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AN INTERACTIVE APPROACH TO RIDGE REGRESSION

J. F. Marquette
M. M. Dufala

The University of Akron

A recurring problem in practical applications of ordinary least squares

is the existence of multi-collinearity in the sample of predictor variables.

The consequent ill conditioning of the correlation matrix results in large

standard errors for the B^. While these B^ are best linear unbiased esti­

mators (BLUE) for B^ given a particular estimation sample, the large standard

errors reduce the utility of the regression equation for predictive purposes

in future samples. In practice, even small changes in the distribution of

the predictor variables can result in extremely large fluctuations in the

predicted values of the criterion variable. If the researcher has sound

theoretical reasons for the original choice of predictor variables he may be

extremely reluctant to combat the problem by deleting some variables from the

data set.
c-

Recent research on ridge regression suggests that relaxation of the un­

biasedness criterion will reduce the standard error of the B^ for an estima­

tion sample and stabilize the predicted values of the criterion variable in

future samples.^'2'■*  This approach suggests estimating 3*  instead of B, using

B = (X'X + KI)-1X'Y

as the appropriate estimate of B* •

In this formulation B is no longer BLUE for B, the error SS of the esti­

mation sample is an increasing function of the ridge value K, as is the dis­

tance between B and B*-  Hopefully, however, the variability of the predicted

values of the criterion value in future samples will be decreased by the choice

of an appropriate K. A major problem of this approach is the lack of any

rigorous basis for the choice of K.
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The suggested approach to choosing K is to start with a small value of

K and explore the effect of increasing incremental values on the resulting

B The K value chosen is that at which further increment to K produces

only minimal changes in the Bi.

Since at this stage the choice of K is an essentially exploratory process,

ridge regression would appear to be a prime candidate for an interactive pro­

gramming approach. The University of Akron's APLSV based ADEPT system provides

such a facility.

The following is a brief examination of an interactive analysis of a

ridge problem, using the Hald concrete data as reported in Draper and Smith.

Example 1 is a reproduction of the user's initial interaction with the

system, specifying the data set and variables to be used. The later portion

of the example shows the user's choice of regression options, indicating that

the ridge trace is to be plotted, that the base value of K is to be 0 with ad­

ditional increments of .02 for 6 iterations. Figure 1 lists the output re­

sulting from the above specifications. The initial output presents, for each

value of K, the determinant of the augmented X'X matrix, the maximum variance

inflation factor (which is the largest element of the diagonal of X'X“^), the

multiple correlation, error mean square, intercept and the B values for each

variable. Since the base value of K was set to 0, the first column of the

output presents the ordinary leasts squares results. The maximum variance

inflation factor here is 282.52, indicating very high multicollinearity.

The plot of the ridge trace in Figure 1 indicates that there is a very

rapid alteration in the B values in the interval K=0 to K=.O4 with subsequent

relative stability thereafter. The interval of interest for this particular
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analysis would therefore appear to be K=0 to .04. Resetting the relevant

options results in the output shown in Figure 2. The base value of K is

still 0, but the increments are now .005. Examination of the ridge trace

of Figure 2 shows that even the small K increment from 0 to .005 results

in a large shift in the calculated B values, with the B for variable V3

showing a shift in sign as well as magnitude.

Had any of the B^ gone rapidly to 0, the researcher could have followed

the suggested course of deleting that particular variable and respecified

the analysis requests. It should be noted that the total real time for

this "analysis" was approximately ten minutes, which is indicative of the

great utility of an interactive approach to statistical computing.
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example 1

:OPTIONS? SB

SB-.OPTIONS? RB
SB-.RETRIEVE BASE REQUESTED
SB-.ENTER THE NAME OF THE SAVED DATA BASE: SHALD
SB-.USING DATA BASE: HALD
SB-.BASE VARIABLES:
VI V2 V3 VH V5

-.OPTIONS? R
R -.REGRESSION SPECIFICATION

R -.OPTIONS? RR
R -.SELECT VARIABLES
R : ALL
R -.RR-RIDGE REGRESSION REQUESTED
R -.SELECT DEPENDENT VARIABLE'S)
R : 5
R -.SELECT INDEPENDENT VARIABLE(S)
R : 1 2 3 U
R -.RIDGE PLOT? (Y/N) Y
R ‘.ENTER BASE AND INCREMENT: 0 .02
R -.ENTER NUMBER OF ITERATIONS: 6
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Ridge Regression: A Panacea?

Joseph M. Walton
Associate Dean of Graduate Studies and Research

Isadore Newman
The University of Akron

John W. Fraas
Director of the Center for Economic

Ashland College

ABSTRACT

The present paper investigates the use of
ridge regression and concludes that,while it may
be an appropriate technique for some analyses, it
may not be useful in instances where shrinkage
estimates produce little shrinkage, or where the
proportion of subjects to variables is sufficient.

Introduction

The increased use of multiple regression analysis in the social and

physical sciences has caused researchers to examine methods of obtaining the

most stable regression coefficients, since one of the basic objectives of

multiple regression analysis is prediction. The method of ridge regression

was introduced as a statistical procedure which may be utilized in regression

analyses that are complicated by the problem of multicollinearity, which

causes a fluctuation of regression weights from one sample to another

(Hoerl, 1962).

The concept of ridge regression was further delineated by Hoerl and his

associates in articles dealing with biased estimation for non-orthogonal

problems and the application of ridge analysis to non-orthogonal problems

(Hoerl and Kennard, 1970b; Hoerl and Kennard, 1970a). Marquardt and Snee

later discussed the use of biased estimation and model building, and concluded

8
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that "when the predictor variables are highly correlated, ridge regression

produces coefficients which predict and extrapolate better than least squares,

and is a safe procedure for selecting variables" (Marquardt and Snee, 1975).

The method of ridge analysis requires that a constant be repeatedly

added to the diagonal of the XZX matrix (where the X variables are scaled, so

that X^X has the form of a correlation matrix) before the matrix is inverted

(Newman and Fraas, 1977). In contrast to the standard regression model,

ridge regression is an estimation procedure based upon

| = (XZX + kitWy)

I ■ identity matrix

K = o f K < 1
•* .
p - ridge estimator of £

where K is a constant number added to the identity matrix I (Newman and Fraas,

1977). Hoerl and Kennard described two important aspects of ridge regression:

(1) the ridge trace, which generally is represented by a two dimensional plot

of the coefficient weights vs. the K values, and (2) the determination of a

value of K that gives a minimum mean square error [MSE = variance of the
coefficient + (bias)^]which produces more stable beta weights (Hoerl and

Kennard, 1970b). In using the ridge technique, one accepts some bias in the

expected value of the coefficient in return for a lower mean square error

(MSE). As Newman and Fraas point out, "the objective of ridge regression is

to find a value of K which gives a set of coefficients with a smaller MSE than

the one produced by the least squares solution" (Newman and Fraas, 1977). The

residual sum of squares will increase as the K value increases. It is important

to remember that the purpose of ridge regression is not to obtain "best fit"

for the sample, but to develop stable coefficients (Marquardt and Snee, 1975).

Hence, ridge regression presents itself as a method designed to increase

the researcher's ability to predict by producing more stable weights from
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sample to sample, particularly where the independent variables are non-

orthogonal. In addition, as reported by Marquardt and Snee, ridge regression

has the advantage of producing the ridge trace, which may aid the researcher

in identifying the specific coefficients that are sensitive to the data. It

is also an easy statistic to compute (Marquardt and Snee, 1975).

The major point of this paper is that the production of more stable

weights per se does not cause the prediction to be more accurate. A prediction

is only made more accurate by the production of a larger R . Therefore,

ridge regression may be a misleading technique in the sense that, while it may

in fact produce more stable weights, it does not necessarily yield greater

accuracy. What the authors believe one must look at are not only the stability
2

weights and stability of the R but the purpose of the model structure. Ridge

regression may not in fact be a panacea to the problem of non-orthogonality.

The present researchers attempt to document this point of view in the following

example.

Data Presentation

In the present study, the researchers attempted to predict counselor

practicum ratings among 93 counselor education students, while using as pre­

dictors, simple, squared, and interaction variables which included undergraduate

grade point average, final graduate grade point average, Miller Analogies Test

Scores, and type of undergraduate institution. The data used in the study

presented an excellent example of non-orthogonality.

The stability of the multiple linear regression procedure and the ridge

procedure for the data were analyzed by two methods: a traditional cross-

validation procedure, and ridge analysis. For both analyses, the 93 subjects

were randomly divided into two groups of 47 (group A) and 46 (group B)

respectively. The results are listed below in Table 1.
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Table 1

Cross-Validation Results for the Multiple Regression
Analysis and the Ridge Regression Analysis

Group

Multiple
Regression
R2 - Value

Ridge
Regression
R2 - Value

Cross-
Validation
with Multiple
Regression
Coefficient

Cross-
Validation
with Ridge
Regression
Coefficient

Group A .39798 .32800 - -

Group B - - .29854 .28250

True Popula­
tion Estimate .29681 — - -

As one can see by inspection of Table 1 the ridge regression shrunk less

(traditional shrinkage .09944; ridge shrinkage .04550). This is consistent with

what one would expect. The ridge weights are more stable; therefore there should

be less shrinkage.

We also know that the traditional multiple R2is upward biased. The dif­

ference between the sample multiple R?and the population value is .10117, while

the difference between the ridge sample R^nd the population is .03119. The

ridge F^was more similar to the population R2. However, the shrunken traditional

R2was more similar to the population R2(the difference being .00173), than was

either the shrunken or non-shrunken ridge r2(.01431 and .03119, respectively).

Obviously this is one sample and no strong generalizations should be made.

However, assuming that the data here are representative of what exists, it

would seem that the shrunken traditional R would produce the most accurate

estimate of the population R and that ridge regression is more likely to pro­

duce the more stable weights.

The researcher should keep in mind the purpose of his research when

deciding whether ridge regression or multiple linear regression is more

appropriate. If the inappropriate statistical tool is used by the researcher, 
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he or she is committing a Type VI Error (Newman, 1976 et al_.). That is, there

is an inconsistency between the statistical model and the research hypothesis.

If the research project requires stable coefficients, as would be the case in

making a point prediction over different samples, ridge regression may be the

appropriate analytical tool. However, if the purpose of the research project is

to test a hypothesis, the use of multiple linear regression would be more appro­

priate. If ridge regression were used to test a hypothesis, the researcher

should remember that a bias is introduced into the analysis processes. .

As with most statistical procedures, there is no one best technique and

there is no substitute for knowing what research question one is interested in

and what technique or models best reflect the question.

Discussion

The R2 in a traditional regression model tends to be biased upward, that

is, the regression equation tends to overestimate the R2. Consequently, when

one completes an analysis using another sample (as was done in the present

study), the weights tend to be different. If the same weights are used to

predict from another sample, the weights will probably be even more variable

and less accurate in the second sample, because they were made to be biased for

the first sample. What ridge regression tends to do is make less bias per

sample, causing a smaller R2.

The larger the R2, the better the predictive ability of the regression

equation. For example, if the R2 is 1.000, then the observed score and the

predicted score are the same. When the R2 is less than one, there is some

error between the predicted score and the observed score. The lower the R2

the more error variance in the prediction. So, the critical point here is that

the prediction equation is only as accurate as the R2 is large.

The interesting quality of ridge regression is that, while it produces

more stable regression weights from sample to sample, it also produces a smaller 
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R^, which causes more disparity between the predicted and observed scores.

Hence, even though there is more stability in the weights, there will tend to

be more error variance, and one's ability to predict in subsequent samples is

not necessarily improved.

It is thus important in multiple regression analysis to review the results

of cross-validation procedures or shrinkage estimates. If these results tend

to be relatively stable, then perhaps ridge analysis would be inappropriate.

Suggested shrinkage estimates may include Wherry's original formula (1931),

McNemar's modification (1962) or a formula by Lord (1950). These formulas

are indicated below:

R2 - 1 (1 - R ) (wherry)

"r2 - 1 (1 - R2) n~k_i (McNemar)
/

"r2 = 1 - (1 - r21 n+k+iR 1 U R ) (Lord)

where:

R = the corrected estimate of the multiple correlation
R = the actual calculated multiple correlation
K = the number of independent variables
N = the number of independent observations

As Newnan pointed out, the formulas developed by Wherry and McNemar

attempt to estimate the population R2 based on the sample, while Lord's formula
, 9

estimates the R from one sample to another. The cross-validation procedure is

more similar to Lord's procedure. Newman concludes that, in deciding upon the

shrinkage method to use, one should consider the underlying assumptions of each

procedure (Newman, 1975).

Surmary and Conclusions

In the present paper, the investigators described the technique of ridge

regression, and listed some of its distinct qualities and purported advantages.

Data were then presented which tend to support the conclusion that under certain

conditions, ridge regression may be an inappropriate technique.
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The ridge technique was examined microscopically and the following specific

conclusions were drawn:

1. Ridge regression produces less bias R2 per sample.
p

2. Ridge regression produces a smaller R .

3. Ridge regression produces more stable weights from sample
to sample.

4. Ridge regression is not necessarily more accurate than other
methods in predicting a specific score.

5. If cross-validation procedures and/or shrinkage estimates
produce little shrinkage of the R2 from one sample to another,
it may not be necessary to use ridge regression, depending on the
question being asked.

6. If the proportion of subjects to variables is sufficient and
a large R2 is produced, then the regression model will tend
to be stable, and ridge regression may again be inappropriate.

The conclusion of this paper is that, ridge regression, while useful in

some instances, is not in fact a panacea for use in all regression analyses.

In some instances it may be better to use more traditional methods. The

authors hope that this brief introduction to ridge regression will be useful to

the readers.
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A TEACHING EXAMPLE OF A REPLICABLE SUPPRESSOR VARIABLE

Southern
Dennis
Illinois

W. Leitner
University at Carbondale

ABSTRACT

One of the more elusive concepts in regression
analysis is that of a suppressor variable. — a predictor
variable that makes a contribution to the multiple R in
excess of its zero-order correlation with the criterion
due to its correlation with other predictor(s). The
concept is elusive for two reasons: (1) it is hard to
understand how any variable could behave in such a way and
(2) it is hard to find such a variable in a real world
data situation, and upon finding such a variable, hard to
replicate. One such example that can be demonstrated
using data collected from a "typical" graduate class of
approximately 20 persons is the prediction of height using
weight and age (the suppressor). It makes some intuitive
sense in terms of the definition of a suppressor and it
has been found to be replicable in several different classes.
Typical results from such classes and intuitive justification
for its existence are presented.

Introduction

The beginning student of statistics is aided in his understanding

of multiple regression by examples with familiar variables. One of
the more common examples of multiple regression is the prediction of

success in college using a measure of high school performance (for

Presented at the American Statistical Association, Chicago, IL, August,
1977. The author acknowledges the assistance of John T. Mouw
in the development of this paper.

16
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example, grade point average or class rank) and a standardized

achievement test result (ACT or SAT). Some variation of the above

example is used in the admission policy of most colleges and

universities.

To provide an actual numerical example using data on the above

variables from the class borders on invasion of privacy, if in fact

the information is known. A less threatening example is provided

by collecting data on the prediction of height using weight and age.

One of the more obvious principles in the use of multiple

regression is that the researcher should use predictors that have

moderate to high validity but low (or preferably zero) intercor­

relations. Students understand the basic problem of redundance among

predictors, and that the multiple coefficient of determination will

tend to be less than the sum of the coefficients of determination of

the individual predictors. But when the author attempted to

illustrate this principle with actual data collected on height,

weight, and age (each with some possible "measurement" error),

the expected relationship between zero-order and multiple correlations

did not hold. This led to a discussion of suppressor yarn ahi ,

Some literature on suppressor variables

Horst (1941) defined suppressor variables as a variable

correlating little or none with the criterion, but nonetheless

increasing the prediction when added to the regression with another

variable. Conger (1974) provided an expanded definition of

suppressor variables that included Horst's.
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A suppressor variable is defined to be a variable which
increases the predictive validity of another variable
(or set of variables) by its inclusion in a regression
equation. This variable is a suppresses only for those
variables whose regression weights are increased, (p. 36)

Conger presents three types of suppresion effects (traditional,

negative, and reciprocal) and the relationships among the variables.

Cohen and Cohen (1975) discuss examples of the same three

types of suppression effects, called classical, net, and cooperative,

respectively. But while theoretically the properties necessary

for the effect of a suppressor variable has been determined, in

practice, the occurrence of suppressor variables is rare, and if

present, difficult to replicate. Cohen and Cohen (1975) comment:

Finally, it is important to note that all three kinds of
suppression—classical, net, and cooperative—are not
frequently found in behavioral science studies. The
detailed presentation here is in the interest of enabling
the researcher to recognize them when they do occur, and
for their value as quasiparadoxical curiosities, (p. 91)

In an effort to provide data sets illustrating a suppressor

variable to students in the classroom, Dayton (1972) showed a

method for constructing such a variable: The residual of regression

X on Y acts as a suppressor in the regression of Y on X. Small

random deviations need to be added to the residuals "for realism”

in order to avoid perfect multiple correlation. But while these

variables act as suppressors, they lack meaning. It is for this

reason that the author was encouraged with the unexpected

occurrence of the suppressor variable in the classroom example.
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Method and results

In a multiple regression class of 30 graduate students, a

sheet of paper was passed around on which each student recorder

his/her age (in years), height (in inches), and weight (in pounds).

These data were to be analyzed by each student to "see" what

happens with multiple regression. As it turned out, something

strange happened:

Coefficient of determination
between height and weight = .05

Coefficient of determination
between height and age = .09

Multiple coefficient of
determination between height
and age, weight = .23

(rage,weight3 -23)

The whole was more than the sum of the parts and had been expected

to be less. This was a situation of cooperative suppression using

Cohen's terminology, or reciprocal suppression using Conger's,

but what was most intriguing was the possibility of the occurrence

of age as a suppressor in other graduate classes. The author

and colleagues tried this same experiment with graduate classes

ranging in size from 13 to 30, and more often than not, the same

suppressor effect was noted. Table 1 presents a summary of the

results from the nine classes.
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Table 1

Incremental Prediction When the Suppressor Variable (Age)

Is Added to the Regression of Height on Weight

Group Number
Correlation between

Age and Height

Increase in R When

Age Is Added

1 -.30 .42

2* -.21 .03

3 -.17 .18

4 -.44 .47

5 -.01 .10

6 -.17 .20

7* .19 .06

8* -.30 .26

9 -.02 .10

* In these groups, age did not act as a suppressor variable.
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Discussion and conclusion

The above example is intuitively appealing since it follows

the traditional conceptions of the requirements of a suppressor

variable: weight is a moderate predictor of height, age is negligibly

correlated with height, and slightly correlated with weight. It is

easy for students to understand how age might increase prediction of

height (although unrelated to it) by suppressing some of the irrelevant

variation of weight. This irrelevant variation of weight is referred

to affectionately as the middle-age spread. Although the magnitude

of the suppressor effect is small in most cases, it does tend

to replicate in other graduate classes.

This serendipitous example has been effective in classes in

explaining suppressor variables in multiple regression using

familiar variables.
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Abstract: A version of MULR04 employing random access Read/Write
to simulate core memory for RT11 configured minicomputers is discussed.
In addition, an optional capability for obtaining high quality graphics
on either Tektronix (4010 family) or Calcomp peripheral devices has
been integrated into the system.

While not belaboring the point, multiple linear regression is a

very powerful analytical tool. MULR04 in particular, is but one example

of such an analysis package which allows large numbers of independent

variables to operate on a given dependent variable. In exchange for

this, a rather large amount of computer memory must be devoted to the

task. Because of this size requirement it is commonly assumed that such

complex analysis packages are destined to operate only within the domain

of large machines. However, a user may not have either physical or

budgetary access to a large machine and thereby be limited in their

ability to explore their data in great detail.

With the growing use of minicomputers as a fundamental component

of the laboratory setting, the user's problem can be easily rectified

with the appropriate software. Unfortunately, most minicomputer soft­

ware packages are not designed to handle large multiple variable data

arrays in their regression analyses. This version of MULR04 couples the

flexibility of complex multiple regression with the interactive capa­

bility of the minicomputer. This interactive program provides the user

with the opportunity to enter data and regression models online. It

allows examination of results plus high quality graphics when desired.

This defines the scope and purpose for developing an interactive mini­

computer version of MULR04.

Program LINGRF (Linear + Graphics)
In terms of actual printout this version is very similar to its

original precursor, however, this is where the similarity ends. Rather

22
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than submitting a card deck containing the parameter card, format card

and data cards, all of these functions are handled through a series of

prompts given to the user via the system console device. The user is

queried for the name of the file, resident on a peripheral device acces­

sible by the computer, to be read into the computer. Further prompts

for the number of observations and variables are made. Based on this

input a random access file of a calculated size is allocated. As the

specified input file is read into memory, the sums, sum of squares and

crossproducts are calculated and written onto the system disk. A linear

file simulating a matrix with the sums of squares along the diagonal and

the crossproducts situated in the off diagonal is perhaps the easiest

way to visualize this file's structure. Following this procedure, con­

trol is passed to the correlation subroutine (DFCRLB). This routine,

using the necessary random access start points entered through the call

statement calculates the appropriate locations of model elements, reads

them off the disk, computes the correlation coefficients and writes

these values onto the disk in an adjacent block of space appropriated

for them. Means and standard deviations are then calculated and written

onto the disk. This particular subroutine is by far the slowest of them

all, largely owing to the time spent in reading and writing. For every

variable added, the number of necessary reads and writes becomes multi­

plied. However, even at its worst (i_-e., + 10 minutes @ + 50 variables)

this is far less than a possible overnight wait when submitting a batch

run to a large system.

Control is then passed to the printing subroutine. Similar to the

intercorrelation routine the necessary positions are calculated and

these values are then read from the disk. For printing the correlation

and sum of square-crossproduct matrices, an index array containing the

calculated positions of the diagonal elements is used to coordinate the

reading and printing of correlations in the proper format.

As control is passed back to the main program, the user is again

prompted whether or not a file containing the models is to be entered

at that time, or read from an already existing file. If a file already

exists, the user responds to the query by entering the appropriate

existing file name. Control then passes to the regression routine. If

the file does not exist, control is passed via a similar sequence to
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subroutine IMODEL. IMODEL contains a series of prompts to the user

requesting information needed to construct a file of regression models

and F tests. A call is then made to the multiple regression subroutine
which calculates the squared multiple R using the iterative procedure

first proposed by Greenberger and Ward (1956). Examples of this algo­

rithm can be found in Veldman's (1967) text and in Kelly, Beggs and

McNeil Cl969) from whence this version is based.
Rather than calculating address locations for access in active

memory, this version reads these values from the random access device.

One additional routine (COLUMN) is repeatedly called upon by the multiple
regression routine to calculate the position and select elements from

the simulated matrix on disk to assist in calculating the multiple R and

later in calculating the standard regression weights.

As the printing of the raw regression weights is completed, a test

is made to determine whether or not a save file and graphics are desired.

If the user has placed a minus sign before the number of predictor +

criterion variables when queried in routine IMODEL, the graphics option

becomes enabled. Presence of the minus sign during construction of a
particular model assumes the user wants to output a file of the predic­

tor variables, raw scores, predicted scores and residuals or utilize the

graphics option or both. The user is prompted whether or not a file is

wanted, followed by a prompt asking for a file name to be entered. If
no file is wanted, no file name request is made and no file is written.

However, an unformatted scratch file is generated in anticipation that

the user may desire graphics. If no request for graphics is made, the

program will read another model record into memory and repeat the afore­

mentioned sequence of operations.

Graphics
When graphics are requested, a call is made to an administrative

routine which queries the user for one of three types of graphs or any

combination of the three. When the user decides which graph or series

of graphs are wanted, a call is made to the appropriate graphic sub­

routine. Each of these graphic routines require that the user know

what values constitute the particular model being analyzed.

Subroutine MEAN. Upon entering this routine a call is made to a

routine (ABEL) which prompts the user for the titles of the ordinate
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and abscissa- This convention is also followed by the other graphics

routines. The length of each character string is calculated with the

actual character strings occupying a common array.
Routine MEAN assumes that the elements in the model have been based

on dichotomously coded data, as would be the case with an analysis of

variance problem. The user is prompted for the number of separate

levels and treatment groups within each level. If for example, the user

was examining the full model of a 2x2 factorial design experiment, the

user would enter a '2' for the number of levels and then another *2 ’

for the number of treatment groups. The user is then prompted to enter

the elements of the given model that represent a particular level of

analysis. A note of warning: these values are not the actual variable

numbers, but the rank position of that variable moving from left to

right given by the model. Thus if we have a set of consecutive (or

nonconsecutive, it makes no difference) predictor variables of the form

N...M their rank position of 1...N would be entered. This provision is

made on behalf of the user who enters values relevant to a particular

model without regard to their order. Upon entry of these values, their

position on the random access device is calculated and the raw standard

weights are read and summed with the unit vector which was passed via

the call statement. The minimum and maximum values are obtained for the

array of means and their rank positions and a scaling factor for the

abscissa and ordinate are computed. These scaling constants insure that

all the elements in the data array will fit within the graphics window.

Following this, a series of repeated calls are made to routines PLOTS,
PLOT, SYMBOL and AXIS, which are responsible for blanking the video
screen (if using a tektronix storage scope) or advancing the plotting

pen along the paper scroll (if using a calcomp plotter), positioning

the pen, drawing the data points, (and or lines) the ordinate and

abscissa scales, and scribing the axis labels. The top two plots of

figure 1 are examples of what is generated from this graphics routine.

In both cases, they demonstrate a single factor experiment with four

treatment groups in the left-hand side plot and three treatment groups
for the right-hand side.

Subroutines SCATT and RESID. Except for some particulars, the

logic of these two routines ate quite similar. SCATT (SCATT = scatter
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plot) is a general purpose bivariate plot routine in which the user can

make any combination of plots of given continuous predicted variable

scores against the raw scores, predicted scores, or each other. At the

completion of a plot, a timing loop is called (WAITE) which allows time

for the user to study the output and obtain a hard copy (if using a

Tektronix terminal with hard copy capability). If a Calcomp plotter is
the graphics device being used, this timing loop is not necessary.

In both of these graphics routines, elements from the unformatted
scratch file written by the regression routine are read. As was the

case in routine MEAN, the minimum and maximum values are obtained, and
scaling factors calculated.

The residual plotting routine requires no decision on the part of

the user to select the appropriate variables. However, the bivariate

plot routine does require that the user be knowledgeable of what the

rank order is of the variables entered into the particular model in

question. Similar to routine MEAN, the rank position of the two vari­
ables being plotted are entered by the user when prompted. In addition,

the position of the criterion variable and predicted variable are also

accessible by the user. One need only remember that the predictor var­
iables are followed by the criterion and predictor variable, respectively.

This is of the form: predictor values; 1...N + criterion value + pre­

dicted value. The middle and bottom plots of figure 1 provide examples

of these two plot routines.
Tektronix and Calcomp graphics routines. The graphics routines

called upon by this system (LINGRF), as mentioned earlier, employ calls

to routines, SYMBOL, PLOT and AXIS. These three utility routines were

originally Calcomp routines which have been modified to interface with
RT11 systems. These higher level routines call upon an extensive host
of programming which has been integrated into two systems TPLT1 and

CPLT1 appended for this system from the Caudar system (Radna & Vaughn,

1977) .
LINGRF: Limitations and Applications
One soon notices when comparing this particular version against its

parent version that a call to subroutine DFTRAN (or DATRAN) has been
omitted. The reason for this is that the monitor system which is resi­

dent in roost smaller systems is not as sophisticated as what one finds
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in larger ones. Therefore, data transformations must be generated prior

to running the analysis program. A small program (LIND) has been pro­

vided as an example of how one may elect to structure their data matrix.

If a user has some knowledge of programming (which is necessarily the

case when working with a small machine) inserting the transformations,

compiling, linking and running this program will not account for much

time (+ 5 minutes).

In contrast to this deficit, experience in using this package re­

veals itself as a formidable laboratory tool, especially when a user is

doing work requiring data snooping. The effect of getting an immediate

graphic feedback is perhaps the singularly most benificial component of

the system. At an intuitive level, the graphics do provide a useful

means with which one can understand the nature of his/her data even
more.
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FIGURE 1

5.DO 6.50 6-00 9-52 11.00 12-50 14.00 JS.50 17.00 18.50 20.00
RAW SCORES

1.00 2.4Q 3.80 5.20 0.60 B.DO 9.40 10.BO 12.20 IJ.80 15.00
LITTER COUNT



29

Reference Notes

Radna, R. J. and Vaughn, W., CAUDAR (Computer Assisted Unit Acquisition/

Reduction), is available through.: United States Department of Commerce,

National Technical Information Service, Springfield, VA 22161, Accession

No. PB 2070745 (in paper copy) and No. PB 2070744 (in 9 track tape). A

nominal fee is charged for this service.

Thanks to Dr. James L. Hill for permission to use his data in demon­

strating this system's graphics (see figure 1, left-hand side).

This program was developed on the Laboratory of Brain Evolution and
Behavior's PDP 11/40 minicomputer system.
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An interactive version oF Mulro4 adapted For use
on RT11 configured minicomputers having a highspeed random
access device by J. H. B, Laboratory or Brain Evolution
and Behavior/ Unit For Research on Behavioral Systems.

C
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C
C
C
C
C
C
C

C

200

400

1

C

9

10

11
14

C
C

16

15

160
50

This program in addition to calculating the means,standard
deviations,correlations, squared multiple correlation and
standardized and raw score regression weights also orovirfnegraphics subroutines For output on either*calcomp  or h
tektronix graphics terminals. These graphics subroutine.;
require calls to both calcomp and tektronix systemsubroutines ’

Mulra4 Division of Educational Research
University of Alberta

DIMENSION X(100)
IOUT=6
COMMON NREC,IOUT
LOGICAL*!  FMT(OO)
CALL ASSIGN!11, 'RK: PLOX. DATS 11/ SCR )
Input dialogue
CALL OUTSTR" ( '-SINPUT DATA FILE NAME7)
CALL ASSIGN (1,O,-1> 'RDO')
CALL ASSIGN (2, 'DATA. DAT', 8, 'SCR')
CALL ASK ('NUMBER OF OBSERVATIONSNOB)
NTXL=O
DO 200 1=1,NOB
DO 200 J=I,NC»B
MTXL=MTXL+1
CALL ASK (' NUMBER OF VAR I ABLES', NVAR IN)
ISIZE=(6*NVARIN)+(2*MTXL)+1
TYPE 400, IS) ZE
FORMAT('; RANDOM ACCESS FILE LENGTH=', 110)
DEFINE FILE 4 ( ISIZE, 2, U, NREC )
TYPE 1
FORMAT!' INPUT FORMAT FOR THIS DATA SET',/)
ACCEPT 2, FNT
FORMAT (80A1)
Initialize
NPER=O
A=0. 0
DO 9 J=l, ISJ ZE
WRITE(4'J) A
CONTINUE
JOBS=O
JOBS=JOBS+1
IFCNOB. EQ. O)GD ‘10 11
IF (JOBS. GT. NOB) GO TO 160
READ (1,FMT) (X(J),J=1, NVARIN)
NPER=NPER+J
JJ=O
KK=(2*NVAR)N)U
Compute sums of squares and crossproducts and write onto
random access device
DO 15 J=l,NVAR1N
READ(4'J) A
KK=KK+JJ
A=A+X(J)
WRITE(4'J) A
JJ=0
DO 16 K=J,NVARIN
LLL=KK-1+J*(K-J )
READ(4'LLL) A?
A2=A2+(X(J)*X(K) )
WRITE(4'LLL) A?
JJ—JJ+1
CONTINUE

CONTINUE
co1™ io’ <*<' ”■')=<.nvarin>
WRITE(6,50)
FORMAT(1H1)
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52

S3
54

99

90

170

180

C

300

3

4

400
401
800

600

500

502
6

7

WRITE!6, 51) MOB
FORMAT(5X, 'NUMBER OF OBSERVATIONS=', I 5)
WRITE!6, 52) NPFR 32
F0RMAT!5X, 'NUMBER OF RECORDS READ=',I5)
WRITE(6,53) NVARIN
F0RNAT(5X. 'NUMBER OF VARIABLES INPUT=',I5)
write<6/54) r-rn
FORMAT!,5X, 'INPUT FORMAT=', 90A1)
CALL DFCRLBINFER,NVARIN,MTXL, 1,NVARIN+1,2*NVARIN+)  )
NV1=!2»NVARIN) i-MTXL+1
NV2=(2*NVARIN )K 2*MTXL )+1
CALL CLOSE (J)
REWIND 2
TYPE 99*
FORMAT!*  ENTER MODEL SET FROM THE KEYBOARD7 = IS/
1, ' OR READ MODEL SET FROM ALREADY EXISTING FILE7 = O')
ACCEPT 98,KNUD
FORMAT (II)
IF !KMOD. EQ. 1) GO TO 170
CALL OUTSTR ( ''pMUDEL SET FILE NAME7')
CALL ASSIGN(3,0, -1, 'RDO')
GO TO 180
CALL OUTSTR! '-5M0DEL SET FILE NAME7')
CALL ASSIGNI3, O,-1, 'NEW')
CALL IMDDEL
REWIND 3
CALL GFREGR(NPER, 1, NVARIN+1, NV1, NV2, NV2+NVAR IN, NV2+-2»NVARIN,
INVARIN)
CALL CLOSE (3)
CALL ASK!' SOMEMORE MODELS? YES=1',IOVER)
IF (IOVER. EQ. 1) GO TO 170
STOP
END

Imodel.for uE.ec! to construct regression model File.
SUBROUTINE I MODEL
DIMENSION MFLDI56)
CALL ASK( ' ENTER THE NUMBER OF MODELS TO BE BUILT', JMOD)
ICOUNT=1
DO 500 1=1,JMOD
DO 300 J=1,5A
MFLD!J)=0
CALL ASK ( ' ENTER NUMBER OF PREDICTORSh-CRITERIDN VARIABLES', NFLDS)
TYPE 3
FORMAT( ' ENTER THE PREDICTOR VARIABLES',/)
JCOUNT=1
DO 400 J=l,56
ACCEPT 4,MFLD(J)
FORMAT(12)
IFIMFLD!J).EG.0) GO TO 401
JCOUNT=JCOUNT H
CONTINUE
TYPE 800
FORMAT!' CRITERION VARIABLE?')
ACCEPT 4, ICR) I
MFLDIJCOUNT)-ICRIT
WRITEI3,600) 1 COUNT,NFLDS, (MFLD!J).J=l, JCOUNT)
FORMAT(12,13,5612)
ICOUNT=ICOUNT H
CONTINUE
CALL ASK!' ENTER THE NUMBER OF F-TEST COMPARISONS', IFR)
NFLDS=6
ICOUNT=1
DO 700 1 =1, M-R
DO 502 J=l,56
MFLD!J)=0
TYPE 6, ICOUNT
FORMAT( ' FU1 L MODEL FOR COMPARISON ft', 12, '=',$)
ACCEPT 2, I FULL
FORMAT!12)
TYPE 7,ICOUNT
FORMAT!' RESTRICTED MODEL FOR COMPARISON# ', 12, '=',$)
ACCEPT 2 IQr“rSTCALL ASK! '■ NUMERATOR DEGREES OF FREEDDM=', KNUM)
ANUM=FLOAT!KNUM)
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C
C

1

10

11

19

8

3
9

66

100

450

410
430

22

WRITE(4'IM) AIM P • 33
IS=LSIGMA—1>1
I I=LC0RR
READ(4'II) All
AIS=SQRT((Al 3 -((AIN2*AIN2 )/FN))/FN)
WRITE(4'IS)AJS
LC0RR=LCDRR >NVA!<-( 1-1 )
CONTINUE
CALL DFPRNT (1, NVAR, 1, KMEAM, 8, 8HMEANS ) A.,.Tr...r, s
CALL DFPRNT (1,NVAR, 1, KSIGMA, 20, 20HSTANDARD DEVIA IIONo )
CALL DFPRNT (NVAR,NVAR, 1, MBCOR, 12, 12HC0RRaLATI0NS>
CALL DFPRNT (NVAR, NVAR, 1, KKKK, 29, 29HSUM-0r-SQUAREu>-CR0SSPR0DUCTS )
RETURN
END

SUBROUTINE DFPRNT (NR, NC, NRMAX, LNUM, NUNHOL, TITLE)
Prints arrays of means and standard deviations and prints the
off diagonal portion of the r matrix accessed from the disk
DIMENSION TITLE(20), X(10),JI(10), LDIAGC100)
COMMON NREC,IDUT
KNUM=LNUM
N=(NUMH0L+3)/4
WRITEf I0UT, 1 ) (TITLE( J), J=l, N)
FORMATf1H0/1H0, 20A4)
N=((NC-1)/10)+l
IF (NR, NE. 1) GO, .TO 66
JA=O
JB=O
DO 9 1 = 1, N
IF(N. NE. 1) GO TO 10
JA=1
JB=NC
IR=NC
GO TO 19
IF(N. EQ. I) GO TO 11
IR=10
JA=JB+1
JB=JA+9
GO TO 19
IR=(NC/10)
IR=NC-(IR*10)
JA=JB+1
JB=JA+IR-1
DO 8 K=l, IR
READ(4'KNUM> A
X(K) = A
KNUM=KNUM+J
WRITE (I OUT, 120) (J, J=JA, JB)
WRITE(IOUT, 3)
FORMAT(1H )
WRITEdOUT, 110) I, (X( J), J=l, IR)
RETURN
I NUM=1-(NC + 1 )
DO 100 J=l, NC
INUM=INUM+(NC-(J-l))+l
LDIAG(J)=INUM
IFLG=1
IC=NC/10
IC=(NC-(IC*1 0>)
IF(N. EQ. 1) )C=NG
DO 1000 NS=1,N
IF((NS»10). EG. NC) GO TO 450
1F(NS. EQ. N) GO 10 410
IF(N. EQ. 1) GO ID 410
N10=10
GO TO 430
N10=IC
CONTINUE
IP10=10#NS
IP=IP10-9
J=1
DO 22 I=IP,IP10
JI(J)=LDIAG())
J=J+1
KKK=IP-1



CNUM=AINT( ANUM/100. )
INUM=IFIX(CNUM)
JNUM=IFI X(ANUM-(CNUM* 100. ))
CALL ASM' DENOMINATOR DEGREES OF FREEDOM=', KDEN)
ADEN=FLOAT(KDEN)
CDEN=AINT(ANUM/100. )
IDEN=IFIX(CDEN)
JDEN=IFIX(ADEN-(CDEN*1 00. ))
MFLD(1)=IFULL
MFLD(2)=IRE3T
MFLD(3)=INUM
NFLD(4)=JNUM
MFLD(5) = IDE.N
NFLD(6)=JDEN
WRITE(3,600) 1 COUNT,NFLDS, (MFLD(J), J=1.6)
ICOUNT=ICOUNTM

700 CONTINUE
RETURN
END

34

SUBROUTINE DFCRLB (NUM,NVAR, MTXL, LMEAN, LS1GMA, LCORR)
C Calculate means,standard deviations, and correlations.
C This version employs random access read/write to simulate
C core memory.
C Portion of corrlb 8 Feb/65 modified May/66 from U of A

COMMON NREC,IOUT
KKKK=LCORR
FN=NUM
JJ=MTXL
KMEAN=LMEAN
KSIGMA=LSIGMA
MCOR=(LCORR HJJ) -1
MBCOR=MCOR >1
JCORR=LCORR

C Compute diaqonal and off diagonal elements of r matrix
LLLL=O
DO 16 I = 1,NVAR
JJ=O
JCDRR=LCORR
DO 17 J=I, NVAR
LLLL=LLLL+J
ISI=LCORR
ISJ=JCDRR
ISJI=LCORRKM
ISIJ=MCOR+LL l.L
IMI=LMEAN-11)
IMJ=LMEAN-J !j
READ(4'ISJ)) A13JI
READ(4'ISI) AIS)
READ(4'IMI) AIM)
READ(4'ISJ) AJSJ
READ(4'IMJ) A)MJ
IFCISI-ISJ) 190/18,190

18 XR=1.0
190 XD=SGRT?( (FNK-Ajyi)-(AIMI*A1MI ) )*(  (FN»AISJ)-(AIMJ^AIMJ) ) )

1F(XD) 32/33,32
33 XR=O. 0

GO TO 19
32 XR=((FN*AISJJ )-CAIMI*AIMJ>)/XD
19 URITE(4'IS1J) XR

JCORR=JCORR HM9AR-CJ-l>
JJ—JJ+l

17 CONTINUE
LCORR=LCORR >-N9AR-( 1-1 >

16 CONTINUE
0 Compute means and sigmas

LCORR=KKKK
LMEAN=KMEAN
LSIGMA=KSIGMA
DO 23 1 = 1, NVAR
IN=LMEAN-1 >■)
READ(4'IM) AIN
AIN2=AIM
aim=aim/fn
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c

320

330

500

530

540

1000
120no

KKK, (X(L), L=l, 10)
I TO 500

IF(NS EG N) 1 P10--IP+ <N10-1 )
WRITECIOUT, 120) (L, L=IP, IP10)
Read/write the diagonal set
DO 330 1 = 1/MJ 0
DO 320 J=1 / J
1VAR=J15-KNUM-i
JI(J)=J1(J>H
READ(4'IVAR) A
X(J)=A
WRITEUOUT, 1J0) KKK, (X(L)i L=l» I >
IF(NS. EG. N) RETURN
DO 530 1=1/10
IVAR=J1(I) s-KNUM-l
JI (I )=J1 (1)5-1
READC 4'IVAR) A
X(I)=A
KKK=KKK+1
WRITE(IOUT, 110)
IF(KKK. NE. NC) GO
CONTINUE
FORMAT ( IX, //, 3X, 10112)
F0RMATC1X/ 14,5X, 10F12. 4)
RETURN
END
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13

500

21

23

C
C
C
C
C
C
C
C
C
C

18
19
20

3
12

SUBROUTINE GFREGR (NPER, LMEAN, LS1GMA, LCORR, LSTDWT,LUTS,LRSQ
1, NVAR)
Regred from 3 Feb modified version by Flathman,U of A.
Iterative regression
Modifed for use on RT11 configured minicomputers.
This version provides the user the option of
writing predictor variables /criterion /predicted

and residual scores onto a user specified file.
In addition, user has the option of either calcomp or
tecktronix graphics display of; 1—the means of groups,
2-scatter plot of variables specified in model set, 3-plot
of the residuals.
DIMENSION X(100),Z(100)
INTEGER*2  MF LD(56), MFLDL(27)
LOGICAL*!  DMT(30)
COMMON NREC, I OUT
STOPC=. 00001
MSI=O
K6=0
READ (3, 3, I-ND-13) IPROB, NFLDS, (MFLD(I), 1=1,56)
FORMAT (12,13,5612)
IRESID=O
IF(NFLDS)13, 13, 19
IRESID=1
NFLDS=IABS(NFLDS)
GO TO 19
RETURN
IF (NFLDS-NFI DS/2*2)20,  52, 20
K5=NFLDS—1
1DC=MFLD(NFI.D3)
WRITE(6,500)
FORMAT(1H0)

’J^OB'STOPC, IDC, (NFLD(I), 1 = 1, K5)
l?-PREDICTms'-. bx. 56<1T1X> I2' E2°- 8- '■ 10X' 'CRITERION', IS, /, 10X

NFLDl=NFL™‘j W"‘- LC0RR’ IDC' Z)
i“2'NHi>i,z

MFLDL CM)=Ni-LD () )
MFLD(M)=MFLD( 1 -J )
DO 23 1=1,NVAR
J=I+LWTS-1
A=0. 0
UR ITE (4 ' J) A
J=I+LSTDWT -J
WRITE(4'J) A
S=0. 0
3IG2=0. 0



RSQ=O. 0
DEL=O. 0 36
ITER=O
ID=1
CALL COLUMNCNVAR,LCORR, ID, X)
NGRP=NFLDS/P

24 RSQL=O. O
DO 29 I = 1,NGRP
KSTAR=MFLD() )
KSTOP=MFLDL(I )
DO 29 J=KSTAR,KSTOP
IA=(LWTS-1) KJ
READ(4'IA) AA
AA=AA+(DEL*X(J) )
WRITE(4'IA) AA
DEN=S-(AA*2( J))
IF (DEN) 26,25,26

25 DELT= Z( J)
STEST=DELT*DEL1
SIG2T=STES7
RSQT=STEST
GO TO 27

26 DELT=( (SIG2»Z(J) ) - ( SAA ) )/DEN*
STEST=S+(DELT*Z (J))
SI G2T=SIG2+ (2. O*AA*DELT ) + (DELKDELT)
RSQT=(STEST*STEST)/SIG2T

27 IF (RSQL-RSQT)23,29,29
28 SLAR=STEST

SIG2L=SIG2T
RSGL=RSQT
DELTL=DELT
IDLAR=J

29 CONTINUE
IF(RSGL—RSQ. LE. STOPOGO TO 33
S=SLAR
SIG2=SIG2L
RSQ=RSGL
DEL=DELTL
ITER=ITER+1
I Z= ( LSTDWT-1 ) UDLAR
ID=IDLAR
CALL COLUMN(NVAR,LCORR, ID, X)
READ(4'IZ) AY
AZ-AY+DEL
WRITE(4'IZ)AZ
IF(RSG—1. )24, 33, 31

31 WRITE (6,32)
32 FORMAT (///, ' RSQ IS GREATER THAN 1.0, CHECK THIS MODEL AND'

1,/, ' AVOID LA1ER INTERPRETATIONS INVOLVING THIS MODEL')
RSQL=9999.9
GO TO 45

33 SDS2=S/SIG2
WRITE (6, 34 ) RSGL , 1 TER

34 FORMAT (/, 14X,5HRSG =F11. 8, 30X, 15, IX, ' ITERATIONS')
DO 35 1 = 1, NGR?
KSTAR=MFLD())
KSTOP=MFLDL(J)
DO 35 J=KSlAR,KSTOP
IA=LSTDWT-J KJ
READ(4'IA) AA

„ AA=AA*SDS2
35 WRITE(4'IA) AA

WRITE (6,36)
36 FORMAT (Z10X' VAR. NUMBER STD. WT. ERROR'/)

DO 30 I = 1,NGRP
KSTAR=MFLD())
KSTOP=MFLDt (I )
DO 38 J=KS'IAR, KSTOP
IA=LWTS-1+J
A=0. 0
WRITE(4'IA) A
DO 37 IL=l,NGRf'
LSTAR=MFLD()L.)
LSTDP=MFLDL( IL. )
DO 37 L=LS1AR, I STOP
CALL COLUMN(NVAR,LCORR, L, X)
IB=LSTDWT-1H
READ(4'IA) AA
READ(4'IB) AH
A=AA+(AB*X <J))



37
37

38
39

40

41

42

43

44
45

550

551

666
552

47

48

553
50
51

52

WRITE(4'IA> A
READ(4'IA) AA
AX=AA-Z(J>
WRITE(4 IA> AX
1B=LSTDWT~J M
READ(4'IB) AU
WRITE(6, 391 J'A1<,AX
FORMAT(IX. 113. .• J 3. 8. Fl5. 8 )
WRITE (6.40)
FORMAT(/. 9X. ' VAR. NUMBER
FK1=O. 0
DO 43 1=1.NOR?
KSTAR=MFLD())
KSTDP=MFLDL(J>
DO 43 J=KS1AR. KSTOP
IA=LSIGMA-1M
IB=LSTDWT-J J-U
IC=LSIGMA-1+)DC
IE=LWTS-1+J
READ(4'IA) AA
IF (AA)42, 41.42

WEIGHT'/)

A=0. 0
WRITE(4'IE) A
GO TO 43
READ(4'IB) AB
READ(4'IC)AC
A=AB#(AC/AA)
AX=A
WRITE(4'IE) A
READ(4'ID)AD
FK1=FK1+CAB*AD)/AA
WRITE (6.39) J. AX
ID=LMEAN-1 HDC
READ(4'ID) AD
READ(4'IC) AC
REGCO=AD-(ACfrFK1)
WRITE (6,44) REGCO
FORMAT (10X. 'CONSTANT='F18. 3. //)
K5=(LRSQ-1J+IPROB
WRITE(4'K5) RSOL
JOUT=O
IF (IRESID. NE. 1 ) GO TO 50
TYPE 550, IPROB
FORMAT( ' MODEL'. 12. '-RESIDUAL/PREDICTOR OUTPUT?, 1 “YES. 0=M0 ')
ACCEPT 551.JDUT
FORMAT(11)
IF(JOUT. NE. 1) GO TO 552
CALL OUTSTR ( '* pRESI DU.AL/PRED I CTORS FILENAME?')
CALL ASSIGN( 10, 0, —1,'NEW')
CALL OUTSTft(' OUTPUT FORMAT FOR SAVE FILE: ')
ACCEPT 666,BM'I
FORMAT(80A1)
DO 48 IIOB--J., NPE-R
READ(2) (X (I), I- 1, NVAR )
PREY=O
KNUM=1
DO 47 1=1,MGRP
KSTAR=MFLD(1)
KSTOP=MFLDL())
DO 47 J=KS1AR,KSTOP
Z(KNUM)=X(J)
KNUM=KNUM+1
IE=LWTS-1+J
READ(4'IE) AL-.
PREY=PREY+AF.*X  ( J)
PREY=PREY+REGCO
DIF=X(IDCl-PRFY
IF ( JOUT. NE. 1 ) GO TO 48
WRITE( 10, BMT) 11 OB, ( Z (K), K=l, KMUM-1), X < I DC ), PREY, DIF
WRITE (11) IIDB, (Z(K),K=l. KNUM-1), X(IDC), PREY,DIF
CALL CLOSE (JO)
CALL ASM' ANY GRAPHICS ?, YES=1, N0=0 ',
IF (I GRAF. NF. 1 ) GO TO 553

IGRAF)

CALL DFGRAF(NPER, Z,KNUM-1. LWIS, REGCO)
REWIND 2
WRITE(6,51)
FORMAT (/, IX. 30('*')  )
GO TO 2
DF1=MFLD(3)w]OO+MFLD(4)
DF2=MFLD(5)^100 fMFLD(6)



777
770

53
C

54

55
56

K8=MFLD(1)-1+LKSG
READ(4'K8) AK
IF(MFLD(2). EG. 99) GO TO 777
K9=MFLD(2)-1 H.RSQ
READ(4'K9) AKK
GO TO 778
AKK=O. O
IF (NFLDS. NE. 8) GO TO 53
IF (AH. GT. 1.0. OR. AKK. GT. 1. 0) GO TO 55
FNPER=NPER
DF1=DF1-DF2
DF2=FNPER-DF1-DF2
F=((AK-AKK)ZDFl) / ((1.O-AK)ZDF2)
PRBF from Velo’man page 131.
P=PRBF(DF1,DF2,F)
I=DF1

38

J=DF2

'D. F. NUM. ='I4,2X
F8. 5)

WRITE (6,54) IPROB.F, I, J, MFLD(l), AK,MFLD(2), AKK, P
FORMAT (IX, 'F-RATIO ',12, 4H F = , F10. 4, 8X
1, 'DEN. = ', 15, 8X, 14, F8. 5, 14, F8. 5, 8X, 'PROB
GO TO 2
WRITE (6,56)
FORMAT (10X,'THE RECORD IN THIS LOCATION CANNOT BE'
1, 'INTERPRETED! ONE OF THE MODELS INVOLVED WAS IN ERROR. '//)
GO TO 2

D. F.

END

SUBROUTINE COLUMN (NVAR,"LCORR, IDC, Z)
DIMENSION Z(100) ,LDIAG(IOO)
COMMON NREC,TOUT
DO 100 J=l.100

100 Z(J)=O.0
INUM=1-(NVAR>1)
DO 200 J=1,NVAR
INUM=INUM+(NVAR—(J—1))+l

200 LDIAG(J)=INUM
C Select column elements above IDC

NUP=IDC-1
IF(NUP. EQ. O) GO TO 350
DO 300 J=1,NUP
I VAR=LD IAGO DC -J) +J
IVAR=IVAR+LCORR-1
READ(4'IVAR) A

300 Z(IDC—J)=A
C Select column elements below IDC
350 IVAR=LDIAG(IDC)-1

DO 400 J=IDC, NVAR
IVAR=IVAR+j
JVAR=IVAR+LCORR—1
READ(4'JVAR) A

400 Z(J)=A
RETURN
END

SUBROUTINE DFGRAF(NPER,Z, KNUM,LWTS, REGCO)
LOGICAL*!  XL.AH (32), YLAB (82)
COMMONZESWCHZI11
COMMON NREC,TOUT
COMMDN/LABEL/XLAB,YLAB
COMMON/STUFF/JTME,XLEN,YLEN, XDIST
ITME=20
XLEN=10. O
YLEN=8. 0
XDIST=1. 0
CALL OUTSTR(' Pl OT OF TREATMENT GROUP MEANS-1')
CALL ----------------
CALL
CALL
CALL

OUTSTR(' SCATTER PL0T=2')
0UTSTR(' RESIDUAL PLOT-3 )
OUTSTR(' MEANS + SCATTERGRAM=4 ) ,
OUTSTR(' MEANS + SCATTERGRAM + REolDUALS-5 )



3

100

200

300
400

11

22

3

500

501

90
C

SCATTERGRAM + RESIDUALS=6')
39

GO TO 200
GO TO 100
300) KGRAF
REGCO)

CALL OUTSTR(' !
ACCEPT 3,KGRAF
FORMAT(15)
IF(KGRAF. EG. 6)
IF(KGRAF. GE. 4 )
GO TO (100>200
CALL MEAN(LUTS-------
IF(KGRAF—4) 400,200,200
CALL SCATT(NPER, Z,KNUM)
IFCKGRAF-5) 400,300,300
CALL RESID(MPER, Z, KNUM)
RETURN
END

SUBROUTINE MEAN(LWTS,REGCO)
DIMENSION IDFLD(10,10),YMEAN(10,10)
LOGICAL*!  XLABC82),YLAB(82)
COMMON /ESWCH/III
COMMON NREC,IOUT
COMMON/LABEL/XLAB, YLAB
COMMON/STUFF/ITME, XLEN, YLEN, XDIST
NXCHAR=0
NYCHAR=0

SEPERATE LEVELS'. NGRPS,
CALL ASK(‘ ENTER NUMBER OF TREATMENT GROUPS', IGRPS)
DO 500 I = 1,NGRPS. 
TYPE 11,1
FORMAT(' BEGIN PROMPT SEQUENCE OF MODEL GROUPS FOR LEVEL', 15)
DO 500 J=l, IGRPS
TYP£ 22j J
FORMAT('SENTER MODEL VARIABLE FOR TREATMENT GROUP',15,

ACCEPT 3, IF1ND
FORMAT!15)
IDFLD(I,J)=J
JFIND=(LWTS-1J+IFIND
READ(4'JFIND) XWT
YMEAN(I, J)=XWT+REGCO
CONTINUE
YMIN=YMEAN(1, 1)
YMAX=YMIN
IMIN=IDFLD(1, 1)
IMAX=IMIN
DO 501 1=1,NORPS
DO 501 J=l, IGRPS
IF(YMEAN(I, J). LT. YMIN) YMIN=YMEAN(I,J)
IF!YMEAN(I,J). GT. YMAX)YMAX=YMEAN(I, J)
IF(IDFLD(I,J). LT. ININ)IMIN=IDFLD(I, J)
IFdDFLDd,J).GT.IMAX)IMAX=IDFLD(I,J)
CONTINUE
XMIN=FLOATdMIN)
XMAX=FLOAT(I MAX)
YSIZE=!YMAX-YM).N)/YLEN
XSIZE=!XMAX-XMIN)/XLEN
111 = 1
CALL PLOTS (0,0)
111=0
CALL PLOT!2. 0, 1. 5,-3)
DO 90 I = 1,NGRPS
AY=(YMEAN(1,1)-YMIN)/YSIZE
AX=!FLOAT(IDFLD(1, 1))-XMIN)/XSI ZE
CALL PLOT (AX, AY, 3)
DO 90 J=l, IGRPS
AY=(YMEAN(I, J)-YMIN)/YSIZE
AX=(FLOAT(IDFLD!I, J))-XMIN)ZXSIZE
CALL PLOT!AX, AY. 2)
CALL SYMBOL(AX, AY, 0. 07, I, O. 0, -1 )
CONTINUE
DRAW LABELS AND AXES
DELTA=XSIZE»XDJST

XLAB' NXCHAR. XLEN, 0. O, XMIN, DELTA, XDIST)utLI A—YaI ZE*XDI  ST
CA1"|' YLAB' NYCHAR' yleN, 90. 0, YMIN, DELTA, XDIST)
ualu WAITE(ITME)



c

1000

500

50
51

52
53

60
61

62
63
600

111 = 1
CALL PLOTS(0,0)
RETURN
END

40

SUBROUTINE SCATT(NPER, Z, KNUM)
LOGICAL*!  XLAB(32)»YLAB(02)
Scatter plot of variables entered bu the userDIMENSION Z(1OO) y Lr
C0MM0N/ESWCH/IH
COMMON NREC,I0UT
COMMON /LAREL/XLAB,YLAB
COMMON/STUFF/ITNE,XLEN,YLEN, XDIST
NXCHAR=O
NYCHAR=O
CALL OUTSTR(' THIS IS FDR PLOTTING CONTINUOUS VARIALBES')CALL ABEL(NXCHAR,NYCHAR, 0) vHixiHL.utb )
CALL ASK(' ABSCISSA CONTINUOUS VAR IABLE=I X)
CALL ASK( ' ORDINATE CONTINUOUS VARIABI E=',IY)
READ (11) IIOB, (Z(K),K=l, KNUM+2), DIF
YSTART=Z(IY)
XSTART=Z(IX)
YMIN=YSTART
XMIN=XSTART
YMAX=YMIN
XMAX=XM1N
DO 500 1=1,NPER-1 - ...
READ (11) HOB, (Z(K), K=l, KNUM+2), DIF
IF(Z(IY).LT. YMIN)YMIN=Z(IY)
IF(Z( IY). GT. YMAX)YMAX=Z(IY)
IF(Z(IX). LT. XMIN)XMIN=Z(IX)
IF(Z(IX). GT. XMAX ) XMAX=Z (IX )
CONTINUE
REWIND 11
YSIZE=(YMAX -YMIN)/YLEN
XSIZE=(XMAX—XMIN)/XLEN
HI=1
CALL PLOTS (0,0)
111=0
CALL PLOT(2. O, 1. 5, -3)
AY=<YSTART—YMIN)
IF(YSTART. EQ. O. 0) GO TO 50
AY=AY/YSIZE
GO TO 51
AY=O. 0
AX=(XSTART-XM1N)
IF(AX. EQ. O. O) GO TO 52
AX=AX/XSIZE
GO TO 53
AX=O. 0
CALL PLOT (AX, AY, 3)
DO 600 1=1,NPER
READ (11) HOB, (Z(K), K=l, KNUM+2), DIF
AY=(Z(IY)—YMIN)
IF(AY. EQ. 0. 0) GO TO 60
AY=AY/YSIZE
GO TO 61
AY=0. O
AX=(Z(IX)—XMIN)
IF(AX. EQ. O. 0) GO TO 62
AX=AX/XSIZE
GO TO 63
AX=O. 0
CALL SYMBOL ( AX, AY, 0. 07, 1,0. O,-1)
CONTINUE
REWIND 11
DELTA=XSIZE*XDJST  _h, „ VM1K( TA YnT<;nCALL AXIS(O. O, O. 0, XLAB, NXCHAR, XLEN, 0. 0, XN1N, DELTA, XDIST)
DELTA=YSIZE*XDIST  „ VMTM nFI TA vniST)CALL AXIS(0. 0, 0. 0, YLAB, NYCHAR, YLEN, 90. 0, YMIN, DELTA, XDIST)
CALL WAITE(ITME)
HI = 1
CALL PLOTS(O,O) . vtrr., ,oinT)CALL ASK(' ANYMORE SCATTER PLOTS, 1=YES , 1PL0T)
IF(IPLOT. EQ. 1) GO TO 1000



c

1000

500

50
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52
53

60
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63
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201

200

202

RETURN
END 41

SUBROUTINE RESJDtNPER, Z, KNUM) *
Plot residuals 
LOGICAL.#! XLAB(32),YLAB(02)
DIMENSION Z(100)
COMMON/ESWCH/III
COMMON NREC,IOUT
COMMON /LABEL/XLAB, YLAB V_T__
COMMON/STUFF/ITME, XLEN,YLEN,XDIST
NXCHAR=O
NYCHAR=O ~ K
CALL ABELCNXCHAR,NYCHAR,1) „T1_
READ (11) HOB, (2(K), K=l, KNUM), RAW, PREY, DIF
YSTART=DIF
XSTART=PREY
YMIN=YSTART
XMIN=XSTART
YMAX=YMIN
XMAX=XMIN
READ0?!!)1!JOB, (Z(K),K=l, KNUM), RAW/ PREY, DIF
IF(DIF. LT. YMIN)YMIN=DIF
IF(DIF. GT. YMAX ) YMAX=DIF
IF(PREY. LT.XMIN)XMIN=PREY
IF(PREY. GT.XMAK)XMAX=PREY 
CONTINUE
REWIND 11
YSIZE=(YMAX-YMIN)/YLEN
XSIZE=(XMAX—XMIN)/XLEN
111 = 1
CALL PLOTS (0,0)
111=0
CALL PLOT (2. O, 1. 5, -3)
AY=(YSTART—YMIN)
IF (AY. EQ. O. O) GO TO 50
AY=AY/YSIZE
GO TO 51
AY=O. O
AX=(XSTART-XM1N)
IF(AX. EG. O. 0)G0 TO 52
AX=AX/XSIZE
GO TO 53
AX=O. O
CALL PLOT (AX, AY, 3)
DO 600 I = 1,NPFR
READ (11) HOB, (Z(K), K=l, KNUM), RAW, PREY, DIF
AY=(DIF-YM1N)
IF(AY. EQ. O. 0) GO TO 60
AY=AY/YSIZE
GO TO 61
AY=O. O
AX=(PREY—XMIN)
IF(AX. EG. 0. 0) GO TO 62
AX=AX/XSIZE
GO TO 63
AX=0. 0
CALL SYMBOL (AX, AY, 0. 07, 1, O 0,-1)
CONTINUE
REWIND 11
IF(YMAX-ABS(YMIN))200, 201, 200
AY=YLEN/2
GO TO 202
R ANGE=(YMA X-YM1N)
AA=YLEN/RANGE
AA=YMAX*AA
AY=YLEN-AA
AX=XLEN
CALL PLOT (AX, AY, 3)
CALL PLOT (AX, AY, 2)
AX=0. O
CALL PLOT (AX, AY, 2)
DELTA=YSIZE#XDIST
CALL AXIS(O. 0, 0. 0, YLAB, NYCHAR, YLEN, 90. O, YMIN, DELTA, XDIST)



42

CALL WAITE(II ME)
111 = 1
CALL PLOTS(O, O)
RETURN
END

40
50

80

60
70

SUBROUTINE ABEL (NXCHAR,NYCHAR, JUMP)
LOGICAL*-!  XLAB(32), YLAB(82), TLAB(2)
COMMON/LABEL/XLAB, YLAB
CALL OUTSTR(' ORDINATE:')
CALL DUTSTR(' TYPE LABEL WITHIN DELIMITERS')
ACCEPT l.YLAB
FORMAT(82A1)
IF( JUMP. EQ. 1) GO TO 80
CALL OUTSTR(' ABSCISSA:')
CALL OUTSTR(' TYPE LABEL WITHIN DELIMITERS')
ACCEPT 1, XLAB
TLAB(1)=XLAB(1)
DO 40 1=2,32

50

70

IF(XLAB(I). EG. TLAB(1)) GO TO
XLAB(I—1)=XLAB(I)
CONTINUE
NXCHAR=I-2
NXCHAR=NXCHAR*-1
TLAB(1)=YLAB(1)
DO 60 1=2,82
IF(YLAB(I). EG. TLAB(l) ). GO TO
YLAB(I-1)=YLAB(I)
CONTINUE
NYCHAR=I-2
RETURN
END

SUBROUTINE WAITE (ITME)
ISEC=25
DO 1000 1 = 1, ITME
DO 1000 J=l, ISEC
DO 1000 K=l, ISEC
DO 1000 L=1,ISEC

1000 CONTINUE
RETURN
END

C
Cc
Ccccccccc
ccc
c
cc
cccc

CHARACTER STRING TO CONSOLESUBROUTINE 0U1STR—OUTPUTS A
ROUTINE WRITTEN1 BY WAYNE RASBAND,TECHNICAL DEVELOPMENT,
INTERMURAL RESEARCH, NATIONAL INSTITUTE Or McNTAL HEALTH

FORM: CALL OUT STR(S)

WHERE: S=QUOTED ALPHANUMERIC LITERAL OR THE NAME
OF AN ARRAY CONTAINING CHARACTER
STRING TERMINATED BY A NULL BYTE

NOTE: THE FIRST CHARACTER OF THE
CARRIAGE CONTROL CHARACTER

STRING IS USED AS A
AS FOLLOWS:

SPACE
O
1
+
$

ADVANCE ONE LINE
ADVANCE TWO LINES
ADVANCE TO TOP OF NEXT PAGE
OVERPRINT at nxmSUPPRESS CARRIAGE RETURN AT END
OF LINE



SUBROUTINE 0U13TR(S)
LOGICAL*!  S(J3J)

g SEARCH STRING FOR NULL BYTE TERMINATOR
C

DO 100 1 = 1. 133100 IF(S( I ). EQ. O)GOTD 200
RETURN

c
c OUTPUT STRING
C
200 TYPE 1, (S(J)» I-D
1 FORMAT(132A1)

RETURN
END

C ASK SUBROUTINE-----  PROMPTS OPERATOR FDR INTEGER VALUE.
C
C ROUTINE WRITTEN BY BILL VAUGHN, TECHNICAL DEVELOPMENT,
C INTERMURAL RESEARCH, NATIONAL INSTITUTE OF MENTAL HEALTH.
C
C FORM: CALL ASK('STRING', NUM)
C
C
C. WHERE.: 'STRING' = PROMPTING MESSAGE
C .... __ NUM = INTEGER VARIABLE THAT WILL CONTAIN TYPED RESPQ
C
C
C

SUBROUTINE ASK(STR,NUM)
LOGICAL*!  STR(133)

C
C SEARCH STRING FOR THE NULL BYTE TERMINATOR

DO 100 1 = 1, 133
100 IFtSTR(I). EQ. O)GOTO 200
C
C RETURN IF TERMINATOR NOT FOUND

RETURN
C
C OUTPUT PROMPT
C
200 TYPE 2, (STR(J),J=l, 1-1)
2 FORMAT(132A1)
C
C ACCEPT RESPONSE

ACCEPT J, NUM
1 FORMAT(17)

RETURN

C
C

1
2

3

10

reP1^ces subroutine dFtran or datran.
DIMEN^IOfl X?250)be U5ed ln conJunction with program lingrF. For
LOGICAL*!  AMT(30), BMT(BO)
CALL OUTSTR('$1NPUT FILE NAME'5' )
CALL ASSIGN(2,O,-1, 'RDO')
CALL OUTSTR ( '^OUTPUT FILE NAME'?')
CALL ASS I GN (3, 0,-1, 'NEW')
TYPE 1
FORMAT(' INPUT FORMAT?')
ACCEPT 2, AMI
FORMAT(80A1)
TYPE 3

A®T<2.Bsrf’uT
CALL ASK( ' INPUT NUMBER OF VARTAin rco, nm

0F ne8fv$5^I?’iAi?!
DO 500 \J— 1» 250



na
nc

rm
no

on
500 X(J)=O. 0

READ (2, AMT, END=JOO) (X(J), J=l, UN) 44

100

enter data transformation set here

WRITE(3,BMT) (X(J),J=1, I OUT)
GO TO 10STOP
END
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