subscription fees. The
sentiment of the group was that to raise page costs to contributors would have a dis­
couraging effect on article submission while raising membership-subscription fees a
modest amount would be more palatable.

It was moved and seconded to increase membership-subscription fees from $2.00
to $3.00 per year for individual membership and to leave the library/institutional
agency membership fee at $12.00. The motion was unanimously approved. Comment was
made that we (MLR/SIG) should strictly enforce the library/institutional agencies
fee which we have not done in the past and the Secretary-Treasurer, Steve Spaner,
was so instructed. Additionally, members were urged to request their respective
campus or institutional libraries to become MLR Viewpoints subscribers.

2) The next item of business was a motion to establish the position of Executive
Secretary and redefine the duties of the Chair, Chair-Elect, Editor and Editorial
Board to more appropriately and efficiently conduct the business of the MLR/SIG.

The motion was seconded and discussion led off with the explanation that the
yearly change of the membership files and other MLR/SIG materials to the new
chair-elect/secretary-treasurer has resulted in delays as long as half-year in getting
the next issue of the Viewpoints out. The proposed establishment of an Executive
Secretary post, with a 3-year tenure, was viewed as a solution to this problem.
Further discussion resulted in various friendly amendments to more specifically
define the tenure and function of the MLR/SIG offices and policy boards. Following
is the structure as amended and unanimously approved:

Function

-Organize the Convention program
-Liason with and official representative

to AERA and other organizations
-Chair of the Executive Board

-Assist in organizing the Convention
program

-Member of the Executive Board

-Maintain membership files and address labels
-Conduct the ongoing business of the MLR/
-Financial Officer
-Secretary for the Annual Business meeting
-Member of and Secretary for the Executive

Board meetings

-Receive, review or send out for
and assemble articles for the MLR/SIG
jouroal, Viewpoints.

Chair/1 year
^77-7^

Chair-Elect/1 year
tf77-7ff

Executive Secretary/3 years

/?77 -SO

Editor/until resignation
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Executive/Editorial Board/ -Review articles for Viewpoints
rotation of the two most -Set publication policies for the Viewpoints
senior members each year -Set MLR/SIG policy

-Act as a nominating committee for
replacement of position holders

Note should be made of the fact that members of the Editorial Board are now
members of the Executive Board as well. The feeling was that a policy committee was
needed and the Editorial Board was an existing and capable group of members for such
decisions (should they arise).

3) The meeting then turned to the election of officers. Mike McShane called for
nominations for the position of Chair-Elect (as newly defined).

John Williams of the University of North Dakota was nominated and elected
by acclamation.

Next the position of Executive Secretary was opened for nomination (as newly
created and defined).

Izzy Newman nominated Steve Spaner with the justification that the membership
files and treasury were currently in his possession and his election would eliminate
the transfer lag. Steve Spaner raised the issue and ethics of holding two positions
in this coming year: chair and , if elected, executive secretary. The members pre­
sent expressed no feelings of conflict of interest so long as Steve Spaner felt he
could carry-out both functions. Steve indicated that several of his graduate students
were MLR/SIG menbers who he was "sure" would be willing to help him if need be.

Steve Spaner of the University of Missouri at St. Louis was elected by
acclamation.

The nominations of Executive/Editorial Board replacement (as newly defined)
was opened next. The matter of tenure seniority was eliminated by the resignation
from the Board of Thomas Jordan of the University of Missouri at St. Louis and
Keith McNeil of Durhan, North Carolina.

Lee Wolfle of Virginia Polytechnic Institute and Mike McShane of the Association
of American Medical Colleges were nominated (volunteered) and elected by acclamation.

In anticipation of other openings or resignations on the Editorial Board, the
Chair requested any interested members to give their name to the Secretary.
Volunteers were: Jack McArdle and James Maxwell. Other interested members may send
their name to Steve Spaner, the Executive Secretary.

The 1977-78 Executive/Editorial Board in order of decreasing tenure (as assigned
by the 1977-78 Chairperson)is as follows:

1. John Pohlman, Southern Illinois University at Carbondale
2. Earl Jennings, University of Texas
3. William Connett, Montant State Department of Education
4. Joe H. Ward, Jr., Lackland Air Force Base
5. Robert Deitchman, University of Akron
6. Samuel Houston, University of Northern Colorado
7. Lee Wolfle, Virginia Polytechnic Institute
8. John Williams, University of North Dakota
H/AC , w,xk , 4. <,
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The meeting was adjourned until next year’s AERA convention.

Respectfully submitted,

Steven D. Spaner
Executive Secretary of the

MLR/SIG



School of Education

UNIVERSITY OF MISSOURI-ST. LOUIS

Department of Behavioral Studies

8001 Natural Bridge Road
St. Louis. Missouri 63121

Telephone: (314) 453-5782

June 27, 1977

MEMO:

TO: All past and current Multiple Linear Regression/Special Interest Group
me nbers

FROM: Steve Spaner, Executive Secretary

SUBJECT: First dues notice for MLR/SIG 1977-78 membership year.

At the 1977 MLR/SIG business meeting (minutes will appear in the next
Viewpoints) dues were increased from $2.00 a year to $3.00 a year for individual
memberships subscriptions. Agency or institutional subscriptions were left at
$12.00 per year but enforcement of this rate will now be exercised. Members
were encouraged to request their agency or institutional libraries to become
MLR Viewpoints subscribers since the cost of the journal is rapidly increasing.

Make your check or money order out to MLR/SIG or Multiple Linear Regression/
Special Interest Group and send it to:

Steve Spaner
MLR/SIG Executive Secretary
Behavioral Studies Department
University of Missouri-St. Louis
St. Louis, Mo. 63121

(NOTE: If your address label has a code in the first line of a nunber
followed by PD 77 you owe $3.00 for the 1977-78 membership year. If your code
is a number followed by PD 78, you only owe $1.00 since you have alrea y pa
$2.00 for the 1977-78 year. If your code is only a number, you were not a p
member during the 1976-77 membership year and we sure would like to have y
rejoin us.)

The University of Missouri is an equal employment and educational opportunity institution.



If you are submitting a research article other than notes or comments, I would like to suggest
that you use the following format, as much as possible:

Title

Author and affiliation

Indented abstract (entire manuscript should be single spaced)

Introduction (purpose—short review of literature, etc.)

Method

Results

Discussion (conclusion)

References

All manuscripts should be sent to the editor at the above address. (All manuscripts should be
camera-ready copy.)

It is the policy of the sig=multiple linear regression and of Viewpoints to consider for publication

articles dealing with the theory and the application of multiple linear regression. Manuscripts should

be submitted to the editor as an original, single-spaced typed copy. A cost of $1 per page should be

sent with the submitted paper. Reprints are available to the authors from the editor. Reprints

should be ordered at the time the paper is submitted and 20 reprints will cost $.50 per page of

manuscript. Prices may be adjusted as necessary in the future.

"A publication of the Multiple Linear Regression Special Interest Group of the American

Educational Research Association, published primarily to facilitate communication, authorship,

creativity, and exchange of ideas among the members of the group and others in the field. As such it
is not sponsored by the American Educational Research Association nor necessarily bound by the

Association's regulations.

"Membership in the Multiple Linear Regression Special Interest Group is renewed yearly at the

time of the American Educational Research Association Convention. Membership dues pay for a

subscription to the Viewpoints and are divided into two categories: individual=$3.00; and

institutional (libraries and other agencies)=$ 12.50. Membership dues and subscription requests

should be sent to the Executive Secretary of the MLRSIG."
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