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THE MALPRACTICE OF STATISTICAL INTERPRETATION
John W. Fraas

Ashland College
Isadore Newman

The University of Akron

Abstract

This paper examines problems that researchers may confront
when interpreting statistical research results. The first section
of the paper examines the problems associated with the use of
gain scores. The second portion of the paper examines why the
use of analysis of covariance is superior to the analysis of
gain scores in aiding the researcher to avoid misinterpreting
the data. The third section of the paper discusses the problem
of disproportionality as it produces multicollinearity. The fourth
section of the paper examines the difference between the inter­
pretation of research results analyzed by part correlation as
opposed to partial correlation. The final section presents a
brief discussion of the effect of violating the assumption of
rectilinearity in the regression effect.

PROBLEMS ASSOCIATED WITH GAIN SCORES

In the education research literature one often finds that

gain scores, which are equal to posttest scores minus pretest

scores, are used as a dependent variable. Unfortunately, gain

scores tend to be unreliable (Gulliksen, 1950). This unrelia­

bility has two sources: (a) the unreliability of the pretest

and the posttest, and (b) the correlation between the pretest

and posttest.

The reasons why gain scores tend to be unreliable can better

be understood with the aid of Figure 1. The first bar in Figure 1

represents Jthe variance in performance on an economic knowledge
>■

pretest. The segments of this bar represent the different

factors that account for the variance in student performance on 

the pretest.

Presented at the 87th Annual Meeting of The Ohio Academy of
Science, Wright State Univeristy, Dayton, Ohio, April, 1978.
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The second bar represents the variance in an economic knowledge post­

test*  Similar to the segments of the first bar, the segments of the

second bar represent the different factors that account for the variance

in student performance on the posttest. Both the pretest and post­

test bars have been divided into three factors. The factors entitled

"Error" are. the chance error of the measurements of the tests. The

factors entitled "Specific Factors" are the factors that are measured

only on that given test. And the factors entitled "Common Factors"

are the factors measured by both tests.

The variance in the gain scores are represented by the third bar.

Only- the specific factors and the random error factors of each test

remain in the gain scores. As indicated in Figure 1, the proportion

of random error variance to the total variance of gain scores is

larger than is the proportion of random error to the total variance

of either the pretest or the posttest. One can also deduce from

Figure 1 that only the error variance remains in the difference

scores when the pretest and posttest measures exactly the same factors.

Such a result would produce totally unreliable gain scores.

The reliability of gain scores can be improved, however, by

changing two factors. First, an increase in the reliability of the

protest and/or the. posttest would increase the reliability of the

gain scores. Second, a decrease in the correlation between the pretest

and posttest would increase the reliability- of the gain scores. The

importance of these two factors in determining the reliability of

gain scores can Be seen by examining the equation used to calculate

the reliability coefficient for gain scores (Thorndike and Hagen, 1969).



4

The equation used to calculate the reliability coefficient for gain

( - r12
1 - r12

the reliability of pretest. .

the reliability of thi posttest.

the correlation between the pretest and

ist.

As indicated by this equation, the reliability estimate for the

gain scores would only be .40 when both the pretest and posttest had

reliability estimates of .70 and the correlation between the pretest

i and posttest was .50. The reliability of the gain scores would increase

if the reliabilities of the pretest and posttest were increased.

However, the correlation between the tests would also increase if

the reliability of each test was increased. Thus, the reliability

of the gain scores would not increase by the degree that one might

expect when the reliabilities of the pretest and posttest were

increased. For example, if the reliabilities of the tests were

increased from .70 to .80 and the corresponding correlation

between the pretest and posttest increased from .50 to .60, the re­

liability of the gain scores would only increase to .50.

Gain scores of individuals are not of major interest in many

earch studies. The researcher is often interested in mean change

groups. Again scores may be used as the dependent variable

when dealing with mean changes of groups. However, the researcher 

scores is as follows:

Diff. -

where rll is

r22 is

is
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may encounter a problem when using gain scores in this manner in add­

ition to the problem that gain scores are generally unreliable. An

analysis of gain scores contains a built-in-bias in favor of the group

that contained the students with the lower pretest scores. In general,

the students with the lowest pretest scores will record the largest

gain scores. Although this bias is not likely to be large unless
z

the sample size is small, it would be preferable to avoid this bias

altogether.

Both of the problems connected with the use of gain scores can

be avoided if the researcher used analysis of covariance to analyze

the difference between the students posttest scores. The following

section of this paper disscuses the advantage of using analysis of

covariance.

The Advantages of Using Analysis of
Covariance

As discussed in the previous section, analysis of covariance off­

ers an option to the use of gain scores. There are at least two

advantages connected with the use of analysis of covariance as

opposed to the use of gain scores in addition to avoiding the problems

associated with the use of gain scores discussed in the previous

section. These two advantages are: (a) analysis of covariance tends

to be more powerful and (b) it is relatively simple to determine if

the underlying assumptions of analysis of covariance have been violated.

Huck and McLean (1975) noted that covariance analysis will

normally result in a more sensitive test of possible differences 
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among treatments. The use of the pretest scores will generally re­

duce the within-group variability and, therefore, increase the power

of the test. The only time where covariance analysis will not be more

powerful than an analysis of gain scores occurs when the correlation

between the pretest scores and posttest scores is equal to a value

of one. The following equation can be used to understand the impact 

that a perfect relationship between the pretest and posttest scores

has on the relative power level of analysis of covariance and analysis 

of gain scores (Huck & McLean, 1975):

ss' = ss (gain) - (b - 1)ss (pretest) where
wg wg W

ss' represents the adjusted within-groups sums of squares ofwg

the gain scores.

sswg (gain) represents the within-groups sums of squares of

the gain scores.

bw represents the within-groups regression coefficient for

predicting the posttest scores from pretest scores.

ssw„ (pretest) represents the within-groups sum of squares of
o

the pretest scores.

~ the product (b„ - 1)ss (pretest) is equal to
w wg

zero and the adjusted within-group sums of squares for the analysis

of covariance is equal to the within-group sums of squares for analyst5

gain scores £ss^g = sswg (gain)} . Therefore, the sums of squares

n the denominator of the F ratio would be the same for analysis

nee and gain scores. Since the analysis of covariance has

wer degrees of freedom in the denominator of the F-ratio, the

analysis of gain scores would be slightly more powerful than the co­
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variance analysis in this case*  However, the value for b will pro—

bably never be equal to one in an applied setting. Therefore, the

adjusted within-groups sums of squares of the posttest scores would

be smaller than the within-groups sums of scores of the gain scores

by a factor related to the relationship between the pretest and post­

test scores Ess < ss (gain) - (b - 1) 2ss„o (pretest)! . Analysis

of covariance will, therefore, be more powerful in an applied setting

than would an analysis of gain scores.

Just as important as the additional power provided by the analysis

of covariance, the use of analysis of covariance allows the researcher

to more easily test the underlying assumption of covariance. The

failure to determine if the underlying assumptions of analysis of covariance

have been satisfied may provide the setting in which the researcher J

may misinterpret the data. A researcher may be tempted to use gain

scores to avoid the need to worry about satisfying the assumptions

of analysis of covariance. However, Huck and McLean (1975) noted

that gain scores and analysis of covariance are based on the same set

of assumptions. It is, therefore, important to determine if the under­

lying assumptions are met regardless if the analysis of covariance or

analysis of gain scores is used.

The analysis of covariance, however, provides an easier and more

interpretable method of testing the underlying assumptions than does

the analysis of gain scores. In a study conducted by Fraas (1978)

the importance of testing for the homogeneity of regression slopes

and the ease with which these tests can be handled by using analysis

of covariance was demonstrated. In the study by Fraas two methods 
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of instruction were evaluated. The following procedure was used to

test for the homogeneity of the regression slopes of the groups

across the range of the students’ pretest scores when evaluating the

students’ posttest scores:

1. The research hypothesis was established.

There was a statistically significant interaction between the

methods of instruction and the students' pre-course economic knowledge

when accounting for the variation in the students’ post-course economic

knowledge over and above the differences due to the students’ pre­

course economic knowledge and methods of instruction.

2. The following regression models were constructed:

the control group (

x3 pretest scores

posttest scores

error vectors
3.

the regression coefficients of their
respective variables

1
o

if the control group;
otherwise)

X5

X2

X4

X6

the experimental group (1 if in the experimental group;
o otherwise)

alXl + a2X2 + a3X3 + E2

X2 * x3

X1 * X3

The research hypothesis could be tested by placing the re-

5 a6 into the full model to obtain the restricted model 

El» E2 = the

Restriction: a^ = a&

where X
1

ao’al-’-a6

Full Model: X. = anU + a,X, + a9X9 + acX(. + a.X.- + E14 ° 11 5 5 o o i

Restricted Model: X, = a n4 °
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and calculating the F value by using the following formula:

(»? - Rg)/(mi - „2)
F = --------------------------------

ci - 4)/<n - mi)

2
where Ry = the total variance in the criterion vector that

was accounted for by the predictor variables in the

full model

Rr = the total variance in the criterion vector that was

accounted for by the predictor variables in the

restricted model

m^ = the number of linearly independent vectors in the

full model

m2 = the number of linearly independent vectors in the

restricted model

N = the number of students (replication)

4. A significat F-value would have Indicated that the slopes of

the regression lines were not homogeneous. A diagram of the test results,

which indicated that the research hypothesis was true, would give

additional insight into the nature of the data. The graph contained

in Figure 2 was obtained by plotting the values of the regression co­

efficients a1, a2, a5> and ag. The values of the coefficients a.^ and

a^ would have been equal to the y-intercepts of the regression lines

for the control and experimental groups, respectively. The values

of the coefficients a,, and a, would have been equal to the slopes of
□ D

the regression lines for the control and experimental groups. As

can be seen from the graph in Figure 2, the interaction of the treat­

ments and the pretest scores was disordinal. The effectiveness of each
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method of instruction was, therefore, dependent on the pretest scores

of the students. A misinterpretation of the data could have easily

been made if the researcher would not have tested for the homogeneity

of regression slopes.

Summary: The use of analysis of covariance with the posttest scores

as the dependent variable is preferable to analysis of gain scores for

a number of reasons. First, gain scores are less reliable than posttest

scores. Second, gain scores tend to "favor” the group with the lowest

pretest scores. Third, the analysis of gain scores is less powerful

than analysis of covariance. Finally, it is easier to test the

underlying assumptions of analysis of covariance and interpret

these results than it would be to test the underlying assumption of

the analysis of gain scores.

PROBLEMS ASSOCIATED WITH DISPROPORTAIONAL CELL FREQUENCIES

Researchers generally believe that they must correct for unequal

N’s. One method for correction is to randomly throw out S’s from the

larger cells to obtain proportionality. A second method is to run the

analysis by calculating the means of each group and acting as if there

was an N of 1 in each cell, but using all S’s to estimate the mean

square within.

Methods 1 and 2 are generally referred to as approximate solutions

to the correction of disproportionality and are generally not considered

as desirable as the solutions that are called "exact.”

When using one of the so-called "exact" solutions, one tends to

believe the corrections are more "accurate." This quite often is not 
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the case since the "exact solution" may not reflect the research

question of interest. (i.e., The statistical model does not reflect

the research question. Type VI Error, Newman, et. al., 1976.)

The following are examples of three frequently-used corrections

and the different questions they reflect. (Newman and Oravecz, 1977)

Three prominent least sum of squares solutions for disproportion­

ality will be defined.

Solution I is the use of the general linear model to simultaneous­

ly adjust for the correlations between the main effects and the main

effects with interaction. A symbolic example of this procedure is pre­

sented below for a two factorial design.

Model 1 - 4 + bxaa + b2Sb + b^B^ +

Model 2 Ykab . { + b4Bb + b5„Bab +

Model 3 Y, . = 6 + bfia + b7aS , + e,
Kab 6 a 7 Mab kab

Model 4 { + b(j% + +

Ykab = the score for subject k in row a
and column b

<S =’ is the grand X

aa = Is the effect for row "a"

Bb = ls the effect for column "b"

“Bab = JiS„the interaction effect for the row
a and column "b"
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ekab “ is the error term for each subject

b, . . • bn are partial regression coefficients

Adjustment for Solution //I

Adjustment for A main effects test Model 1 against

Model 2

Adjustment for B main effects test Model 1 against

Model 3

Adjustment for A*B  effects test Model 1 against

Model 4

Solution 2 adjusts each main effect in terms of the other main

effects. The interaction was adjusted for by all main effects. (This

is the same as in Solution 1) . The following is a symbolic representa­

tion of this solution.

Adjustment for Solution =#2

Model. 4 Ykab - « + b10aa + + ekab

Model 5 Ykab " 5 + bl2Sb + Ekab

Mode! 6 6 + b13aa + Ekab

Adjustment for A main effects test Model 4 against Model 5

Adjustment for B main effects test Model 4 against Model

Adjustment for AB interaction effects test Model 4 against

Model 1
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Solution 3 assumes an apriori ordering of the importance of the

variables under investigation. The apriori ordering decides which

variables one will allow to account for as much variance as possible by

themselves. The following is a symbolic representation of Solution 3,

assuming the researcher considers the A main effects most important, B

main effects second, and the interaction leant important. (Many

researchers fe’el that it is unlikely that most investigators will be

able to order the importance of their variable. However, we believe

this judgment can be made by a competent researcher who is aware of the

underlying constructs and theories he is dealing with.)

Adjustment for Solution #3

• Model 7 Ykab “ 6 + b14“a + ekab
1

Model 8 Y . = 6 + e. ,kab kab

Model 9 Y = 5 + b a + b o + e
kab ib a 16 b kab

Adjustment for A main effects test Model 7 against Model 8

Adjustment for B main effects test Model 9 against Model 7

Adjustment for AB interaction test Model 1 against Model 9

A main effects and B m i ** ®atllematical proof that one has to have
to test for AB interaction t eCtS in tbe and restricted models
with traditional analysis of L ®eems that this is true when dealing
is, the A main effects and r Va^ian^e and catagorical variables. That
interaction can be tested u™3 U ef^ects must be fitted first before
sarily true when dealing wi owever, this does not seem to be neces-
knowledge, this has never been^ U°US Variables. To the best of our
interaction without holdine tb^ a es^8ated- At least testing the AB
a different question. Then B main effacts constant is asking
we feel it's appropriateness deLT 18 parcIallng out the main effects,
askad- 8 dependa °a the research questions being
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What is even more confusing is the argument presented by Tim

and Carlson (1975) and Williams (1977) for the full-rank solution,

(i.e., a correction that does not assume a zero interaction) rather

than the non full-rank solutions. Solution 1, presented above, for

the main effects is one type of full-rank solution. Part of the

problem with the concept of full-rank solution arises when different

data coding methods are used. The test of effects of a traditional

ANOV is most accurately reflected by a full-rank solution when

contrast coding of data is used. A different outcome occurs when

binary coding is used. Even though the R^s of the full models using

both coding systems would be the same, the contrast coding procedures

have a more direct interpretation in terms of the traditional ANOV;

Kerlinger (1973), Cohn & Cohn (1975), Williams (1977). However, t

the binary coding (dummy coding) has greater heuristic value and

increases ease of hypotheses testing, Williams (1977), Kerlinger

(1973), McNeil, Kelly,McNeil (1975).

The advantage of the full-rank solution compared to the non

full-rank solutions (such as Solutions 2 and 3 presented above) is

that' the full-rank solution does not assume a zero interaction when

testing for main effects; however, traditionally, if one has inter­

action in ANOV, one generally does not desire to interpret main

effects. Therefore, what seems to be an obvious advantage of the

full-rank solution may not be such an advantage.

Newman and Oravecz (1977), using a Monte Carlo Research Design,

found that if the X^ for testing significantly different proportion­

ality of S’s in cells was not significant at a »“ .25. There did not se
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to be a strong need to correct for disproportionality (at least in a

2x2 ANOV) only when the y2 was found to be significant at p < .05

was there a strong need to use a correction.

The researcher should remember that the corrections for

disproportionality are appropriate only for fixed effects designs

and there is no appropriate correction for randomized designs, to the

best of my knowledge.

Newman and Oravecz (1977) state:

"When the researcher feels disproportionality is severe

enough to be of concern, there are a variety of procedures that

he can utilize to attempt to correct for the potential problems.

However, before any corrections are applied, one should be

sensitive to the underlying assumptions that they are making about

the population from which their data is drawn, and the investigator

must also be very clear about the research question he is inter­

ested in asking.

If one had a research project in which the data and vari­

ables came from groups that already exist, such as age, intelli­

gence, socio-economic status, etc., and if one was interested in

generalizing and predicting back to the group from which the sample

came, there is a good possibility that there would be a correla­

tion that would not be spurious between such variables as I.Q.

and socio-economic status. In other words, there may be signifi-

eantly mor. above average socio-economic status people who have

above average I.q... thai> one by
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were forced to correspond to a balanced design in which there

are an equal number of high and low I.Q. people for an equal

number of high and low socio-economic status positions/ the

result of the study and the statistical analysis may allow one

to say something that may only be true for that artificially

forced relationship and one could not properly generalize to

the population in which this proportionality did not actually

exist.

The other side of the coin is if the disproportionality

in a research design is an artifact, (it really does not exist

in the population) and the disproportionality of vectors is

causing a spurious correlation between the variables, then one

would have to adjust for this disproportionality and would have

to decide which solution of disproportionality would best adjust

the data so that it would better reflect the question(s) of

interest and the true state of affairs.

To. be able to begin to decide upon the correct solution,

one has to:

a. know something about the theoretical and/or empirical

relationship between the variables being studied;

b. know some of the descriptive data about the popula­

tion one wishes to generalize to in relation to the specific

variables being studied;

c. know the specific research question under investigation

if one decides an adjustment for disproportionality is needed,

then,
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d. know the underlying assumptions and implications

for different adjustment procedures, and

e. know the consequences for using the selected adjust­

ment procedure on the interpretation and generalization of the

data."

In addition, still assuming that one is dealing only with a

fixed effect design, one alternative is to consider that the

correlation between the variables, due to the disproportionality,

actually exists in the population one wishes to generalize to.

Then, the researcher may choose not to correct for the dispropor­

tionality. The problem that arises with this is the problem of

multicollinearity, that is, one cannot attribute the variance

accounted for by a particular variable. (This is the dilemma of

much ex post facto research.)

PART VS. PARTIAL CORRELATION

Quite often a researcher may use part correlation and

interpret it as a partial correlation or visa versus. This con­

fusion can lead to severe misinterpretation. For this purpose,

part and partial correlations will be identified and explained.

Nunnally (1967) has called part correlation "semi partial" and

McNemar (1962) refers to it as "part." The part correlation

q red is the total variance that can be accounted for in the

°n (Y) by a predictor variable (X^) after the relation­

ship of (X2) has been taken out (partialed out) of (X^. For

example:

Y(success)= aou + a-(SES) + a2(lQ) + e
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It is the relationship between how well socio-economic status

(SES) can predict success after I.Q. is removed from SES. In this

example, I.Q. would be the covariate (control variable). Graphically,

it may look like:

X = is the unique variance that is being
accounted for in Y by SES independent
of IQ.SUCCESS

Y
C = is the common variance that IQ and

SES have with Y (SUCCESS)

y.12 “ Part correlation of Pyi 2
C =

IQSES

FIGURE 3

Partial Correlation is the variance in (Y) which is not associated

with IQ that can be accounted for by socio-economic status (SES)

after IQ is removed. An easier way of saying this is that it is

the correlation between two residuals, the criterion residual which

is made up of the criterion after IQ is removed from it, (assuming

IQ is the variable one wishes to control) correlated with the

residual that results after IQ is removed from socio-economic

status. That is, it is the percentage of unaccounted for variance

in (Y) that can be accounted for by unique variance of SES. (SES-IQ)

The reason why part correlation is sometimes called semi-partial is

because it only partials out the variable one wishes to control for

one side of the equation. For example, it subtracts IQ from SES but 
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not from the criterion while partial correlation subtracts the control

variable from both sides of the equation and correlates the residuals;

for example, success minus IQ correlated with SES minus IQ.

Since partial correlation is dealing with percentage of

unaccounted variance that is being accounted for, it will always

be larger than part correlation which accounts for total criterion

variance. This is true except when the control variable, in this

case IQ, is zero correlated with the predictor variable (SES); then

they are equal.

The partial correlation calculated by predicting SUCCESS from

IQ partitioned out from SES and SUCCESS can be more graphically

seen by looking at Figure 3.

2 ’2
2 X1 R Y 12 ’ r Y9

Partial Correlation (Pr. )Z = -------------- = ’1______
1 XX + Y 1 -r 2

y2

(See FIGURE 3)

If one interprets part correlation when they should have interpreted

partial, they are most likely making a severe misinterpretation of

their data.

VIOLATIONS OF THE ASSUMPTION OF RECTILINEARITY ON THE

REGRESSION EFFECT

The Regression Effect states that extreme scores on a pre­

test will regress toward the mean on a posttest. Pohlman & Newman

(1978) state:
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"If a researcher finds that extreme scores on a pretest becomes

evenmore extreme on a posttest, i.e., regressed away from the mean,

this means that the assumption of rectilinearity (straight line is

the line of best fit) has been violated and one should look at a

curved relationship (ETA, for example) to more appropriately

represent or interpret the data. If this is not done, one is under­

estimating the relationship between the variable and increasing the

probability of misinterpreting the data.

In summary, we identified the problems of using gain scores.

These problems include increasing the unreliability of the dependent

variable; a bias of increasing gains for the low group, and that

at the very best gain scores estimate the true relationship that

can be more accurately measured by ANCOV, which covaries the

pretest scores. Gain scores approach the accuracy of ANCOV as the

correlation between the pretest and posttest scores approaches 1.

What is most often not understood is that the underlying assump­

tions for gain scores is the same as the underlying assumptions for

ANCOV. Since this is not as widely known, this is less likely

to be checked and therefore increases the likelihood of misuse and

misinterpretation.

As far as disproportionality is concerned, there are a variety

of solutions. These solutions can be broken down into Approximate

versus "Exact" of which the "Exact" solutions are generally preferred.
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The "Exact" solutions can be divided into two major categories,

"full-rank solution," which does not assume the interactions are

zero and has all the variance components accounted for in the full

model, and the "non full-rank solutions" which does not have all

the variance components present in the full model. It would appear

that the "full-ranked" solution is obviously preferable; however,

there are problems with different results related to differing

coding procedures. There are also problems with the accuracy of the

model in reflecting the research problem of interest and the assump­

tions of how the variables are truly related in the population. It

appears to the authors that there is no one preferable solution

for all situations, and believing there is a preferable solution

i is more likely to lead to a malpractice of statistical use and

interpretation.

In dealing with "part" versus "partial" correlation, one

must remember that partial correlation is the percentage of un­

accounted for variance being accounted for, and, therefore, the K'

tends to be higher than part (semi-partial) which relates to the

proportion of total variance being accounted for.

Finally, the paper deals with the problems when one violates

the assumption of rectilinearity (straight line is the line of best

) without being aware of it. This tends to result in an under­

estimate of the relationship between the independent and dependent 

variable.
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Obviously, there are many problems which can lead to misuse and

misinterpretation of statistical procedures. We hope that this

paper will have the desirable effect of increasing the awareness

of researchers to some of these problems and thereby aid researchers

in avoiding many of the problems that cause the malpractice and

misinterpretation of statistics.
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A THREE-YEAR EX POST FACTO STUDY OF ARITHMETIC
ACHIEVEMENT FOR ELEMENTARY PUPILS ELIGIBLE FOR A

REMEDIAL ARITHMETIC PROGRAM
Gary D. House, St. Louis Public Schools

This study traced the three-year impact of a
remedial arithmetic program on eligible St. Louis
Public School pupils. Hypotheses were tested through
multiple linear regression models for analyses of co­
variance. No treatment effects were found. The study
reveals that changes in future program evaluation de­
signs are needed.

Background

During the 1974-75 school year, a remedial arithmetic program funded by ESEA

Title I was implemented in 41 low SES schools within the St. Louis Public Schools

System. The program continued in 38 of those schools throughout the 1975-76 and

1976-77 school years.

Guidelines imposed on schools by the Missouri State Department of Education
I

(1975-1977) required that pupils be selected for the remedial arithmetic program

through annual administrations of standardized tests of arithmetic achievement.

In the St. Louis Public Schools that test was the Iowa Tests of Basic Skills.

Qualifying grade equivalent scores from the Arithmetic Total norm tables of the

tests were required, and a general policy was that pupils with IQ scores less than
/

76 were ineligible for selection because they were eligible for special education

programs.

The remedial arithmetic program received a process evaluation during its

first year of operation, (House, 1976) and very little analysis of pupil achievement

was undertaken during the program's first three years because of the strong regression

effects created by local measurement practices. One test was given per year, and that

test was used as the major criterion for student selection, as a pretest for those

selected students, and as a post test for students who had been served during the

proceeding year by the program. These regression effects have been widely discussed

in educational literature by Campbell and Stanley (1967), Bracht and Glass (1968),

26
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Linn and Slinde (1977) and Tallmadge (1976). locally they have been documented

empirically by Powers (1976) and have been discussed at some length by House and

Powers (1977).

Program administrators requested in 1977 that the achievement of pupils served

by the program be examined across the first 3 years of program operation. This ex

post facto study reflects the writer's attempt to provide that information within

the constraints of the real world.

The Design

Scope: This study was limited to a three year period, 1974-75, 1975-76 , 1976-77

and included data from those pupils who were eligible for selection into the program

at the end of their third-grade year, 1974, were promoted annually, remained enrolled

during the three year period in schools offering the remedial arithmetic program,

and had complete data in their history files. The decision to limit the study to these

pupils was made because the program has tended to enroll pupils in the middle grades

more than others (House, et.al 1975, 1976, 1977), and the study had to be limited in

order to accomodate limited resources.

Data Elements: Data elements used were pupil intelligence as measured by the

Lorge-Thorndike Intelligence Test Total IQ Score (obtained during 1974-75); pupil sex;

1974 ITBS Total G.E. (selection) score; 1975 ITBS Arithmetic Total G.E. score; 1976

ITBS Arithmetic Total G.E. score; 1977 ITBS Arithmetic Total G.E. score; school attended

each year.

Data Analysis: Achievement was examined for all possible combinations of past

and current treatment after each year through applications of multiple linear regression

pproaches to the analysis of covariance. The criterion measures were end-of-year

ITBS Arithmetic Tests.

Covariates tor each year were selected both logicallg and empirically. They were.'

arithmetic achievement at time of selection,- Intelligence, and. Sex (Mobility was added

in the third-Bear analysis only, and was defined as number of different schools attendei

during the 3 year period.;. Mobility was used as a logical cov.riate in the final year 



only because local program administrators and teachers hypothesized that pupil mobility

had a negative effect on achievement. The empirical basis for the inclusion of Selection

Achievement Score, Intelligence, and Sex, came from the school system’s Management and

Instructional Information System which annually derives models for the prediction of

pupil achievement in several areas (DeBlauw, 1977). The 1977 model reported that

previous Achievement, Intelligence, and Sex accounted together for 56% of the variance

in fourth-grade arithmetic achievement for St. Louis Public School Pupils. Further,

each of the three variables contributed a statistically significant increase in variance ■

accounted for (p<Z,-Ol). Table 1 summarizes these data.

Table 1

MILS DATA ON CONTRIBUTION OF PRE ACHIEVEMENT, POST­
IQ, AND SEX TO VARIANCE IN FOURTH GRADE ARITHEMTIC
ACHIEVEMENT FOR ST. LOUIS PUBLIC SCHOOL PUPILS

CRITERION VARIABLE: 1977 GRADE 4 ARITHMETIC TOTAL G.E. SCORE

PREDICTOR VARIABLES R R2 2 Alpha
LevelR Change. F df

1976 GRADE 3 ARITHMETIC TOTAL G.E. SCORE: .69685 .48560 ..48560 3009.47552 1/3188 p< .01
IQ: .74945 .56167 .07607 2041.88975 2/3187 P< .01
SEX: .74947 .56171\ .00004 1361.03907 3/3186 p^.01

For each year the program operated there were different configurations of treatment in

which pupils participated. In 1974-75, pupils were either selected or not selected for

the program. Subsequently, they were again either selected or not selected in 1975-76 and

1976-77. Thus, the different treatment configurations to be studied doubled with each

successive year. Letting O= no treatment, and 1= treatment, Table 2 summarizes the

naturally occurring configurations of treatment included in each of the points of analysis

in this study.

CONFIGURATIONS OF TREATMENT GROUPS FOR EACH ACHIEVEMENT CRITERION YEAR

Table 2

-^ievement Criterion Year: 1975 1976 1977
Hutment Year: 1975 1975 1976 1975 1976 1977_____________ __

0 0 0 0 0 0
1 1 0 1 0 0

0 1 0 1 0

°nfi9urations of Treatment
1 1 0

1
0
1

1
0 1

1 0 1 . 1
0 1 1 !
1 1 1
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Research Hypo theses^

Among each of the points of analysis, the research hypotheses were similar. They

are shown separately below along with full and restricted linear models used to test

their null counterparts.

Research Hypothesis No.l:

Knowledge of participation in the remedial arithmetic program during 1974-75

adds to the prediction of 1975 arithmetic achievement, over and above the effects of

intelligence, sex, and arithmetic achievement at time of selection.

FULL MODEL

Y75 Ach al V + bi + b2 Q + b3 S + b4 P + E2

RESTRICTED MODEL

y75 Ach= *o u + i>5 Q + b6 S + b7 P + E2

Where, Y75 Ach~ Cr^er^on (ITBS Arithmetic Total G.E. Score in Grade 4, 1975,1

; 2’2= Pupils participating in the during 1974-75.
y

Q= Intelligence

S= Sex

P= Achievement at time of selection

E= Residuals

Research Hypothesis No. 2:

Knowledge of participation in the remedial arithmetic program during 1974-75

and/or 1975-76 adds to the prediction of 1976 arithmetic achievement, over and above

effects of intelligence, sex and arithmetic achievement at time of selection.

FULL MODEL

Y76 Ach= al v + T1 + b2 T2 + b3 T3 + b4 Q + b5 S + b6 P +

RESTRICTED MODEL

Y76 Ach= ao U + b7 Q + b8 s + bg P + E2
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Where, Y76 Ach- Criterion (ITBS Arithmetic Total G.E. Score in Grade 5, 1976.)

Tj= Pupils served in 1974-75, but not in 1975-76

T?= Pupils not served in 1974-75, but served in 1975-76

T3= Pupils served in both 1974-75 and 1975-76

Research Hypothesis No. 3:

Knowledge of participation in the remedial arithmetic program during 1974-75,

and/or 1975-76, and/or 1976-77, adds to the prediction of 1977 arithmetic achievement ■

over and above the effects of intelligence, sex, arithmetic achievement at time of

selection, and pupil mobility.

FULL MODEL

Y77 Ach= al U + bl Ti + b2 t2 + b3 t3 + b4 T4 + b5 T5 + b6 T6 + b7 T7‘"

+ b8 Q + bg S + b10 P + bjj M + E3

RESTRICTED MODEL

Y77 Ach~ ao U + b12 Q + b13 S + b14 P + b15 M + E2

Where, Y77 Ach= Criterion (ITBS Arithmetic Total G.E. Score in Grade 6, 1977.)

Tj= Pupils served in 1974-75 but not in 1975-76 or 1976-77

T^= Pupils not served in 1974-75, served in 1975-76 but not served in 1976-77

Tj= Pupils not served in 1974-75, not served in 1975-76, but served in 1976-77

Tj= Pupils served in 1974-75 and 1975-76 but not served in 1976-77

3*5=  Pupils served in 1974-75, not served in 1975-76 but served in 1976-77

Tq= Pupils not served in 1974-75 but served in 1975-76 and 1976-77

t7= Pupils served all 3 years.

M= Mobility

In addition to each research hypothesis, tests for homogeneity of regression for

each covariate were made in order to aid in the interpretation of results.
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One example is given below in the interest of brevity.

EXAMPLE HOMOGENEITY OF REGRESSION HYPOTHESIS (HQ)

The interaction of the covariate, intelligence, with each treatment group wii]

not add to the prediction of 1977 achievement over and above the effects of treaty

groups, intelligence, sex, arithmetic achievement at time of selection. and mobility.

FULL MODEL

y77 Ach= al v + bl (T1 + b2 <T2* Q) + b3 (t3*Q>  • • • + *7  (T7*Q) ...

+ b8 T1 + b9 T2"'+ b14 T7 + b15 Q + b16 s + bi7 p + b18 M + B

RESTRICTED MODEL

Y77 Ach= ao u + bl T1 + b2 T2 • • * + b7 T7 + b8 Q + b9 s + blQ p + bn M + E2

All statistical tests will utilize an alpha level, p^.05.
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Data files were searched for qualified pupils enrolled during the time

period of the study in grades 4, 5 and 6 successively, within schools offering

the remedial arithmetic program. Those with incomplete data on either the

covariate or criterion variables were excluded; of the original 1172 identified

pupils, 400 were includable in the analyses. These pupils were identified

with treatment conditions according to their program histories. The Missouri

State Department of Education guideline for program participation (20 or

more days of program enrollment) was used.

Descriptive statistics an all variables were obtained, and tests for

interaction effects among treatment groups and criteria were undertaken.

Following these tests, null counterparts of each research hypothesis were

tested and both observed and adjusted criteria means and standard deviations

were computed.

After completeing the statistical tests stipulated in the design of the
i

study, the relative contribution of each predictor variable was obtained and

reported for use in future studies of this type.
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Results

An examination of correlation matrices for all

of the three covariance analyses revealed virtually no relationship among

treatment groups and criterion measures (Tables 3, 4 and 5) . IQ and

selection score correlated highest with the criterion each year, but those

coefficients diminished in magnitude with each successive year. In no case

was any coefficient greater than .50 (IQ x 1975 Criterion), and there appeared ,

to be neither redundant nor suppressor variables in any of the three matrices.

As shown in Table 6, tests for homogeneity of regression among the

treatment groups and each of the covariates revealed one significant interaction,

selection score with 1976 treatment.

More descriptive information for pupils identified by treatment groups

appears in Tables 7, 8 and 9. Table 7 shows that both 1975 groups had equal

mean IQ's and virtually equal IQ variances. Likewise, they were nearly equal

in numbers of males and females, and their selection score means were virtually

equivalent. On the criterion, both groups had nearly equal observed means and

variances and their adjusted variances were equal.

For the 1976 groups, Table 8 reports a slightly higher observed mean IQ

for pupils served for the first time in 1976 than for other groups, and a lower

observed standard deviation for pupils served for the second year in a row.

The proportions of females in the T21 groups was higher than in any other group.

The general trend for the t21 group to be somewhat different was continued through

slightly lower selection score means as well as both observed and predicted

standard deviations on the criterion.

The 1977 data summarized in Table 9 again supported the trend for pupils

in continued treatment to have lower mean IQ, selection score and criterion

levels, while containing higher proportions of females. Mobility means for all

treatment groups were less than one, but in each case, standard deviations were
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greater than corresponding means.

Results of analyses of covariance F tests are reported in Table 10.

In all three instances, knowledge of group membership added statistically-

insignificant amounts to R2 values. The maximum variance accounted for by

full models was about 30% in 1975; the lowest was about 19% in 1977.

Standard regression (Beta) weights reported in Table 11 A, B and C

show negative values for each treatment group during each criterion year,

while IQ, and selection score were the variables weighting positively at

all points. Sex weighted positively in 1975, negatively in 1976 and 0 in

1977. Mobility weighted negatively when it was added in 1977.

The final presentation of data, in Table 12, is that of the contribution

to R2 by the listwise inclusion of variables into each regression equation.

It shows IQ and selection score contributing significant amounts of variance

accounted for in each analysis, and sex adding a significant amount to the \

explanation of 1976 criterion variance. The contributions of all other 

variables are not statistically significant.
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TABLE 11 A,B,C

STANDARD REGRESSION WEIGHTS FOR FULL MODEL PREDICTOR
VARIABLES FOR EACH CRITERION YEAR

A. 1975 CRITERION

Predictors___________________Standard Weights___________________ Error

T1 —.024 .000

IQ .409 .001

SEX .025 -.001

SELECTION SCORE .230 -.001

B. 1976 CRITERION

Predictors Standard Weights Error

T10 —.068 .000

T01 -. 018 .001

T11 —.036 .002

IQ .376 .000

SEX —.130 .000

SELECTION SCORE .195 .001

C. 1977 CRITERION

Predictors Standard Weights Error

T100 —.084 .002

Toio 004 .000

T001 —.090 .000

T110 -.107 .000

T101 —.079 .001

T011 -. 029 .001

TU1 —.086 .001

IQ .323 .000

SEX 0.0 .001
SELECTION SCORE .158 .002

MOBILITY — 059 .000
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Discussion

It is recognized that the majority of pupils originally identified for

this study were eliminated from the analyses because of incomplete data, and

that the remaining group may not have been representative of the total group

of identified pupils. The effects of subject elimination are not known, but

it is the writer's expectation that any biasing would have been in favor of

finding significant treatment effects since remaining subjects progressed in

school normally, were present in school to a sufficient extent to have complete

data histories on all measures, and remained enrolled in Title I schools for

the entire 3 year term of the study.

The limitations of an ex post facto design are also recognized. There

were never any controls placed upon the delivery of program services to pupils,

pupil selection or any other confounding variable. The design is the writer's

best effort at testing the effectiveness of treatment. While admitting confounding

factors, it is not recommended that the findings be discounted as meaningless,

but considered as partial evidence regarding program effectiveness and

suggestive of the need for more controlled studies to be implemented.

The one significant interaction indicating a lack of homogeneity of

regression for 1976 treatment groups on selection score is likely to be spurious

given the multiple F tests obtained in this study, and is therefore discounted

by the writer in interpreting the findings.

The data did not support any of the research hypotheses. Further, the

negative Beta weights for each treatment condition suggested a trend toward the

remedial arithmetic program negatively influencing arithmetic achievement,

although to a statistically insignificant degree. Since each level of treatment

was included in this study, and since their combined knowledge accounted for

no significant amounts of explained criterion.variance, it can be concluded

at treatment made no difference for identified pupils remaining enrolled in

TitLe I. eligible! schools offering the remedial arithmetic program for a three-
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year period in sequential grades 4, 5 and 6, and having complete data histories.

Mean IQ scores were well below the national average as were all mean grade

equivalent values for these pupils, and the amounts of variance accounted for

(19% to 30%) were lower than for the St. Louis Public Schools in general given

similar predictor variables. These facts suggest either that norm referenced

achievement objectives may be inappropriate for these pupils, or that the

program is ineffective in overcoming academic deficiencies. Certainly the

ITBS and large Thorndike tests are very difficult for these Title I eligible

pupils.

The results of this study show, as did a similar study of a remedial

reading program (House and Powers, 1977), that continued enrollment in the

remedial arithmetic program is a function of continued low achievement, which

is in turn related to lower intelligence. In order to study either cumulative

or single year effects of a program such as this, it would be necessary to

randomly assign pupils to treatments or control groups and then follow their

achievement across time. Such a design would not necessarily bias results in

favor of control groups because the influences identified as significant

contributors to criterion achievement would be controlled through random

assignment, and any random influences could be statistically controlled.

It is not currently known what factors others than State guidelines are

used by teachers and administrators in selecting students. It is likely

that many var?’ah7ps are considered. Random assignment should limit both

known and unknown selection effects.

Only one type of criterion measure was included in this study because

only one was obtained. Program objectives refer to only that measure (ITBS).

It is possible that program effects other than arithmetic achievement as

measured by ITBS have occurred or will occur in the future. It is the writer s
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, that other criteria including criterion tests identified as

recommendation that ocner

representative of program curricular content be applied, with the random

assignment of pupils, to anp further evaluation design for this program,

and that future studies he conducted to utilize on-going rather than past

implementation of the propram. It is also recommended that anp further

studies span at least 3 gear periods and include pupils in primary and

upper as well as middle grades.
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AN APPROXIMATION TECHNIQUE FOR VARIABLE SELECTION

USING COST CRITERIA
Thomas P. Ryan

Old Dominion University

ABSTRACT
The problem of selecting regression variables using cost criteria
is considered. A method is presented which approximates the
global minimum of one of several criterion functions which might
be employed. Examples are given and the results are compared with
the results of other methods. The outcome of a simulation study is
also discussed, and suggestions are made as to the practical use of
the method.

INTRODUCTION
A considerable amount of attention has been given to the

problem of selecting variables in multiple regression,' but little
f

attention has been devoted to this problem when acquisition costs
for the variables are present and are to be utilized. The problem
has been previously considered by Lindley (1968), Pohlmann (1973),

and McCabe and Ross (1973). The objective of the present paper is
essentially the same as that given by McCabe and Ross (1973);

namely, to obtain the best or nearly best subset ("best" in accor­
dance with an appropriate criterion) without performing a complete

enumeration.

METHOD
We agree with McCabe and Ross (1973) that essentially a

minimization of a linear function of the residual sum of squares

49
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and the costs of the included variables is required, and that

a large number of variables an optimal solution is computa­

tionally impractical. However, we prefer a different approach

to the problem. Consider the function

where S^_ denotes an arbitrary subset of size k, c^ is the cost
of the ifch variable, p is the number of available variables, M

is a constant, SSE(Sj,) is the error sum of squares for that subset

and SST is the total sum of squares. Thus, if M = 1 we attach

equal importance to cost and error sum of squares, if M < 1 cost

is given secondary consideration, and if M > 1 cost is given

primary consideration. The rationale behind the selection of

equation (1) as the loss function is as follows. First, each of>.

the two components is a unit-free number; and, second, with M = 1,

when k = 0, = 1,- and when k=p, L(sk) = 1.0 + SSE (S^)/SST,

Where the second term will usually be close to zero. Thus,if the

loss function is minimized for k < p, this implies that the scaled

improvement in the residual stun of squares exceeds the scaled

increase in cost. Thus, for small values of p(say, 4 < p < 6)

vze would expect the loss function to be somewhat parabolic (for

most problems) with optimal k less than or equal to p/2. This

seems intuitively appealing since the point of diminishing returns
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rs reached rather quickly in regard to the residual sum of squares

(even when costs are ignored) .

Similar supportive arguments can probably be made for the

loss functions proposed by Pohlmann (1973) and McCabe and Ross

(1973), each of which utilizes at least one scale factor. Sub­

sequently, the objective here is not necessarily to determine the

most appropriate function but rather to approximate the minimum

of whatever function is chosen. The minimum of equation (1) may

be approximated as follows. Let 

Li(sk)
SSE(Sk) - SSE (Sk+1)

SST

C<W - c(sk>
(2)

where S. now denotes the subset of size k with the smallest SSE,k
and C(S, ) is the associated cost. Starting with k = 1, we increase

Js.

k until L, (S, ) < 1; i.e., when the scaled reduction in SSE no1 k -
longer exceeds the scaled increase in costs. We call this the

minimum SSE procedure (MSP). It then seems reasonable to redefine

the terms in equation (2) so that C(Sk) is now the cost of the

least expensive subset of size k, and SSE(Sk) is the associated

residual sum of squares, and to apply the same stopping rule. We

call this the minimum cost procedure (MSP) . This leads to the 

following flowchart.
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FIND BEST
SUBSET USING

MSP

FIND BEST
SUBSET USING

MCP

v

USE THAT
SUBSET

SELKCT THE
SUBSET (OF
THESE TWO)
WHICH MINIMIZESI. I

i

This appears to be a reasonable sequential procedure because we

are attempting to "entrap" the best subset by moving toward it

from two directions - one which emphasizes residual sum of squares

and the other which emphasizes cost. It can be easily shown that

(with M = 1) this sequential procedure will always select the

subset that minimizes the lost function (over all values of k),

if the subset that minimizes the loss function for each value of

k is either the least expensive subset or the subset with smallest

SSE. Thus, for small values of p (e.g., 4 < p < 6) the procedure

should have high efficiency since we are looking at two subsets

of each subset size. A modification of the sequential procedure 
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is used for larger values of p, but discussion of the modified 

procedure is deferred to the last section.

EXAMPLES

We applied this procedure to the same four-variable examples

considered by Lindley (1968) and McCabe and Ross (1973), and for

each example the sequential procedure selected the same subset

that would have been selected with a complete enumeration - but

this should not be surprising in light of the comments made above.

These were also the same subsets selected by Lindley (1968) and

McCabe and Ross (1973) - the latter using a stepwise algorithm

with a single scale factor, while the former performed a complete

enumeration without scale factors.

The use of the sequential procedure can be illustrated with

one of the four-variable examples used by Lindley (1968) and McCabe

and Ross (1973). The results are shown in the following table.

TABLE 1

A. MSP
Application of the Sequential Procedure

B. MCP
Variables
In Subset

Variables
Value of Equation (2) In Subset Value of Equation (2)

4* 4
0.4055 3.12813

12 34*
0.10692

124 134

* indicates the chosen subset
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The subset selected by the minimum cost procedure, (3, 4) , was

the overall best subset whereas the subset selected by the minimum

SSE procedure was rated second. Thus, the combined procedure

selected the best subset - as was the case with the other examples.

To further assess the worth of our procedure we simulated 330

data and cost structures for four-variable problems. The data

structures were generated using the simulation procedure described

in Ryan (1977) in which intercorrelations from 0 to 1 are system­

atically generated. Most of the common statistical distributions

were used to provide the cost structures - normal, inverted normal,

exponential increasing, exponential decreasing, etc. Even though

a complete enumeration can easily be performed with only four

predictors, we nevertheless restricted our attention to this number
I

so that the necessary simulation would not be unmanageable, and

the efficiency of the procedure could be easily assessed. The

results are shown in Table 2.

TABLE 2

Summary of Results
Procedure Number of Times Rank of Seven
---------- Best*  Subset Selected Efficiency Sub-Optimal

Subsets Selected1 J By CP

MSP 301 91.21

Combined Procedure 323 97.88 2,2,2,2,3,3,2
(MSP and MCP)

* as determined by the
minimum value of (1), m = 1
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primary interest is centered upon the efficiency of the combined

procedure, but the figures are given for MSP to indicate the high

efficiency of that separate procedure.

DISCUSSION

Although the combined procedure was obviously quite efficient,

the results should be viewed in light of the following considerations.

First, the effectiveness of the procedure will certainly depend upon

the total number of variables from which the selection is made.

Thus, for large problems (say, p > 10) we would expect the efficiency

to fall of somewhat. Second, we would also expect the efficiency

to be lower when the data exhibits a high degree of multicollinearity

and the differences in costs are small. This is especially true

when the ranking of the variables in terms of predictive! iability

is virtually the opposite of the ranking of the variables in terms

of cost; but under such circumstances whichever subset is selected

will be highly competitive with the best subset. Nevertheless, if

optimality is deemed an important objective, the following modifi­

cation of the sequential procedure might be used for large problems:

(A) use the procedure to initially determine the subset size (for

the simulation study, the correct subset size was selected for all

but 1 of the 330 structures), (B) apply the procedure to 6-10

subsets of that size (of course, this begins to approach a complete

enumeration, but we are working with only one subset size so the

extra effort would be minimal) .
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The input for this procedure can be efficiently generated

using the latest version of Fumival and Wilson (19 74) "Leaps

and Bounds" algorithm, although one of the modifications of their

program might have to be employed if the least expensive subset

of each size is not among the best ten subsets in terms of SSE.
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UNIVARIATE NONPARAMETRIC ANALYSIS OF VARIANCE
THROUGH MULTIPLE LINEAR REGRESSION

Bradley E. Huitema
Western Michigan University

Abstract

Many methodologists are aware that parametric tests
associated with the analysis of variance and the analysis
of covariance can.be computed using regression procedures.
It is shown that multiple linear regression can also be
employed to compute the Kruskal-Wallis nonparametric anal­
ysis of variance.

Introduction

Researchers frequently encounter data analysis situations in which it is

reasonable to believe that the population distributions associated with J treat­

ments deviate far from normality and/or homogeneity of variance. In these

extreme cases the conservative data analyzer may decide to compute the Kruskal-

Wallis test rather than a conventional parametric analysis of variance or re-
, I

gression analog - especially if the sample sizes are unequal. The purpose of

this paper is to show how multiple linear regression can be employed to compute

the Kruskal-Wallis test statistic.

The computation of the test statistic H using the conventional Kruskal-

Wallis formula (Siegel, 1956) will be presented first; then the regression

approach will be described. Both procedures will be applied to the data of

Table 1.

Table 1. Raw Data and Ranks for Kruskal-Wallis Test
Treatment  —

I II III IV

RAW RANK RAW RANK RAW RANK RAW RANK

95 12 67 5 91 11 103 14

40 1 48 4 47 3 99 13

88 10 79 8 43 2 124 16

82 9
32

76 7
24

70 _6
22

105 15
58
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Conventional Computation

The conventional Kruskal-Wallis formula is

-3(N+1) = H

where

H is the test statistic which is distributed (approximately) as chi
square with J-l degrees of freedom,

N is the total number of subjects,

is the sum of the ranks for the j^ group and

n-£ is the number of subjects in the jt group.

The application of this formula to the data of Table 1 yields

12
16(17)

(32)2 + (21Q2 + (22)2 + (58)2
-3(17)

= .01*1+117  [1360 - 51

= 9-09

Regression Approach 

The computation of H using multiple linear regression involves the following

steps:

A. Arrange ranked data using dummy variables to identify groups

21 Dp 21 Y

i 0 0 12
i 0 0 1
i 0 0 10
i 0 0 9
0 1 0 5
0 1 0 14
0 1 0 8
0 1 0 7
0 0 1 11
0 0 1 3
0 0 1 2
0 0 1 6
0 0 0 Ik
0 0 0 13
0 0 0 16
0 0 0 1 R



59

B. Regress Y on the dummy variables using an ordinary multiple regression

program.

C. Multiply the squared multiple correlation coefficient by N-l. For the

example data R^ = .60588 and N - 1 = 15. The test statistic H is there­

fore 15(.60588) = 9.09 which agrees with the answer obtained using the

conventional procedure.

Our data include only four subjects per treatment in order to keep the com­

putation simple. It should be kept in mind, however, that regardless of the

method of computation, the H statistic is distributed approximately as chi square

only if the number of subjects per group is reasonably large. The definition of

"reasonably large" for this test is generally considered to be six or more.
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Multiple Comparisons

Since the obtained H is significant (using alpha = .05) we may be inter­

ested in identifying the contrasts that have led to the significant result.

Nemenyi's rank order analog of Tukey's test (Miller, 1966) is recommended in

this situation. Before proceeding with this test it will be necessary to com­

pute the mean rank for each treatment group. The regression equation may be

employed in obtaining each mean rank. The computation of the mean ranks and

Nemenyi’s tests for the example data are shown below:

A. First compute the regression
are based on these, estimates.

‘ I11-?

equation parameter estimates the mean ranks

?! = -6.5

$2 = "8-5

?3=-9-O
1 z* A

Mean rank for group I = = 8.0

Mean rank for group II = £q + = 6.0

Mean rank for group III = -£o + = 5-5

Mean rank for group IV = -p0 = 1^ • 5

B. The next step is to determine the absolute mean rank difference for
all pairwise differences.

Groups Mean Rank Absolute Mean Rank Difference
|Ri - Bj| = a

I - II 8-6 2.0

I - III 8-5-5 2.5
I - IV 8-114.5 6.5
II - III 6-5.5 .5
II - IV 6-lh.5 8.5
III - IV 5.5-11*.5 9.0
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C. The value that the absolute mean rank difference must equal or exceed in
order to be declared significant is obtained using the following formula:

q \ J(Jn + 1)
'J,°° \ 12

where a j <z>is the studentized range statistic with J and infinite
' ’ degrees of freedom,

J is the number of groups in the experiment and

n is the common number of subjects found in each group.

Four groups are involved in the example; £ is 3.633 and the critical
mean rank difference is .05,

3.633

We conclude that the difference between the mean ranks for groups III vs. IV
is significant at the .05 level.

A Note on the Interpretation of the Kruskal-Wallis Test

There appears to be some confusion in the methodological literature con­

cerning the assumptions and interpretations associated with the Kruskal-Wallis

test. It turns out that, as might be expected, the interpretation depends upon

what is assumed.

If it can be assumed that (1) the population distributions are continuous,

(2) the population distributions are of the same shape (that is, they have the

same variance, skewness and kurtosis), and (3) the samples from the populations

are independent random ones, then we can conclude, given a significant test

statistic, that there are differences amoung the population means. In this

case this "nonparametric" test is, in fact, an acceptable test of differences

amoung population means which are, of course, parameters.

If we cannot make all of the assumptions listed above but can assume that

(1) the population distributions are continuous and (2) the samples are independent

random ones, the test is still useful but the interpretation is different.
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In this case a significant test statistic allows us to conclude only that the

populations are not identical. This means that the interpretation of the signi

ficant effect is ambiguous. It is possible that the population means are equal

but the variances differ, or the skewness differs or several of these distri­

bution characteristics differ. It is not clear what the "effect" is in this

case.
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UNIVARIATE NONPARAMETRIC ANALYSIS OF VARIANCE: A COMMENT

Lee M. Wolfle

Virginia Polytechnic Institute and State University

Huitema (1978) correctly pointed out that there is an association

between the Kruskal-Wallis H statistic and the multiple R based on

regressing ranks on k-1 dummy variables used to identify the k groups.

Yet he failed in a number of ways to be convincing. Specifically,

first, he demonstrated by means of example that H = (N - 1)R , but did

not offer a proof. Second, he failed to consider the more general

case of tied ranks. Third, he failed to discuss the utility of the
t

regression approach over the traditional computation. Fourth, he

failed to note that there is an associated relationship between the

H statistic and an F-test performed on ranks. Finally, he failed to
»

demonstrate the advantages, if any, of using the nonparametric test

on ranks, regardless of how computed, over that of the more traditional

one-way analysis of variance. It is my purpose in appending this

comment to Huitema*s  paper to address these five points. I hope by

offering these comments that readers will be made sensitive to

considerations underlying the choice of these statistics.

First, note the mean of a rectangular distribution of ranks,
2

R = (N + 1)/2, the variance, Var(R) = (N — 1)/12, and the total sum
2

of squares, SSt = N(N - 1)/12.

63
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Then,
R2 - ss /ss„reg t

 9 9

= En. (R. - R) / N(N - 1)/12J J
9

/N(N - 1)/12

9
/ N(N - 1)/12

2
~ 3(N + 1)

(N2 - 1)

where n. = number of cases inJ
N = En., the number ofJ

the j-th sample, for j = l...k,

cases in all samples combined,

R. = sum of ranks in j-th sample, and

R. = mean of ranks in j-th sample.

Proving the equality Huitema demonstrated by example is accomplished
2

by multiplying R by (N-l):
2

H = (N - 1)R
i— p2—< 2

= 12(N - 1) E _1 I - 3(N +1) (N-l)
N(N2 - 1) L nj"J (N2 - 1)

r r2-i= 12 E - 3(N + 1); Q.E.D.
N(N + 1) L n.J

3

Second, consider the, more general case of tied ranks. The 

consequence is that the distribution is no longer rectangular, and
2

while the mean is unchanged the variance is reduced below (N - 1)/12.

The new total sum of squares is:

where ET = t - t, and t is the number of ties in each group of tied
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ranks. Applying the correction in the computation of the multiple R2

and multiplying the result by (N — 1) results in the usual Kruskal-Wallis

formula (e.g., 1952, p. 587) for H with tied ranks. Thus, H = (N - 1)R2

with or without tied ranks.

My third point is that regardless of the equality demonstrated by

Huitema, and proved above, I can imagine only the rarest of instances

in which it makes sense to employ dummy variable regression rather than

the Kruskal-Wallis formula. Indeed, Kruskal and Wallis listed as the

first advantage of their (then) new statistic, "The calculations are

simplified" (1952, p. 585). Personally, I can easily and quickly
2

compute H on my hand-held calculator, but to obtain the multiple R

by dummy variable regression requires me to use the main-frame

computer to which I have access, and I must still use my calculator

to obtain H. Thus, the relationship Huitema discussed has some i

formal interest for me, but has no practical utility.
2Fourth, recalling that F and R are related brings to mind the

possibility that H and F are also related. If an F-test is performed

using ranks as the dependent variable and the k groups as the

independent, then:

H - (N - 1) (k - 1)F .
(N - k) + (k - 1)F

2
To prove this, recall the proof that H = (N - 1)R , and substitute

the well-known equality R^ = v^ F/(v2 + vj_ ^), where v^ - the

number of independent variables, and v^ = N - v^ - 1. I find this
2

formal relationship equal in interest to the relationship of H to R ,

but of more practical utility because I can use my hand-held calculator 

to compute the F statistic.



66

This leads to my final point. I am not convinced that there exist8

a practical situation in which I would use the Kruskal-Wallis statistic

in place of parametric, one-way analysis of variance. The Kruskal-Wallis

test is unusually recommended in place of one-way ANOVA when the researcher

is unwilling to assume the populations are distributed normally within

groups. However, employing the Kruskal-Wallis test in lieu thereof

does not excuse the researcher from assumptions I find equally limiting.

Specifically, the Kruskal-Wallis test assumes the populations within

groups are distributed with approximately the same form. If I must

make that assumption in order to use the Kruskal-Wallis test on ordinal

ranks, I would just as soon use an analysis of variance on interval

raw scores. The F-test is sufficiently robust, and has the advantage

of following an exact probability distribution, whereas the H statistic

only approximates the chi square distribution. By way of example, I

calculated a one-way ANOVA on the data Huitema reported in his paper:

F ~ 4.5956, and P (F = 4.5956) = .023. In contrast, for the same

data, H = 9.0882, and P (x^ “ 9.0882) = .028. There would have been

no difference in substantive interpretation, regardless of approach.

Another example produced a similar result, this one taken from Kruskal

and Wallis (1952, p. 589): F = 2.9913 with P = .011, and H = 18.5654

with P = .010. The choice of ANOVA over Kruskal-Wallis is clearly one

of style, and I expect opinions will vary.

In conclusion, Huitema has pointed out that there exists an

alternative way to compute the Kruskal-Wallis H statistic. While I

the relationship, I can foresee no instance in which I

dummy variable regression rather than computing H directly-
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Indeed, I can imagine only rare instances in which I would use H at

all. I wish Huitema had addressed these issues more thoroughly,

because I think they are much more important than the formal relationship

he did discuss.
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A DEFENSE OF INFERENTIAL STATISTICS IN EDUCATIONAL RESEARCH
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Several recent criticisms have focused on the perceived overuse

or abuse of inferential statistics in educational research. Brown

(1975) criticized the use of multiple regression, while Derrick (1976)

decried the used of inferential statistics in general, particularly

techniques which are based on the general linear model. Although Spaner

(1977) has responded to Brown's technical criticisms regarding multiple
i

linear regression, to date there has been no reply to the general points

made by these critics. However, the charges they make appear to be easily

refuted, and it is the purpose of the present paper to do so, and to

maintain that the use of general linear model techniques and inferential

statistical techniques in general is not overemphasized in educational

research.

The Criticisms

The criticisms made by Brown (1975) and Derrick (1976) can be

summarized as follows:

(a) Inferential statistics in general, and the general linear

model in particular, create a restricted view of educational

reality by forcing research into a correlational mold

68
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(Derrick, p. 36) or by placing it in strictly "independent

variable-dependent variable terms" (Brown, p. 492).

(b) Use of statistics places undue emphasis on the test of statistical

significance as an indication of the quality of research (Derrick,

p. 36; Brown, p. *+93.

(c) Inferential statistics require data to meet certain assumptions

which are frequently ignored or overlooked by researchers

(Derrick, pp. 36-37; Brown, p. 493).

(d) Studies using inferential statistics produce results which

are not practically useful or meaningful. Brown (1975)

phrases this as the presence of "a discussion which is

strictly empirical and often of no theoretical importance"
t

• ( (p. 493) while Derrick (1976) says inferential statistics may

"declare results to be encouraging in a statistical sense,

whilst the practical sense is not considered" (p. 37).

Refutations

In order to refute these criticisms of inferential statistical pro­

cedures, it is necessary to first consider the goal of scientific inquiry

in education. As with other sciences, basic or applied, this goal is to

discover the cause or causes of observed phenomena. Educational research

iffers from other sciences (e.g., astronomy, physics, biology) only in

xp er in ent at ion in a controlled setting is much more difficult an^

impossible. Thus, scientific research in education often consists

the observation of natural changes in variables. Once these changes
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have been observed and recorded, it is hoped that the reasons for these

changes can be investigated in order to isolate and explain them. In

looking for correlations among variables, the behavioral researcher is

interested not only in whether the correlations exist, but also in using

them to make predictions about what might happen in similar circumstances,

and in isolating those factors which appear to explain the predicted

outcome (see Kerlinger, 1977, for an extended discussion of this topic).

Given this view of scientific research in education, we can make

the following replies to the critics of inferential statistics and the

general linear model, point by point:

(a) Inferential statistics and the general linear model restrict

the views of educational reality only to the extent that ,

researchers allow their research topics to be dictated by the

tools available to them. Nowhere is it written that one

must do correlational research or that experimental research

is superior to descriptive research, or inferior to it. Each

type of research has a unique role to play in the conduct of

educational research.

(b) Many theoreticians have discussed the problem of overemphasis

on the test of statistical significance (e.g., Binder, 1963;

Skipper, Guenther, 6 Nass, 1967; Edwards, 1965). However,

theoretical discussions of the process of hypothesis testing

presented in even elementary statistics texts (e.g., Hays,

1963, pp. 299-300; Games £ Klare, 1967, pp. 422-426; Welkowitz,

Ewen 8 Cohen, 1971, pp. 159-160) emphasize that statistical
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significance relates only to the numbers gathered in the

experiment and does not directly indicate the quality

of the theory under investigation. Thus, the emphasis on

a statement of statistical significance is not a function of

the statistical technique but rather of its users.

(c) While it is true that most inferential statistical techniques

including analysis of variance, multiple linear regression, and

t-tests, require that data meet certain distributional and

procedural assumptions and that many users of the techniques

do not check the fit of their data to these assumptions, this

does not invalidate the usefulness of the techniques. Rather,

it indicts the users of the techniques as careless, unknowledgeable,
I

or perhaps incompetent. One must not confuse deficiencies of

statistical techniques with the deficiencies of those who use

them.

(d) The criticism that the results of studies using inferential

statistics are not immediately applicable, or do not definitively

resolve crucial aspects of theory, appears to be based on a

somewhat naive conception of science. Science does not con­

sist of an accumulation of facts (Kuhn, 1962). Nor does science,

at least behavioral science, consist of a series of "crucial

experiments which leads to definite answers about the truth

of alternative theories, as described by Platt (1964). One

cannot necessarily expect a single study in education to provide

either practically useful results or final answers about basic 
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educational issues. Single studies which are not part of a

program of educational research will give results which are at

best "encouraging" (Derrick, 1976, p. 37), and at worst useless.

The purpose of inferential statistics is to indicate when the

outcomes of research are so unusual as to be rarely observed

under certain hypothesized conditions; thus statistics cannot

prove anything, and can never substitute for carefully designed

studies which test aspects of theory. Those who require statistical

inference to prove theories ask the impossible, in that theories

are accepted on the basis of accumulations of positive evidence

and, perhaps, esthetic considerations, which cannot be provided

by any objective, mathematical process.
i

Summary

Critics of inferential statistics in educational research, particularly

statistics based on the general linear model, have tended to attack the

use of these techniques in current research rather than the techniques

themselves. Specifically, statistical techniques cannot create restricted

views of research, cannot be blamed for undue emphasis on the test of

statistical significance, and are not to blame if researchers ignore

their limitations and assumptions. Statistical techniques were never

designed to provide answers about the ultimate truth or falsity of a

substantive theory or about the utility of a procedure in any and all

situations. Those who criticize inferential statistics on such grounds

are blaming statistics for the shortcomings of researchers who misuse

or do not understand the techniques.
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A CLOSER LOOK AT STATISTICAL INDEPENDENCE. ANALYSIS
OF COVARIANCE AND DIRECTIONAL HYPOTHESES

Bradley E. Huitema

Western Michigan University

Spaner (1977) has summarized some findings and offered some opinions on

the inferences that are allowable with a significant _F in regression analysis.

The purpose of this note is to clarify some of the points that appear to be

misleading or incorrect. My concern is primarily with his statements concern­

ing the independence assumption, the analysis of covariance and directional

hypotheses. The paper is organized around these three topics.

Statistical Independence of Observations

After listing three assumptions associated with the F statistic (random-
. i

independent measures, homogeneity of variance and normality), Spaner! states

that he will "summarily dismiss these F ratio assumptions with an impressive

list of citations." (p. 63)

It appears that he (appropriately) backs down on his dismissal of the

independence assumption two pages later where he refers to Glass and Stanley

(1970) who warn that violations of this assumption can be serious. Spaner then,

on page 69, goes on to state that there are suprisingly no investigations of

this "tenet" and suggests that Snedecor (1956) or Vasu and Elmore (1975) claim

that " ... dependence of observations (A. > -95) can cause disruption of accurate

calculations. Snedecor (1956) has recommended the elimination of one of the

pair of Xs with correlation greater than .95 (based on a redundancy interpre­

tation)." Two aspects of his statements on the independence assumption are

incorrect. First, investigations of this assumption have been conducted;

75
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second, Snedecor's suggestion and the paper by Vasu and Elmore have nothing to

do with the independence assumption.

Some of the investigations of dependence of observations are with refer­

ence to F and some are with reference to other test statistics, but one con­

clusion of these studies is very clear: nonindependence of the residuals

produces serious distortions in probability levels of the test statistics. One

might question what is meant by "serious distortion." Scheffe' (1959) carried

out some early work on the robustness of t and ANOVA F tests with respect to

the independence assumption. He showed that when the observations (X^) are

autocorrelated with the lag 1 autocorrelation p, the variance error of the

mean, to order 1/n is

1 + 2p
X " “

i — —

and the true probability of Type I error with nominal a can be determined through

the use of a function that will not be

Scheff/'s method to the lag k case for

results are summarized below.

Table 1 Probability of Type I Error
for Nominal a = .01 and .05

described here. Padia (1976) extended

large n. A small portion of Padia's

for an Autoregressive (lag 1) Process

Actual Probability of a Type I Error

p
Autocorrelation Nominal a = .01 Nominal a = .05

• 50 .1362 .258b
.30 .0b7b .lb98
.10 .020b .0768
. 00 .0100 .0500

-.10 . OObb .0300
-.30 .000b .007b
-•50 .0000 .0006
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Notice that for nominal a - . 01 and P = . 50 the true probability of Type 1

error is almost ih times the stated value! Certainly we should not "summarily

dismiss" the independence assumption.

The reference to Snedecor and to Vasu and Elmore is irrelevant with respect

to the independence assumption because these authors deal with the problem of

multicollinearity - which, of course, has to do with parameter estimation issues

associated with high correlation among predictors. The problems of multicol­

linearity must not be confused with the independence assumption issue. In

the former case the problem is dependence among predictor variables and in

the latter case the problem is dependence among the observations or residuals.

If the reason for dependence among the observations is that the observa­

tions have been collected from a unit repeatedly across time, there are well

established methods (e.g., Box and Jenkins, 1970) of transforming the data to

yield uncorrelated residuals. Other causes of dependence among observations

are much more difficult to handle because it is usually impossible to know

whether or not independence is present. There is no such thing as a definitive

test of the independence of observations unless the design is one in which time­

series data are collected. In this case serial correlation or autocorrelation,

which can easily be computed, is relevant.

In the typical non-time-series design, however, we simply don't know if

the response one subject makes has an effect on the responses other subjects

make or if some event common to all subjects in the sample has caused some

dependence among all responses. This concern with dependence of observations

is at the heart of much current research on the choice of the correct experi

mental unit to be employed in any statistical analysis, including regression.

Analysis of Covariance

Spaner touches on the analysis of covariance in discussing assumptions!
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models and interpretations. He suggests (p. 63) that the only additional

assumption (beyond Independence, homogeneity of variance and normality) that is

associated with ANCOVA is the homogeneity of variance assumption. I agree that

this is a very important assumption but it is not the only additional assumption

that should be considered. It is essential that researchers be aware that the

covariate is assumed to be error-free and that the covariate and treatment

effects are assumed to be statistically independent — especially if ANCOVA is

employed with the ex post facto studies Spaner seems to favor. If ANCOVA is

employed with this design the inferences allowable are very likely to be much

different from those the researcher has in mind. And I am not referring to

slight inaccuracies in probability values. I am referring to complete mis­

interpretations of the results: bias in the degree and even direction of the

differences between adjusted means as well as gross errors in probability

statements.
1

As I previously mentioned, Spaner does appropriately emphasize that the

homogeneity of regression assumption is important. I must differ, however,

with his statement on page 68 that "inferences based on significant F tests

of covariance analyses will be rendered inaccurate if not invalid without the

homogeneity of regression test." We cannot render the F test on adjusted

means inaccurate or invalid by simply failing to compute the homogeneity of regression

test. It is true, however, that we will be in the dark about whether or not

the adjusted mean difference is constant across the various levels of the co­

variate included in the study if we do not carry out this test. This, of

course, is very important information.

Directional Hypotheses

In his discussion of three aspects of curve fitting Spaner lists the in­

tercept, the slope and the number of inflection points and states that "of

three factors only one is available for nondirectional hypotheses: the

comparison of intercept points " (p. 69). Since he refers to the slope rather 
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than a plane or hyperplane he is dealing with the one predictor variable case

and since he refers to the "comparison of intercept points" he is dealing with

at least two samples. Why is the comparison between intercepts the only possi­

ble nondirectional test? If we once again employ Spaner's one predictor

variable - two group example, we have two sample slopes as well as two sample

intercepts from which population parameters are inferred. We may be interested

in testing the equality of the two within group regression slopes. This

test is,of course, the homogeneity of regression test. The associated null hy­

pothesis is

»o: ■ *l t2>

where the superscript refers to populations one and two. This is a nondirectional

hypothesis.

Spaner’s description of the directional nature of the test on the slope

may not, however, deal with the hypothesis stated above. Perhaps it deals with

the case in which there are two (or more) groups and the predictor variable is

simply a dummy variable. In this case the hypothesis associated with the F

test is

Ho: = 0.0

which is, once again, nondirectional. If we prefer to deal with the population

correlation coefficient rather than the population slope the hypothesis is

Hq: f - 0.0

which is also nondirectional. Hence, Spaner's conclusion that Only in the

statement of hypotheses about intercepts (group mean differences) is there

the potential for a nondirectional F test ... " is not correct.
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ON THE COMPARABILITY OF MULTIPLE LINEAR (MULR-05) AND
INTERACTION (AID-N) REGRESSION TECHNIQUES

THOMAS E. Jordan.

University of Missouri at St. Louis

INTRODUCTION

Creative use of regression techniques requires that use of linear and

interaction terms be approached carefully. Given even a simple set of pre­

dictors the linear model may not be the most effective configuration, and

the proportion of criterion variance assigned may be less than optimal. The

obvious response is to hypothesize nonlinear forms of vectors, interactions

of vectors, and conceivably, interactions involving nonlinear terms. For
!

some areas of research cubed terms seem as high as one need go (Joossens and

Brems-Heyns, 1975), and interactions beyond triple terms resist interpreta­

tion anyway. However, the conceivable range of complex vectors is enormous,

even when theory eliminates some of the more forebidding combinations.

Koplyay's (1971) paper on interaction regression has done much to help

the compulsive if perplexed investigator by pointing out that interaction

terms in regression are manageable by computer programming. Jordan (1975)

has shown that parsimonious models derived from use of the MULR-05 program

can be explicated by use of the AID-A program, and Spaner and Jordan (1973)

have shown that models generated by AID—A can be recaptured through MULR-05

with the R^ value remaining unchanged. However, the two regression programs

are different in their mathematical techniques and in their assumptions. Of

the two approaches interaction regression makes fewer rigorous assumptions

81
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and in the view of some, may require large data sets because of loss of

degrees of freedom (Sonquist, Baker, and Morgan, 1973).

The interaction regression algorithm explains the variance of the

criterion variable by sequential splitting of the original group into

subgroups. The splitting is done to minimize the within groups (error)

sum of squares. This is accompl ished by the examination of each possible

split of every predictor variable of the current candidate group to be

split and by the selection of the split giving the smallest within groups

sum of squares. Three basic statistics are reported at each split in the

branching process. An R squared value indicates the percentage of criterion

variance explained through the current splitting. An F value indicating

the significance of the reduction in the error sum of squares due to the

current-spl it. A one-way analysis of variance considering all groups at
i

this stage leads to an F-value.

Multiple linear regression is a technique in which a full regression

model for a criterion score is compared with a second model which is restricted

by deletion of a critical variable. Evaluation is in the form of a probabil­

ity level for the F test resulting from comparison of full an^ restricted-

This technique is well suited to long predictor series and permits examina­

tion of data in both continuous and discrete form.

PROBLEM

This investigation addresses the question of whether interaction re­

gression provides results concordant with those of multiple linear regres

It does so by asking the empirical questions:

Are predictors identified as sources of variance from both

techniques comparable?
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2. Are R2 values from both regression techniques comparable?

METHOD

Data from the St. Louis Baby Study were assembled on just under two

hundred children (N=19&) using variables gathered from birth to age three

years by prospective longitudinal study. These data plus others are reported

more fully elsewhere (Jordan, 1975, 1979). The children whose traits are

reported in Table I are mostly white and middle class, and have a mean PPVT

IQ of 97 at age three, according to published norms. The data set was

analyzed by use of interaction regression and multiple linear regression.

RESULTS

The multiple linear regression analysis summarized in Table 2 employed

a predictive full model composed of five variables plus briefer models each

deleting one of the five variables listed. The full model created an Re­

value of .1^ (p=.0002) , and the least powerful model, that deleting mater­

nal education, created an R2=.O9 (p=.0005); all models were statistically

significant. The most significant predictor was maternal education, account

ing for over one-third of the full model's variance (R2=.O5). It was fol­

lowed by race which accounted for two percent of the variance.

In the case of the interaction regression analysis, summarized in

Table 3, the same full model composed of five predictors was used. The

model used two predictor variables the first of which, and the prime source

of variance, was maternal education. The second variable of the five was

perinatal SES score. The interaction regression model in Table 3 may be

written as:

Y - (Mom's Ed.) + (SES) + (Mom's Ed. * SES) + (Mom's Ed2 * SES) + e
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TABLE 1

DESCRIPTION OF THE SUBJECTS

(N=196)

Sex^

(M)

Race^

(B)

SES1 2
Pop' s

Occupation

M - 2
Mom's

Work

Morn's^

Education

PPVT(A)2

Range 16-78 11-70 1-3 1-5 6-54

Mean
or % • 51 .06 48.04 40.09 2.53 3-12 27-323

Sigma i 15.29 17-72 • 77 • 95 11.14

^Gathered at delivery.

2
Gathered at child age three years.

3=IQ 97-
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TABLE 2

MULTIPLE REGRESSION ANALYSIS OF INFLUENCES

ON 36-MONTH PPVT(A) RAW SCORES

(N=196)

*Significance of the difference from zero.

Predictor
Vari able

Models
Compared R2 F P

Full Model 1 .14 .0002*

2.01 .15

SES Model 2 ■ 13 .0002*

Full Model 1 .14 .0002*

3.66 s . .06

Race (B) Model 3 .12 .0004*

Full Model 1 .14 .0002*

.86 • 35

Paternal Occupation Model 4 .13 .0001*

Ful1 Model 1 .14 .0002*

.03 .84

Maternal Occupation Model 5 .13 .0001*

Full Model 1 .14 .0002*

9.29 .002

Maternal Education Model 6 .09 .0005*
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This model explained sixteen percent of the criterion variance (R2=.I6),

Our first question asked if the two regression techniques provide

concordant results, in terms of the variables identified by the two tech­

niques. The answer may be given in three parts. First, both analyses show

that no significance need be attached to paternal occupation, SES, or race.

Second, both techniques identify maternal education as the variable of prime

interest. In short, there is agreement on positive findings, agreement on

negative findings, and a region in which divergent findings emerge.

The second question dealt with the matter of R2 values. In fact, both

regression systems give similar R2 values; the lower R2 value of .14 was

generated by the simple multiple linear regression model. On the other hand,

the more complex model composed of nonlinear and interaction terms generated

a higher R2 value, R2=.16. This model is parsimonious, in terms of the
I

number of developmental variables, while creating several terms within the

regression equation. Comparability of the two models exists because both

generated similar R2 values using a sample of modest size (N=196) .

DISCUSSION

We note the original problem faced by regression analysts: namely, how

to cope with the potential permutations of variables implicit when relation­

ships can be complex interactions and when nonlinearity of regression cannot

be ruled out. We conclude that interaction regression may be a guide for the

perplexed since it creates interactions as a part of the program introduced

to regression analysts by Koplyay (1971)•

It is evident from our analysis that compatible results can be created

by interaction regression, both in terms of proportion of variance explained
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and in terms of variables found useful and those not found useful. In addi­

tion, we note that this degree of compatibility emerges from a sample of

moderate size. We conclude that interaction regression has much to offer

based on the outcomes when multiple linear regression findings are used as

the criteria of validity and utility. We confine these observations to

premises of modest sample size and to the domain of developmental data on

children. Larger data sets, longer predictor aggregates, and data from

other domains may well provide a different degree of compatibility.
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